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Abstract: A slab with relative permittivity ɛ = -1+iδ and permeability  
μ = -1+iδ has a critical distance away from the slab where a small particle 
will either be cloaked or imaged depending on whether it is located inside 
or outside that critical distance. We find that the optical force acting on a 
small cylinder under plane wave illumination reaches a maximum value at 
this critical distance. Contrary to the usual observation that superlens 
systems should be highly loss-sensitive, this maximum optical force 
remains a constant when loss is changed within a certain range. For a fixed 
particle-slab distance, increasing loss can even amplify the optical force 
acting on the small cylinder, contrary to the usual belief that loss 
compromises the response of supenlens. 
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1. Introduction 

The study of optical force has progressed significantly since Ashkin’s pioneering work on the 
optical manipulations of small particles using focused laser beams [1]. Recently, a lot of 
interests are focused on the effect of the environment which can significantly enhance and/or 
modify the optical force acting on an object [2–5]. It is quite surprising that even a simple 
ordinary slab can dramatically modify the optical force acting on a nearby particle. For 
example, it is known that an ordinary slab can induce a lateral optical force on a chiral 
particle [2]. A natural question is what if the slab itself has extraordinary properties. Do we 
see unique optical forces if a particle is placed near a slab carrying unusual constitutive 
parameters such as those of a “Veselago slab” with 1ε μ= = − ? In the ideal zero absorption 

limit, such a slab behaves as a “perfect lens” [6–8]. However, absorption should be taken into 
account in realistic situations, and we call a lens with the constitutive parameters 

1 iε μ δ= = − +  a “superlens”. It is known that even a very small value of δ  can cause 

significant deviation from the “perfect lens” behavior [9–12]. As such, the absorption cannot 
be ignored and must be considered explicitly as just about any phenomena associated with the 
“perfect lens” are very dependent on δ . There are also subtle effects at the 0δ →  limit. For 
example, a “Veselago slab” actually behaves as a cloak in the 0δ →  limit ( δ arbitrarily 
small but non-zero), so that any small object located within / 2d  ( d is the thickness of the 
slab) from the lens will be cloaked due to the strong suppression effect of evanescent waves 
induced on the slab boundary [11]. In fact, a superlens slab generally behaves somewhere 
between a cloak and a lens in the sense that it will cloak a small particle within / 2d  region 
but form an image when the object is located beyond the / 2d  region [13]. The exact / 2d  
distance marks a special position where the functionality of a superlens changes from 
cloaking to imaging. At that critical distance of / 2d , the gradient of the total field acting on 
the particle diverges in the ideal case (when the particle can be represented as a point dipole). 
If we examine the standard analytic expression of the optical force acting on a dipolar particle 
( *Re[ ]i j i jF E Eα= ∂ , where α  is the particle polarizability), a diverging field gradient implies 

a diverging force but on the other hand, the induced electric dipole moment of the particle 
also undergoes a dramatic change from almost zero to a finite value at that distance. In a way, 
this is a zero times infinity type problem and the question then is: what exactly is the optical 
force? 

 

Fig. 1. Schematic picture of the considered system. A cylinder of radius 1r  (orange solid 

circle) is placed at a distance 1d  on the left side of a slab (blue) with thickness d , 

permittivity sε  and permeability sμ . The wave vector of the incident plane wave is along x 

direction. 

2. Methods and results 

The configuration of the system is illustrated in Fig. 1, where a subwavelength cylinder is 
located on the left-hand side of a superlens slab that is infinitely extended on the yz plane. The 
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radius of the cylinder, the distance from the center of the cylinder to the left surface of the 
slab and the thickness of the slab are 1r , 1d  and d , respectively. The relative permittivity and 

permeability of the slab are sε  and sμ , respectively. The system is illuminated by an 

electromagnetic (EM) plane wave coming from the left whose wave vector is perpendicular to 
the slab and the magnetic field is polarized along the z direction. 

 

Fig. 2. Normalized optical force 0/xF F  and the effective polarizability e| / |α α  as a 

function of the particle-slab distance 1 /d d . xF and 0F  are the force along x direction with 

and without the slab. α  is the bare polarizability of the particle in the absence of the slab, and 

eα  is defined in the text. The solid line represents the analytical results obtained using dipole 

approximation and the circles denote full-wave calculation results using the Maxwell stress 

tensor approach. The dashed line represents effective polarizability of the cylinder. The slab 

has thickness d λ= and s s 1 iε μ δ= = − + , where 2000nmλ = is the wavelength. The 

cylinder ( 1 0.01r λ= ) is made of metal with c c2, 1ε μ= − =  for (a) and dielectric with 

c c2, 1ε μ= =  for (b). 

We calculate the optical force acting on the cylinder using a full-wave method and an 
analytical Green’s function method. For the full-wave method [14,15], the force is obtained 

by integrating the Maxwell stress tensor [ 0 0 0 0T 1/2( )Iε μ ε μ= + − ⋅ + ⋅EE HH E E H H
 

] around 

a closed path enclosing the cylinder and taking the time average. For the analytical method 
which will be introduced in the following, the results can be evaluated simply by calculating 
the field analytically using dipole approximation and then the optical force using 

*Re[ ]i j i jF E Eα= ∂ . We first investigate the effect of absorption on the optical force and the 

calculated results using full-wave method are shown as open circles in Fig. 2(a) for a metallic 
cylinder c c2, 1( )ε μ= − =  and for a dielectric cylinder c c( 2, 1)ε μ= =  in Fig. 2(b). The 

optical forces here are normalized to the photon pressure 0F  in the absence of the slab. We 

note that the full wave results can be considered as “exact” except for the negligibly small 
numerical truncation errors. We see that the full-wave results denoted by the circles agree 
well with the analytical results which are represented by solid lines, meaning that the 
response of the cylinder is dominated by electric dipole response. The good agreement is 
quite expected as 1 0.01r λ= . As a function of the distance away from the slab, the optical 

force is essentially zero near the surface ( 1 0d → ), reaches a peak value and goes to the limit 

of 0xF F→  ( 0F  is optical force due to photon pressure in the absence of the slab) as 

1 2d d> . The sign is positive meaning that the force is in the same direction as the incident 

photon momentum. The force has a peak value whose position depends on the value of 
absorption. The peak becomes narrower and its position approaches 1 / 0.5d d =  as 

absorption is reduced. In the ideal case of 0δ →  the optical force vanishes for 1 / 0.5d d <  
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due to cloaking effect while its value approaches the ordinary photon pressure 0F  for 

1 / 0.5d d > . The peak locates at the point where the dipole changes from being cloaked to 

being imaged. The most interesting point here is that the peak value of the optical force does 
not change when the loss is increased from 2010δ −=  to 310δ −= , which is rather unusual as 
the properties of a superlens are known to be extremely sensitive to the existence and/or 
variation of absorption. By comparing Fig. 2(a) (cylinder with c 0ε < ) and Fig. 2(b) (cylinder 

with c 0ε > ), we see that this absorption-invariant maximum force phenomena exists 

independent of the property of cylinder while the value of the maximum force (the 
enhancement) depends on the cylinder property. In addition, this peak value does not depend 
on the slab thickness d  as shown in Fig. 3. Another point worth noting is the strong 
enhancement of the optical force compared to that in free space. 

 

Fig. 3. Optical force acting on a metal cylinder ( c c2, 1ε μ= − = ) in front of a slab 

(
6

s s 1 10iε μ −= = − + ) with different thicknesses. The other parameters are the same as in 

Fig. 2. 

In the following, we will derive the analytic formula for the optical force in order to 
understand why the maximum force is essentially independent of absorption. Under the long 
wavelength condition, the cylinder can be represented by a passive in-plane electric dipole 
with the dynamic dipole polarizability 2

1 0 08 /ia kα ε=  [16], where 0k is the wave vector in 

vacuum, and a1 is the electric dipole term of Mie scattering coefficient for cylinder [17]. The 
induced dipole moment is given by 

 loc inc ref inc ref
1( ) ( ),y y y y y yyP E E E E P Gα α α= = + = +  (1) 

where loc
yE and inc

yE are the y component of the local field (including incident electric field and 

reflected field from the slab due the passive dipole itself) and the incident field, respectively. 
In Eq. (1), the reflected field is mainly contributed by the excited dipole because the incident 
plane wave has negligible reflection in the case of small δ  due to the good impedance 

matching. ref
yyG is the yy component of the reflection part of the dyadic Green’s function and it 

can be expressed as ref
0 1( / 4 ) exp(2 ) ( )yy p x x pG i dk ik d k R kπε

∞

−∞
= −   [14], where ( )pR k is the 

reflection coefficient of the slab. Here p yk k≡  is the parallel component of the wave vector 

and 2 2
0x pk k k= −  is the component along the x direction. The above equation can now be 

rewritten as 

 inc inc
eref

,
1y y y

yy

P E E
G

α α
α

= =
−

 (2) 

#264867 Received 12 May 2016; revised 2 Jun 2016; accepted 2 Jun 2016; published 14 Jun 2016 
(C) 2016 OSA 27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/OE.24.013992 | OPTICS EXPRESS 13995 



where eα  is the effective polarizability of the cylinder. The time-averaged optical force along 

the x direction can be represented as * loc1 / 2Re[ ]x y x yF P E= ∂ . Substituting Eq. (2) into the this 

equation, we obtain 

 
{ }* ref ref

2 0inc
2ref

Re [ (1 ) ]
,

2 1

yy x yy

x y

yy

ik G G
F E

G

α α α

α

− + ∂
=

−
 (3) 

where ref
x yyG∂  is the derivative of ref

yyG  of x at 1d− . This equation is used to produce the 

analytical results shown as solid lines in Figs. 2-4. The effective polarizabilities [Eq. (2)] are 

plotted as dashed lines in Fig. 2. If eα  drops to zero, the particle is “cloaked” by slab. In the 

0δ →  limit, eα  is a step function jumping abruptly at 1 / 2d d=  . For a finite value of δ ,  

eα  becomes a smooth function and the “cloaking region” shrinks towards the slab surface. 

We found that the position of the force maximum coincides with this critical distance where 
the effective polarizability rises from zero to one. 

Now we try to find an expression for the maximum force. For zH  polarization (H field 

along z direction) and a plane wave of the form exp( )z x yH ik x ik y+ , the reflection coefficient 

of the slab can be expressed as [13] 

 
' '

' '

2

2 2

(1 )( )
( ) ,

(1 ) (1 )

x x

x x

ik d ik d

p ik d ik d

e e
R k

e e

η
η η

−

−

− − −=
+ − −

 (4) 

where '
0 s/x xk kη ε ε= , and ' 2 2

s s 0x pk k kε μ= −  is the perpendicular component of the wave 
vector inside the slab. For a slab with s s 1 iε μ δ= = − +  ( 1δ << ), the reflection coefficient of 
the evanescent field components ( 0pk k> , therefore 2 2

0x pk i k k= − , '
xk iκ= , where 

2 2
s s 0pk kκ ε μ= − ) can be Taylor-expanded as 

 
2 2 2 2 2 2 2

0 3
2 2 2 2 2

0 0

( 1 ) ( 1 ) ( 3 )
( ) ( )

2( ) 4( )

d d
p p p

p
p p

i e k e k k k
R k

k k k k

κ κδ δ
δ

− + − + −
= − + Ο

− −
. (5) 

Equation (5) indicates that Im[ ( )] / Re[ ( )] ~ 1/p pR k R k δ . We then have 
ref ref ref refIm[ ] / Re[ ] ~ Im[ ] / Re[ ] ~ 1/yy yy x yy x yyG G G G δ∂ ∂ , because evanescent modes are dominant 

in cloaking region. With 2
0 1Re[ ] / Im[ ] ~ 1/ ( )k rα α  and assuming 2

0 1( )k rδ << , we 
obtain ref

yyG iα ξ ξ ′= + , ref
x yyG iα ζ ζ ′∂ = +  where refIm[ ]Im[ ]yyGξ α≈ − , refRe[ ]Im[ ]yyGξ α′ ≈ , 

refIm[ ]Im[ ]x yyGζ α≈ − ∂  and refRe[ ]Im[ ]x yyGζ α′ ≈ ∂ . Therefore, we 
have Im[ ] / Re[ ] / /α α ξ ξ ζ ζ γ′ ′− ≈ ≈ ≡ . Equation (3) can be rewritten as (for simplicity, we 
set inc| | 1yE = ) 

 
[ ]{ }* 2

0

0 e 02 2 2 2 2

Re (1 ') ' ' ' 1
Re[ ] = Im[ ] .

22(1 ) 2 ' 2(1 2 ' ' ' )x

ik i i
F k k

α ξ ξ ζ ζ ξ γ γ ξ α α
ξ ξ γξ γ ξ ξ

− − + + − += =
− + − + +

(6) 

Equation (6) shows that the force acting on a cylinder near a superlens can be regarded as the 
photon pressure acting on a bare cylinder with an effective polarizability eα  without the 

superlens slab, and it has the maximum value at 2(1 ) / (1 )ξ γ γ′ = + +  so that 

 
22 2 2

max 0
0 0

| |(1 ) Re[ ] Im[ ]
Re[ ] .

4 4Re[ ] 4Re[ ]x

k
F k k

αγ α αα
α α

+ += = =  (7) 
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When normalized to the ordinary photon pressure of 0 00.5 Im[ ]F k α= , Eq. (7) becomes 

 
max 2

0

| | 1 1
tan 1,

2 Im[ ]Re[ ] 2 tan
xF

F

α θ
α α θ

 = = + ≥ 
 

 (8) 

where tan Im[ ] / Re[ ]θ α α= . Equation (8) shows that the maximum force only depends on 

the polarizability of cylinder and is independent of the loss and the thickness of the slab. 
The results of Figs. 2 and 3 show that the maximum force can be insensitive to loss, 

contrary to other phenomena of superlens such as imaging. Such a phenomenon may seem 
even more intriguing when we consider the force vs. absorption relation for a fixed particle-
slab distance, which is shown by the solid black line in Fig. 4. It is seen that the force can be 
enhanced when the absorption is increased, contrary to our expectation that material loss 
usually compromises such resonance-related phenomena. 

 

Fig. 4. Normalized optical force (solid black line) acting on a metal cylinder 

( c c2, 1ε μ= − = ) in front of a slab ( s s 1 iε μ δ= = − + ) with different values of 

absorption for fixed particle-slab distance 1 / 0.3d d = . The red symbol line denotes the 

work needed to be done in order to move the cylinder from 0.01d  to 0.5d away from the 

slab. We have normalized it to the work done for ordinary photon pressure without the 

superlens slab. The other parameters are the same as in Fig. 2. 

We also calculate the work needed to be done in order to move the cylinder away from the 
slab under different loss and the results are shown as the red line in Fig. 4. It can be seen that 
the work done has a maximum at about 45 10δ −= × . While this value of the absorption 
parameter depends on the details of the system, it is always an “intermediate value” in the 
sense that it is neither zero or infinity and this coincides with the results shown in Fig. 2, 
where we see that the integral of xF  over 1d  (the area covered by the lines, i.e., the work-

done) reaches a maximum when δ  has an intermediate value. 

3. Conclusion 

We studied the optical force acting on a small cylinder located near a superlens slab. We 
found that the force reaches a maximum value at the critical distance where the slab’s 
behavior is changing from imaging to cloaking. This force maximum is unusual in the sense 
that it is not sensitive to material loss of the slab and its magnitude remains a constant that is 
only determined by the cylinder’s properties. This is rather unexpected because loss almost 
always strongly modify the functionalities associated with the perfect lens. The results here 
are obtained for zH  polarization, but similar phenomenon also exists for zE  polarization 

(electric field along z direction). 
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