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Geometric phase induced interface states in mutually inverted two-dimensional photonic crystals
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The exposed surface of a truncated photonic crystal (PC) may or may not carry surface states. Likewise,
when two PCs are joined together, there is no assurance that interface states can be found at the boundary. We
show, however, that interface states must exist at the boundary between a two-dimensional dielectric PC and its
“inverted” partner (the conjugate structure formed by interchanging the high/low dielectric region) as long as a
common gap can be found above the lowest band and the crystal structures possess a mirror symmetry on average
along the interface direction. The interface states form deterministically as a result of different geometric phases
of the bulk bands across the boundary. As the existence is protected by topological principles, the interface state
will persist even in the limit of extremely small common gaps. The presence of interface states is demonstrated
theoretically for a variety of PCs and also experimentally.
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I. INTRODUCTION

The existence of interface/surface states in photonic crystals
(PCs) were usually determined by numerical computations
based on a cut and try approach [1–4]. It would be highly
desirable if the conditions of their existence can be established
on firm mathematical grounds. An analytical condition for
interface/surface state formation in PCs does exist when the
effective medium description is valid [5]. However, there is no
general rule that can reliably predict the formation of interface
states formed at the interface between two PCs. Recently, it has
been shown that interface states can be found deterministically
in two-dimensional (2D) dielectric PCs, which possess conical
dispersions in the zone center, and the formation of the
interface states can be traced to the presence of flat bands [6]
specific to those systems. This is an example in which some
simple rules can assure the existence of interface states, albeit
for a fairly special class of PCs. Here we propose a simple
method to create interface states in a large class of 2D PCs,
and the condition holds as long as the two PCs on either side of
the interface have mutually “inverted” structures (to be defined
below) and there is a mirror symmetry on average along the
interface direction. The interface state formation is related to
the modern notion that the existence of surface/edge state is
related to the bulk topological property of the k-space [7–26]
where in this case it is governed by the geometric phases of
the bands. Although the existence of interface states has been
reported in a mutually inverted structure before [4], its physics
origin has not established. We show here that there is a deep
mathematical reason why the boundary state can form not just
in some specific design, but in fact in a whole class of mutually
inverted dielectric structures.

II. INTERFACE STATES IN SYSTEMS WITH C4v

SYMMETRY

Let us start by considering square lattice PCs shown
schematically in Fig. 1(a). The PC1 is formed by dielectric
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cylinders (red color) with dielectric constant ε and radius rd

embedded in air. The PC2 is the inverted partner of PC1,
formed by air cylinders (white color) with radius ra embedded
in a dielectric background with dielectric constant ε. The two
PCs have the same lattice constant a. By tuning rd or ra , we can
always align the first gaps above the lowest bands of these two
mutually inverted structures so that they share a common gap
in frequency. In Fig. 1(b), we plot the 2D bulk band structures
for the transverse magnetic (TM) polarization with electric
field along the cylinder axis for a pair of inverted structures
where rd or ra are tuned to align the gaps (ε = 11.9, rd = 0.3a,
and ra = 0.45a). A common gap exists in the frequency range
between 0.193c/a and 0.261c/a along the �X direction. In
Figs. 1(c) and 1(d), we consider the dispersions along kx with
a fixed ky = 0.2π/a. It is crucial to point out here that the
property of the lowest band gap (above the lowest allowed
band) is dictated by Bragg scattering in the x direction.
The structural variation in the y direction provides additional
evanescent modes due to higher order diffractions along the
y direction. In Appendix A, we show that the higher order
diffraction modes have much shorter decay length than that
due to the Bragg scattering and, therefore, have insignificant
effects in the determination of interface state formation inside
this gap. This allows us to consider a reduced one-dimensional
(1D) system in which the material parameters are obtained
by averaging the material parameters of the original 2D PCs
along an orthogonal direction. Recently, it has been shown
rigorously that in 1D PCs, the existence of an interface state
inside a common gap is directly related to the topological
properties of the bulk bands of the two constituent PCs [27].
The results have been successfully applied to the determination
and observation of interface states in 1D PCs [28]. We want
to emphasize that in general, 2D PCs cannot be reduced
to equivalent 1D systems due to the existence of multiple
interlayer diffraction channels. The surface impedance for 2D
PCs is in general a tensorial quantity [29], and the edges of
the band gap are not necessarily at the high symmetry points
of the Brillouin zone. The relationship between the Zak phase
and surface impedance that was established in 1D relies on
a one-to-one correspondence between these quantities, but in
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FIG. 1. (a) The schematic picture for the PC and its inverted
partner. The PC1 consists of dielectric cylinders in air. The PC2
consists of air cylinders in a dielectric background. (b) The bulk
band structures of the PCs: the red circles denote PC1 with ε = 11.9,
rd = 0.3a; blue squares denote PC2 with ε = 11.9, ra = 0.45a. The
inset shows the coordinate system for calculating the Zak phase. The
reduced 1D bands with a fixed ky = 0.2π/a [yellow dashed line in
(e)] are shown in (c) and (d) for PC1 and PC2, respectively. The Zak
phases of the bulk bands are labeled with green color. The characters
of the bulk gaps are labeled by the sign of Im(Z) with blue color for
Im(Z) < 0 and red color for Im(Z) > 0. (e) Projected band structures
along the ky direction for PC1 (red) and PC2 (blue). The green line
denotes interface states. (e) Inset: Schematic picture of an interface
formed by two semi-infinite 2D PCs in a square lattice. (f) The Zak
phase of the lowest band in a PC as a function of εc/εb. The PC
consists of cylinders with relative permittivities εc and radii rc in a
square lattice embedded in a background with relative permittivity
εb. Here, rc = 0.3a. The relative gap sizes and the decay lengths of
the interface states at ky = 0 (g) and ky = 0.4π/a (h) as a function
of the radius rd in the left PC, respectively.

2D, such a correspondence cannot be found between the Zak
phase (a scalar) and surface impedance (a tensor). However,
we are going to demonstrate that under some conditions to be
established below, 2D PCs can indeed be reduced to equivalent
1D systems.

We calculate the geometric Zak phases of the 1D bands
shown in Figs. 1(c) and 1(d), and the results are used to label
the bands. We note that the Zak phase depends on the choice of
origin [30], and as such, only relative values are meaningful.
Here, we choose the origin at the boundary of the unit cell,
as shown in the inset of Fig. 1(b). This is a convenient choice
because the surface impedance is measured at the boundary
of the unit cell. We note that if other points are chosen to
be the origin, the values of the Zak phases will change, but
the difference of Zak phases will remain the same; it is the
difference of Zak phases that matters. In Appendix B, we give
two methods to calculate the Zak phases of the reduced 1D bulk
bands depending on how to calculate the inner product and
show that they give almost the same result. This is consistent
with the assertion that the 2D gap interested here can be treated
as a reduced 1D gap. We found that the lowest bands for PC1
and PC2 have Zak phases of π and 0, respectively. These
results can also be obtained from the symmetries of two Bloch
states at the two band edges [31] [see Appendix C]. The
fact that the Zak phase changes from π to 0 in the lowest
band as we invert the structure from dielectric cylinders to
air holes can be understood physically as follows. For the
lowest band, states near the zone center and at small k are well
described by an effective homogenous medium; therefore, the
characters of the states are more or less the same for PC1 and
its inverted partner PC2. However, the structural variation in
the x direction will determine the mode profile at the Brillion
zone boundary kx = π/a. The electromagnetic mode energy
will concentrate in the high dielectric part and |En�k(x,y)| will
have different characters for PC1 and its conjugate PC2. As
shown in Appendix C, after averaging over the y coordinate,
|Ẽn,�k=(π/a,0.2π/a)(x)| is peaked at the center of the unit cell for
PC1 and at the boundary for PC2. The change of symmetry
of the eigenmode of PC1 from kx = 0 to kx = π/a gives it a
Zak phase of π . It is known that in a system with inversion
symmetry, if the center of the Wannier function coincides with
the chosen origin, the Zak phase is zero; otherwise, it is π [32].
The lowest band in PC1 is a dielectric band, and hence the
center of the Wannier function of this band coincides with the
center of the cylinder. If the center of the cylinder was chosen
as the origin, the Zak phase would have been zero. Since the
origin was now chosen at the boundary of the unit cell, the
Zak phase became π . This is consistent with that obtained
from the symmetries of two Bloch states at the two band edges
while PC2 has zero Zak phase, as shown in Appendix C. We
note here that the change of the Zak phase from π to 0 in
the lowest band as we invert the structure is very generic. The
position of the high dielectric region and the low dielectric
region relative to the inversion center of the system is the
condition that determines the Zak phase in the low frequency
band, and structural details are of secondary importance.

Let us now construct an interface as shown in the inset of
Fig. 1(e), where a boundary along the y direction separates two
semi-infinite PC1 and PC2. The corresponding projected band
structures along the ky direction are shown in Fig. 1(e). As the
gaps are aligned, the projected band has a common band gap
region. Accompanying the appearance of a common gap, a
band of interface states (marked by a green line) appears. The
existence of interface states is a direct consequence of the fact
that the two constituent PCs have different Zak phases in the
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reduced 1D bulk bands. Recently, the interface states arising
from the Zak phases have been studied in experiments [24–26].

III. PHYSICAL ORIGIN OF THE INTERFACE STATE

To understand the topological origin of the interface state
formation, we consider a particular interface state at frequency
0.23c/a with a fixed ky = 0.2π/a, which is marked by the
yellow dashed line in Fig. 1(e). The Bloch states along this
vertical line represent the band states in the reduced 1D
band structures along the kx direction, as shown in Figs. 1(c)
and 1(d). In 1D systems with inversion centers, the sign
of the imaginary part of the surface impedance in a gap is
related to the Zak phases of the bands below the gap [27,28].
Alternatively, the ratio of the signs of the imaginary parts of the
surface impedances (Im(Z(ω,ky))) in two adjacent gaps, say
the nth and (n − 1)th gaps, is related to the Zak phase (ϕ) of
the band in between through a bulk-interface correspondence:

Sgn[Im[Zn(ω,ky)]]/Sgn[Im[Zn−1(ω,ky)]]

= exp[i(ϕn−1 + π )]. (1)

For the lowest gap in Figs. 1(c) and 1(d), it is easy to
prove that the imaginary parts of the surface impedances of the
two PCs are both negative, i.e., Im(Z(ω,ky)) < 0 (marked in
blue) [6]. Causality requires that Re(Z(ω,ky)) > 0, and when
we add an infinitesimally small loss to the PCs [33], we see
that Im(Z(ω,ky)) < 0. Using Eq. (1) and the Zak phases of the
lowest bands, we found that Im(ZL(ω,ky)) < 0 in the second
gap of PC1, while Im(ZR(ω,ky)) > 0 (marked in red) for PC2.
Different signs of Im(ZL(ω,ky)) and Im(ZR(ω,ky)) imply that
an interface state must exist at some frequency inside the
second gap at which Im(ZL(ω,ky)) + Im(ZR(ω,ky)) = 0. This
is because that the value of Im(Z(ω,ky)) decreases monoton-
ically from 0 to −∞ and +∞ to 0 with increasing frequency
in a region with Im(Z(ω,ky)) < 0 and Im(Z(ω,ky)) > 0,
respectively [27]. We note that the existence of a common
band gap is a necessary but not sufficient condition for the
existence of the interface states. What we have shown is that
for mutually inverted structures, the interface states will form
in the lowest gap due to the change of the bulk band Zak
phase in the lowest band as we invert the structure across the
interface.

In Fig. 1(f), we show the Zak phases of the lowest band in
square lattice PCs [as those shown in Fig. 1(c) and Fig. 1(d)]
for different values of the dielectric constant of the cylinder
(εc) and those of the background (εb). We see that as long
as the dielectric constant of the cylinder is larger than that of
the background (εc > εb), the geometric phase is π , while it
is zero if εc < εb. If we cross the boundary from a dielectric
cylinder PC to its inverted partner, there must be a jump of
the Zak phase of the lowest bulk band across the boundary,
and this discontinuity gives rise to an interface state inside the
common band gap above the first band. Figure 1(f) shows that
this scenario is true not just for the ε = 11.9 chosen to compute
the results of Fig. 1(e), but for any value of the dielectric
constant. We also note that we found the same discontinuity
shown in Fig. 1(f) for a large range of ky , as it must be since the
interface state cannot exist for just one particular value of ky .

The geometric phase transition from left PC to right PC
is effectively a topological transition. As the topological
properties of the system will not change unless the gap is
closed, the existence of interface states is assured no matter
how tiny the common gap size is. The relationship between
the gap size and the decay lengths of the interface states at two
values of ky (ky = 0 and 0.4 π/a) illustrates this transition. In
Figs. 1(g) and 1(h), we tune the relative gap size by varying
the radius rd of the cylinder in the left PC and keep the right
PC unchanged. Here, the relative gap size is defined as the
ratio between the gap size and the midgap frequency. As rd is
changed from 0.18a to 0.47a, the relative gap size increases
from zero to a large value and finally back to zero again, with
a corresponding change of the decay length of the interface
state. But irrespective of the size of the gap, there is always
one band of interface state inside the gap. As long as the gap is
there, the number of interface states cannot change. Only the
decay length can change.

IV. MICROSTRUCTURES OF LOWER SYMMETRIES

In the above example, we have considered systems possess-
ing C4v symmetry. An example for the triangular lattice with
C3v symmetry is given in Appendix D. The high symmetries of
the crystal structures ensure the existence of inversion centers
in the corresponding reduced 1D structures, which in turn
guarantees the existence of the interface states. Since the
presence of inversion centers in the reduced 1D structures
is the only requirement for the existence of interface states, we
can lower the symmetry of the PCs in the search of interface
states. The symmetry of a PC is not only determined by the
lattice symmetry but also by the microstructures in a unit cell.
Here, we first lower the symmetry of the microstructures in the
unit cells of the PCs but keep the lattice structure unchanged.
As an example, two PCs with two different microstructures are
shown in Fig. 2(a). The top one (PC1) consists of a dielectric
object (red color) with dielectric constant ε = 11.9 embedded
in air (white color). The bottom one (PC2) is an inverted
configuration two air holes (white color) embedded in an
ε = 11.9 dielectric background (red color). Both unit cells
possess only σx symmetry. There are two ways to construct
an interface. One is shown in Fig. 2(b), in which the two
semi-infinite PCs are arranged along the y direction so that
both PCs have inversion centers in the reduced 1D structures.
The projected band structures along the ky direction are shown
in Fig. 2(d). The filling ratio of the air holes in PC2 is purposely
chosen so that PC1 and PC2 have a very small common gap in
the projected band structures. A band of interface states marked
by a green line is found inside the gap with a gap size to midgap
ratio as small as 0.04, which can be seen from the inset of
Fig. 2(f). Here we intentionally make the gap nearly closed in
order to demonstrate the guaranteed existence of the interface
states. In Figs. 2(f) and 2(g), the reduced 1D band structures
with a fixed ky = 0.2π/a [labeled with yellow dashed line
in Fig. 2(d)] for PC1 and PC2, respectively, are shown. The
lowest bands of PC1 and PC2 have different Zak phases,
which are π and 0, respectively. Based on the bulk-interface
correspondence of Eq. (1), the surface impedances of PC1 and
PC2 have different signs in the frequency range of the bulk
gap above the lowest band, as labeled by different colors in
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FIG. 2. (a) The unit cells of the PCs with red color denoting ε = 11.9 regions and white color denoting air. The top panel (PC1) consists
of a dielectric object embedded in air, and the bottom panel (PC2) consists of two air objects embedded in dielectric. Both unit cells have
mirror symmetry along only the y direction. The interfaces are constructed by joining the two PCs along the y direction (b) and x direction
(c). Projected band structures of these two PCs are shown in (d) and (e) along the ky and kx directions, respectively, with red color denoting
PC1 and blue color denoting PC2. The green line in (d) denotes interface states. There are no interface states at the interface shown in (e). The
reduced 1D bands with a fixed ky = 0.2π/a [yellow dashed line in (d)] are shown in (f) and (g) for PC1 and PC2 in (b), respectively. (f) Inset:
Enlarged projected bands of (d). The Zak phases of the bulk bands are labeled with green color. The characters of the bulk gaps are labeled by
the sign of Im(Z) with blue color denoting Im(Z) < 0 and red color denoting Im(Z) > 0. (h) The eigenelectric field distribution of an interface
state at ky = 0.2 π/a along the x direction.

Figs. 1(f) and 1(g) [blue color for Im(Z) < 0 and red color for
Im(Z) > 0]. An interface state must exist inside this gap as
for the change of sign of the impedance across the interface,
irrespective of the size of the gap. In Fig. 2(h), we show
the electric field distribution of an interface state along the

x direction at ky = 0.2π/a. Localization of this state near the
interface is clearly seen. However, if we arrange the two PCs
along the x direction, as shown in Fig. 2(c), no interface states
are found inside the gap, as shown in Fig. 2(e). This is due to
the absence of reflection plane σy .

085415-4



GEOMETRIC PHASE INDUCED INTERFACE STATES IN . . . PHYSICAL REVIEW B 93, 085415 (2016)

aa

a

a

a

y

xO1 O2

2ra
Triangular lattice
Square lattice

)b()a(

FIG. 3. (a) Projected band structures of these two PCs along the ky direction for PC1 (red) and PC2 (blue). The green line is a band of
the interface states. The inset shows the interface structure, with red color denoting high dielectrics and white color denoting air. PC1 consists
of dielectric objects in a square lattice embedded in air, and PC2 consists of air cylinders in a triangular lattice embedded in a dielectric
background. The distance between two nearest objects/cylinders is denoted by a for both PCs. (b) The eigenfrequency of an interface state at
different ky as a function of the relative shifted distance between the origins of two PCs. O1 denotes the origin of PC1, and O2 denotes that of
PC2. Here, ε = 11.9, rd = 0.3a, and ra = 0.42a.

V. INTERFACE SEPARATING SYSTEMS WITH
DIFFERENT LATTICE SYMMETRIES AND

MICROSTRUCTURES

In Figs. 1(e) and 2(d), we demonstrated the existence of
interface states using two PCs with the same lattice structure.
Now we consider inverted configurations with different lattice
symmetries. An example is shown in the inset of Fig. 3(a), in
which PC1 consists of dielectric objects in a square lattice
embedded in air and PC2 is formed by air cylinders in a
triangular lattice embedded in a dielectric background. Since
the presence of inversion centers in the reduced 1D PC is
the only requirement for interface state formation, the mirror
symmetry in the microstructures shown in previous examples
was also relaxed. For instance, the object in the PC1 now
consists of one half of the unit cell of PC1 in Fig. 2(a) and its
inversion symmetric part. The PC1 now does not even possess
σx symmetry. The presence of inversion centers is recovered
only after taking the average of dielectric constant along the y

direction. In this case, the two PCs are different not only in the
symmetries of the microstructures but also lattice symmetries.
The projected band structures of the two PCs as well as a
band of interface states are shown in Fig. 3(a). We then shift
the two PCs along the y direction with a relative distance
� = O1−O2, where O1 and O2 are the origins of PC1 and
PC2. The frequencies of interface states for several values of
ky as � changes are plotted in Fig. 3(b). The frequency of
the interface state at a certain ky is almost independent of
�. This shows that a mirror symmetry on average along the
interface direction is sufficient to guarantee the existence of
interface states. In Appendix E, we demonstrate the existence
of interface states in two mutually inverted PCs in an oblique
lattice. In this structure, the presence of inversion centers
normal to the interface is a result of parameter averaging along
the interface direction.

VI. EXPERIMENTAL VERIFICATION OF THE
INTERFACE STATES

The existence of the interface states at the boundary of
mutually inverted structures is also verified by microwave
experiments. The experimental setup is shown in Fig. 4(a).
Two PCs with mutually inverted structures were assembled
in the xy plane inside a parallel-plate waveguide composed
by two flat aluminum plates. PC1 consists of a square array
of alumina rods with εd = 8.5, rd = 3.75 mm embedded in
air. Its inverted partner PC2 consists of a square array of air
holes with ra = 5 mm embedded in glass background with
εb = 3.75. The lattice constants of both PCs are a = 12.4 mm.
The height of the alumina rods and the glass slab are 11 mm.
The separation between the two aluminum plates is set as
12 mm, which is slightly larger than the height of the rods
and the slab but smaller than half the wavelength in interest
(∼20 mm for 7∼8 GHz where interface states were observed)
to ensure that the whole experimental chamber can only
support transverse electromagnetic modes. The PC arrays were
fixed to the lower aluminum plate. The PCs are surrounded by
absorbing materials (in blue) to avoid unwanted scattering.
The projected band structures along ky direction are shown
in Fig. 4(b). The green line denotes a band of interface states
found by numerical simulations. A time-harmonic monopole
antenna is located at the position marked by the red arrow. As
the frequencies under investigation are inside the common gap
for both PCs, evanescent wave is used to excite interface states.
The lower aluminum plate along with the whole experimental
setup was mounted on a translational stage in the xy plane,
and thus the electric field distribution of the whole sample can
be recorded via a field-scanning antenna fixed in a hole in
the upper aluminum plate (not shown). A microwave vector
network analyzer (Agilent E5071C) is used as both source
and recorder of microwave signals. The measured interface
states at different ky are shown by the blue triangles and
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FIG. 4. (a) The photo of the experimental setup. The structural parameters are given in the text. The red arrow marks the position of the
point source. (b) Projected band structures for PC1 (red) and PC2 (blue). The green line marks the calculated interface states. The blue triangles
are measured by the experiment. (c) The electric field distribution of the interface state at f = 7.67 GHz [marked by a red star in (b)]. The
interface is at the origin of the x axis (x = 0). (d) Comparing calculated and measured averaged electric field magnitude in the direction normal
to the interface.

agree perfectly with the simulations. Figure 4(c) shows the
measured electric field distribution of the interface state at the
frequency f = 7.67 GHz [marked by a red star in Fig. 4(b)]. In
Fig. 4(d), we plot the averaged electric field magnitude along
the direction perpendicular to the interface for this state. The
averaged electric field magnitude is obtained by averaging the
electric field magnitude in the unit cell at y ∼ 175 mm. The red
hollow circles denote the simulation results, and the blue dots
denote the measured results. It is clearly seen that the electric
field amplitude decays exponentially away from the interface
with decay lengths of 40.4 mm and 92.3 mm for PC1 and PC2,
respectively. Again, the experiment is in good agreement with
the simulation.

VII. CONCLUSION

In summary, we showed that interface states can be found at
the boundary that separates a 2D dielectric PC and its inverted
partner. A dielectric crystal is typically made by embedding a
periodic array of objects with a high dielectric constant (e.g., Si
cylinders) in a background of low dielectric constant (e.g., air).
Its inverted partner is a conjugate structure in which the high
and low dielectric components switch position. The existence
of the interface state is due to the abrupt change of the surface
impedance of the PC across the interface in the first band gap,

and this change in surface impedance can be traced to the fact
that the geometric phases of the lowest band of a dielectric PC
and its inverted partner generally have different values. This
principle is illustrated with many examples. This paradigm can
also be used to create interface states in 2D phononic crystals.

Finally, we note that the discontinuous jump of geometric
phase across the boundary guarantees the existence of the
boundary mode. There is no mechanism within this principle
that dictates the transport properties of the state. If we want
to realize topologically protected one-way transport, we can
add additional mechanisms, such as time reversal breaking
or spin-momentum locking mechanisms to the PC [7–23] at
the expense of more complexity in structure and constituent
material (e.g., Yttrium iron garnet) and external field.
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APPENDIX A: THE GAP PROPERTY OF A 2D PC IN THE FIRST GAP ABOVE THE LOWEST BAND

For an interface along the y direction shown in the inset of Fig. 1(e), we want to show that for the first gap above the lowest
band shown in Figs. 1(c) or 1(d), the gap property is dictated by the Bragg scattering in the x direction. The effects due to higher
order diffractions along the y direction are insignificant in the determination of interface states. The Maxwell equation for a 2D
PC in the TM polarization with the electric field E out of the 2D plane (the xy plane) is

1

ε(�r)

[
∂2

∂x2
+ ∂2

∂y2

]
E(�r) = ω2

c2
E(�r). (A1)

Here, ε(�r) is the position-dependent relative permittivity, ω is the angular frequency, and c is the speed of light in vacuum. By
using plane wave expansion, we write

1

ε(�r)
=

∑
�G

κ( �G)ei �G·�r , (A2)

E(�r) = En�k(�r) =
∑

�G
En�k( �G)ei(�k+ �G)·�r , (A3)

where En�k denotes the Bloch state with wave vector �k in the nth band and �G is the reciprocal lattice vector. For a square lattice
with a lattice constant a, �G = Gx,nî + Gy,mĵ = 2π

a
(nî + mĵ ) (m,n are integers). Substituting Eqs. (A2) and (A3) into Eq. (A1),

we obtain

∑
�G′

κ( �G − �G′)|�k + �G′|2En�k( �G′) =
ω2

n�k
c2

En�k( �G). (A4)

The band structure of the PC is determined by the following secular equation:

Det

⎡
⎣∑

�G′

κ( �G − �G′)|�k + �G′|2 −
ω2

n�k
c2

δ �G, �G′

⎤
⎦ = 0. (A5)

For an interface state with a fixed ky inside a gap, kx becomes a complex number. The imaginary part of kx gives the decay
length of the state along the x direction. To find the complex solutions of kx at a given frequency ω inside the gap, we need to
solve Eq. (A5) in the following form:

Det

⎡
⎣k2

x

∑
�G′

κ( �G − �G′) + 2kx

∑
�G′

κ( �G − �G′)G′
x +

∑
�G′

κ( �G − �G′)
[
G′2

x + (ky + G′
y)2] − ω2

c2
δ �G, �G′

⎤
⎦ = 0. (A6)

As Eq. (A6) involves a matrix of infinite dimensions, some truncation is necessary in actual calculations. Since we are only
interested in the first gap above the lowest band, we consider only the n,m = 0, ± 1 components of �G, i.e.,Gx,1 = Gy,1 =
−Gx,−1 = −Gy,−1 = 2π

a
and Gx,0 = Gy,0 = 0. For simplicity, we set ky = 0. Equation (A6) then reduces to the following form:

(A7)

where κm,n denotes κ(Gx,m,Gy,n), �k = (kx,0).
To obtain the gap property from Eq. (A7), it is useful to consider first the limit of a homogenous medium with all the

off-diagonal terms in Eq. (A7) being small. In this limit, the zeroth order solutions of kx are determined by the diagonal elements
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of the three block matrices shown in Eq. (A7), i.e.,

ω2

c2
= κ00(kx + Gx,−1)2,

ω2

c2
= κ00k

2
x,

ω2

c2
= κ00(kx + Gx,1)2, (A8)

for the middle block, and

ω2

c2
= κ00

[
(kx + Gx,−1)2 + G2

y,−1

]
,

ω2

c2
= κ00

[
k2
x + G2

y,−1

]
,

ω2

c2
= κ00

[
(kx + Gx,1)2 + G2

y,−1

]
, (A9)

and

ω2

c2
= κ00

[
(kx + Gx,−1)2 + G2

y,1

]
,

ω2

c2
= κ00

[
k2
x + G2

y,1

]
,

ω2

c2
= κ00

[
(kx + Gx,1)2 + G2

y,1

]
, (A10)

for the upper and lower blocks, respectively.
In Eq. (A8), there are six solutions for kx at a given frequency, i.e., kx = ± ω√

κ00c
− Gx,−1, kx = ± ω√

κ00c
, and kx = ± ω√

κ00c
−

Gx,1. At the reduced Brillouin zone boundary with kx = ±Gx,1

2 , the middle equation gives ωb =
√

κ00Gx,1c

2 . At this frequency, it is

easy to see that the first and third equations give the solutions of kx = Gx,1

2 and kx = −Gx,1

2 , respectively, due to the periodicity of
the band structure. Before we introduce the scattering terms, κm,n(m,n �= 0), we should point out that Eqs. (A9) or (A10) gives
two evanescent solutions of kx at ωb, i.e.,

Re(kx) = 0 and Im(kx) = ±
√

G2
y,±1 − G2

x,1

4
(A11)

in the reduced zone. It will be shown later that these solutions represent the leading terms in solutions of kx with Re(kx) = 0
when κm,n(m,n �= 0).

When the Bragg scatterings along the x direction are introduced, i.e., κ±1,0 �= 0, a gap will open along the �X direction.
Since this gap hosts the interface states shown in Fig. 1, we are interested in finding the properties of this gap and the effects due
to higher order diffractions in the y direction. In the following, we focus our discussions on the complex solutions of kx at the
midgap frequency ωb. Since we are interested in the first gap above the lowest band, we consider complex solutions of kx due to
the nonzero terms κ±1,0 and κ0,±1 only. Equation (A7) is now simplified to

(A12)

The three 3×3 block matrices in the diagonal entries (surrounded by rectangles) involve the terms Gy,−1, Gy,0, and Gy,1,
respectively. Each of these block matrices describes the interactions between Gx,±1 and Gx,0 through κ±1,0 with a fixed
Gy,n(n = 0, ± 1). The off-diagonal block matrices denote interactions between Gy,±1 and Gy,0 through κ0,±1.

Since the middle block matrix involves only the Bragg scattering along the x direction, we first solve this middle block matrix.
From the determinant of the middle block matrix, we find the following solutions of kx in the reduced Brillouin zone at ωb:

kx ≈ ±Gx,1

2
± i

Gx,1

4

κ1,0

κ00
. (A13)

Equation (A13) shows that κ1,0 open a gap at the reduced Brillouin zone boundary and the decay length at ωb is inversely
proportional to κ1,0

κ00
. The presence of nonzero κ0,±1 is expected to modify Im(kx) in Eq. (A13) as well as the Im(kx) of the

evanescent modes with Re(kx) = 0. We solve Eq. (A12) analytically at ωb and find the following solutions of kx in the reduced
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Brillouin zone:

kx ≈ ±Gx,1

2
± i

(
Gx,1

4

κ1,0

κ00
+ Gx,1

(
35G2

x,1 + 76G2
y,1

)
128G2

y,1

κ1,0

κ00

(
κ0,1

κ00

)2)
(A14)

and

kx ≈ ±i

(√
G2

y,1 − G2
x,1

4
+ G2

x,1

(
G2

x,1 + 16G2
y,1

)
64G2

y,1

√
G2

y,1 − G2
x,1

4

(
κ1,0

κ00

)2

+
G2

x,1

√
G2

y,1 − G2
x,1

4

4G2
y,1

(
κ0,1

κ00

)2)
. (A15)

From Eq. (A14), we find a correction term to the Im(kx) of Eq. (A13), which is about a factor ( κ0,1

κ00
)2 smaller than the Im(kx)

term due to Bragg scatterings. For the evanescent modes at Re(kx) = 0, there are two corrections in the Im(kx) in Eq. (A15); each
has a factor ( κ1,0

κ00
)2 or ( κ0,1

κ00
)2 smaller than the leading term in Eq. (A11). For instance, using the parameters shown in Fig. 1, we

obtain κ1,0

κ00
= κ0,1

κ00
≈ −0.22 for the left PC and κ1,0

κ00
= κ0,1

κ00
≈ 0.25 for the right PC. Thus, the decaying lengths of the evanescent

modes inside the gap are mainly determined by the Im(kx) in Eqs. (A11) and (A13). Furthermore, since Im(kx) in Eq. (A13) or
Eq. (A14) is much smaller than that in Eq. (A11) or Eq. (A15), the decay modes caused by higher order diffractions Gy,±1 have
much smaller decay length than that caused by the Bragg scattering Gx,±1. Using Eqs. (A14) and (A15), we find that the ratio
of Im(kx) in Eq. (A14) and Eq. (A15) is 1/13 for the left PC and 1/11 for the right PC. Thus, we can safely conclude that the
interface states is primarily governed by the 1D Bragg scattering in the x direction. It should be mentioned the dielectric contrast
adopted in Fig. 1 is εdielectric = 11.9 and εair = 1. A smaller contrast makes the ratio of Im(kx) even smaller as the dominant term
in Eq. (A15) is independent of the scattering parameters.

APPENDIX B: THE CALCULATION OF THE ZAK PHASES
OF THE REDUCED 1D BULK BANDS USING TWO

DIFFERENT METHODS

In the previous discussions, we have shown that the property
of the band gap above the lowest band in a 2D PC can be
treated as that of a reduced 1D PC. Using the eigenfields of
the 2D PC, we calculate the Zak phases of the reduced 1D
bulk bands. There are two ways to calculate the Zak phase of
the reduced 1D bulk bands depending on how we calculate
the inner product. One is to obtain the reduced 1D eigenfields
and then perform the inner product, the other is to directly use
the 2D eigenfields to perform the inner product. We will find
that these two methods give almost the same result. This is
consistent with the assertion that the 2D gap interested here
can be treated as a reduced 1D gap.

In the first method, we calculate the Zak phases of
the reduced 1D bulk bands using the formula ϕ̃n =
i
∫ π/a

−π/a
〈ũnkx

(x)|ε̃(x)∂kx
|ũnkx

(x)〉dkx [32]. Here, ũnkx
(x) is the

cell periodic part of the Bloch function of the Ẽnkx
(x)

field for the nth reduced 1D band at a particular kx , i.e.,
ũnkx

(x) = e−ikxxẼnkx
(x). The electric field Ẽnkx

(x) in the
reduced 1D case is obtained by integrating the electric field
En�k(x,y) in 2D case along the y direction, i.e., Ẽnkx

(x) =
1
a

∫ a

0 Enkx,ky=k|| (x,y)e−ikyydy. The ε̃(x) is the position-
dependent relative permittivity of the reduced 1D system, i.e.,
ε̃(x) = 1

a

∫ a

0 ε(x,y)dy. In the numerical calculations, the inte-
gral formula is implemented as a summation, then the integral
domain for kx is segmented into M discrete points. Each point
is denoted by kx,l with l = 1, · · · ,M . For simplicity, kx,l in the
subscript will be replaced by l. So ϕ̃n = −∑M

l=1 Im ln φ̃n,l =
−∑M

l=1 Im ln〈ũn,l(x)|ε̃(x)|ũn,l+1(x)〉 in the limit of large
M [30]. The inner product becomes

φ̃n,l = 〈ũn,l(x)|ε̃(x)|ũn,l+1(x)〉

=
∫

unit cell
ε̃(x)ũ∗

n,l(x) · ũn,l+1(x)dx. (B1)

Substituting ε(�r) = ∑
�G η( �G)ei �G·�r and Eq. (A3) into

Eq. (B1), we can obtain

φ̃n,l = 1

a3

∫
unit cell

∑
�G, �G′, �G′′

∫ a

0
η( �G)ei �G·�rdy

·
∫ a

0
E∗

z,n,l,ky=k|| (
�G′)e−i �G′ ·�r ′

dy ′

·
∫ a

0
Ez,n,l+1,ky=k|| ( �G′′)ei �G′′ ·�r ′′

dy ′′dx

= 1

a3

∫
unit cell

∑
�G, �G′, �G′′

∫∫∫
η( �G) · E∗

z,n,l,ky=k|| (
�G′)

·Ez,n,l+1,ky=k|| ( �G′′)ei(Gyy−G′
yy

′+G′′
yy

′′)dydy ′dy ′′

×ei(Gx−G′
x+G′′

x )xdx. (B2)

Here, we use the numerical package COMSOL to calculate
the eigenmodes Enkx,ky=k|| (x,y) (normalized by the electric
energy) of 2D PC for different kx and a fixed ky = k||. The
periodic gauge ũn,−π/a(x) = ei2πx/aũn,π/a(x) is applied at two
ends.

In the second method, we calculate the Zak phases
of the reduced 1D bulk bands using the formula ϕn =
i
∫ π/a

−π/a
〈unkx,ky=k|| |ε(�r)∂kx

|unkx,ky=k|| 〉dkx [32], where un�k is
the cell periodic part of the Bloch function of the
En�k(�r) field for the nth band at a particular �k and
ε(�r) is position-dependent relative permittivity. In the nu-
merical calculations, the integral formula is also im-
plemented as a summation, so ϕn = −∑M

l=1 Im ln φn,l =
−∑M

l=1 Im ln〈un,l,ky=k|| |ε(�r)|un,l+1,ky=k|| 〉 in the limit of large
M [30]. The inner product becomes

φn,l = 〈un,l,ky=k|| |ε(�r)|un,l+1,ky=k|| 〉

=
∫∫

unit cell
ε(�r)u∗

n,l,ky=k|| (�r) · un,l+1,ky=k|| (�r)d�r. (B3)
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(a)

(b)

FIG. 5. The calculation of the Zak phases of the reduced 1D
bulk bands with two different methods. The PC consists of dielectric
cylinders with ε = 11.9, rd = 0.3a in air. (a) Real parts of φ̃n,l and
φn,l as a function of l. (b) Imaginary parts of φ̃n,l and φn,l as a function
of l. Blue squares denote φ̃n,l , and red circles denote φn,l .

Fourier transform ε(�r) = ∑
�G η( �G)ei �G·�r and substituting

Eq. (A3) into Eq. (B3),

φn,l =
∫∫

unit cell

∑
�G, �G′, �G′′

η( �G)E∗
z,n,l,ky=k|| (

�G′)

·Ez,n,l+1,ky=k|| ( �G′′)ei( �G− �G′+ �G′′)·�rd�r. (B4)

The eigenmodes of En�k (normalized by the electric energy)

and un�k are related by En�k(�r) = un�k(�r)ei�k·�r . To obtain the
Zak phases of these bands, we use the numerical package
COMSOL to calculate the eigenmodes unkx,ky=k|| (�r) of 2D
PC for different kx and a fixed ky = k||. The periodic gauge
un,−π/a,ky

(x,y) = ei2πx/aun,π/a,ky
(x,y) is applied at two ends.

In this paper, we choose the origin at the left boundary of the
unit cell labeled as O shown in the inset of Figs. 1(b) and 2(a)
for both the first and second methods. Comparing Eqs. (B2)
with (B4), it is easily seen that if Eq. (B2) is equivalent to
Eq. (B4), it implies that Gy = G′

y = G′′
y = 0. Figure 5 shows

the calculated phases φn,l and φ̃n,l as a function of l. The
excellent agreement between these two functions shows again
that the 2D system can be considered as a reduced 1D case.

Γ XX

X MM

kx kyπ
a

π
aPQ

(a)(a) (b)(b)

(a
rb

. u
n

it
s)

FIG. 6. (a) The diagram shows the 2D Brillouin zone in a square
lattice. The blue line denotes the reduced 1D Brillouin zone along
kx direction for a fixed ky = 0.2 π/a. The k-points at P and Q are
located at the center and the boundary of the reduced 1D Brillouin
zone, respectively. (b) The absolute value of the electric field |Ẽ(x)|
as a function of x. Black solid and red dashed lines represent |Ẽ(x)|
at P and Q points for the left PC, respectively. Blue solid and purple
dotted lines represent |Ẽ(x)| at P and Q points for the right PC,
respectively. Here, the left PC is dielectric cylinders with ε = 11.9
and radii rd = 0.3a embedded in air. The right PC is air cylinders with
radii ra = 0.45a embedded in a dielectric background with ε = 11.9.
Both the lattice constants of the two PCs are a.

APPENDIX C: THE ZAK PHASE OF THE REDUCED
1D BAND

The reduced 1D Brillouin zone is shown by a blue line in
Fig. 6(a). In addition to a brute force integration in k-space
along the band, the Zak phase can also be determined by the
symmetry of Bloch states at two high symmetry points of
the reduced 1D Brillouin zone [31], which are labeled by P
(kx = 0,ky) and Q (kx = −π/a,ky) in Fig. 6(a). To obtain the
equivalent electric field Ẽnkx

(x) of the nth band in the reduced
1D case, we integrate the electric field En�k(x,y) in 2D along
the y direction, i.e., Ẽnkx

(x) = 1
a

∫ a

0 En�k(x,y)e−ikyydy. Kohn’s
results [31] can be generalized to the EM wave such that
if either |ẼP (x = 0)| = |ẼQ(x = 0)| = 0 or |ẼP (x = 0)| �= 0
and |ẼQ(x = 0)| �= 0, the Zak phase is 0; otherwise it is
π . In Fig. 6(b), we plot Ẽnkx

(x) for the two PCs at P and
Q points in one unit cell. Here, the left PC is dielectric
cylinders with ε = 11.9 and radii rd = 0.3a embedded in air.
The right PC is air cylinders with radii ra = 0.45a embedded
in a dielectric background with ε = 11.9. At x = 0 point,
we find |ẼP (x = 0)| �= 0 and |ẼQ(x = 0)| = 0 for the left
PC; therefore, the Zak phase is π . Whereas for the right
PC, |ẼP (x = 0)| �= 0 and |ẼQ(x = 0)| �= 0; therefore, the Zak
phase is 0.

APPENDIX D: THE INTERFACE STATES IN TWO PCS IN
A TRIANGULAR LATTICE

In this section, we show the interface states at the interface
formed by two PCs in a triangular lattice shown in the inset
of Fig. 7(b). The left PC consists of dielectric cylinders with
relative permittivities ε and radii rd in air. The inverted PC
on the right is formed by air cylinders with radii ra in a
dielectric background with relative permittivity ε. The distance
between the two nearest cylinders is denoted by a for both PCs.
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FIG. 7. (a) The bulk band structures of two PCs: red circles denote
the dielectric cylinders with ε = 11.9, rd = 0.3a in air (left PC);
blue squares denote air cylinders with ra = 0.42a in a dielectric
background with ε = 11.9 (right PC). The inset shows the coordinate
for calculating the Zak phase. (b) The projected band structures of
these two PCs along the ky direction with red color denoting the left
PC and blue color denoting the right PC. The green line denotes a
band of the interface states. (b) Inset: Schematic picture of an interface
constructed by two semi-infinite 2D PCs in a triangular lattice. The
reduced 1D bands with a fixed ky = 0.2π/a [yellow dashed line in
(b)] are shown in (c) and (d) for the left and right PCs, respectively.
The Zak phases of the bulk bands are labeled with green color. The
characters of the bulk gaps are labeled by the sign of Im(Z) with blue
color for Im(Z) < 0 and red color for Im(Z) > 0.

Figure 7(a) shows the bulk band structures of the two PCs
with ε = 11.9, rd = 0.3a, and ra = 0.42a. The corresponding
projected band structures along the ky direction are shown in
Fig. 7(b). The green line inside the common gap denotes a

band of interface states. To interpret the existence of interface
states, we evaluate the Zak phases of the two lowest bands of
the reduced 1D band structures shown in Figs. 7(c) and 7(d) for
a particular value of ky = 0.2π/a, as indicated by the yellow
dashed line in Fig. 7(b). The results are π and 0 for the left
and right PCs, respectively. According to the bulk-interface
correspondence of Eq. (1), the signs of the surface impedances
in the common gap of the two PCs are opposite, which in
turn guarantees the existence of an interface state inside this
gap.

APPENDIX E: THE INTERFACE STATES IN TWO PCS
IN AN OBLIQUE LATTICE

In this section, we show the existence of interface states
in two PCs in an oblique lattice. The schematic diagram of
the interface is similar to the case of the triangular lattice
with θ = 60◦, as shown in the inset of Fig. 7(b). Here, we
study an oblique lattice with θ = 70◦. The projected band
structures of two constituent PCs are shown in Fig. 8(a). The
relative permittivity and radius of the cylinder in the left PC
are ε = 11.9 and rd = 0.3a, respectively. The radius of the air
cylinder and the relative permittivity of the background in the
right PC are ra = 0.33a and ε = 11.9, respectively. A band
of interface states exists in a very small common gap above
the lowest band shown as a green line in Fig. 8(a). To see
clearly the interface states in the projected band structures, an
enlarged figure is shown in the inset of Fig. 8(b). To investigate
the existence of interface states, we plot the reduced 1D band
structures with a fixed ky = 0, as shown in Figs. 8(b) and 8(c).
The Zak phases of the lowest bands of the left and right PCs
are π and 0, respectively. The origin for the calculation of the
Zak phase is chosen at Point O shown in the inset of Fig. 8(a).
Using the bulk-interface correspondence of Eq. (1), the signs
of Im(Z) in the common gaps of the two PCs are opposite.
This guarantees the existence of an interface state inside this
gap.

ε=11.9, rd=0.3a
ε=11.9, ra=0.33a

, θθ=70=700

ππ

0kky=0=0 kky=0=0

ε=11.9, rd=0.3a

(b) (c)

ε=11.9, ra=0.33a

(a)

xx

y

o
θθ

FIG. 8. (a) The projected band structures of two PCs in an oblique lattice with θ = 70◦ along the ky direction, one with dielectric cylinders
in air (red color, left PC) and the other with air cylinders in a dielectric background (blue color, right PC). The relative permittivities of
dielectric cylinders and dielectric background are ε = 11.9. The radii of the dielectric cylinders and air cylinders are rd = 0.3a and ra = 0.33a,
respectively. The green line denotes a band of the interface states. The inset shows the coordinate for calculating the Zak phase. The reduced
1D bands with a fixed ky = 0 are shown in (b) and (c) for the left and right PCs, respectively. (b) Inset: Enlarged projected bands of (a). The
Zak phases of the bulk bands are labeled with green color. The characters of the bulk gaps are labeled by the sign of Im(Z) with blue color for
Im(Z) < 0 and red color for Im(Z) > 0.
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