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Abstract—In this paper, the joint mean-covariance estimation
problem is considered under the scenario that the number of sam-
ples is small relative to the problem dimension. The samples are
assumed drawn independently from a heavy-tailed distribution of
the elliptical family, which can model scenarios where the com-
monly adopted Gaussian assumption is violated either because of
the data generating process or the contamination of outliers. Under
the assumption that prior knowledge of the mean and covariance
matrix is available, we propose a regularized estimator defined as
the minimizer of a penalized loss function, which combines the
prior information and the information provided by the samples.
The loss function is chosen to be the negative log-likelihood func-
tion of the Cauchy distribution as a conservative representative of
heavy-tailed distributions, and the penalty term is constructedwith
the prior being its global minimizer. The resulting regularized es-
timator shrinks the mean and the covariance matrix to the prior
target. The existence and uniqueness of the estimator for finite
samples are established under certain regularity conditions. Nu-
merical algorithms are derived for the estimator based on the ma-
jorization-minimization framework with guaranteed convergence
and simulation results demonstrate that the proposed estimator
achieves better estimation accuracy compared to the benchmark
estimators.
Index Terms—Iterative shrinkage, majorization-minimization,

regularization, robust estimation.

I. INTRODUCTION

T he robust estimation of the mean and covariance matrix
has been a research topic in signal processing for decades

and enjoyed a wide range of applications. Examples include di-
rection of arrival estimation [2], anomaly detection in wireless
sensor networks [3], space-time adaptive processing detection
problem [4], impulsive noise attenuation in image processing
[5], high-resolution frequency estimation [6], and portfolio op-
timization in finance [7]; see [8] for a general review and the
references therein. An intuitive and common approach is to esti-
mate the mean and covariance matrix by sample average, which
coincides with the maximum likelihood estimator (MLE) under
the assumption that the samples are independent and identically
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drawn from a Gaussian distribution. However, in many applica-
tions the samples follow a distribution with a heavier tail than
the Gaussian distribution, either due to the intrinsic mechanism
of the application (e.g., financial time series [9]) or the existence
of outliers, such as faulty observations. In this case, the Gaussian
assumption can result in a completely unreliable estimate.
A way to address the aforementioned issue is to assume in-

stead that the underlying distribution is some heavy-tailed ellip-
tical distribution, for example, the Student’s -distribution with
a small degree of freedom parameter. In the seminal work [10],
Tyler proposed an -estimator that estimates the normalized
covariance matrix for samples drawn from an elliptical distri-
bution with a known mean. The estimator possesses two advan-
tages against other robust -estimators: it is the “most robust”
one in a min-max sense, and it is distribution-free. Moreover,
Tyler proved that under certain regularity conditions on the em-
pirical distribution of the samples, the estimator exists and is
unique. This results in a simple numerical algorithm that is guar-
anteed to converge to the unique solution. Tyler’s estimator has
been widely adopted and proved to work effectively in various
signal processing related fields, e.g. [11]–[16]. Nevertheless, de-
spite the above-mentioned merits, the following shortcomings
narrow down its scope of application in reality. First, a rela-
tively accurate estimation requires a large number of samples
compared to the dimension of the problem. Second, it requires
a prior estimate of the mean. Consequently, the estimation pro-
cedure is separated into two steps, and the shape of the distribu-
tion cannot be taken into account when estimating the mean.
Indeed, estimation problems in modern applications are often

subject to a shortage of samples compared to the dimension of
the parameters being estimated, e.g., bioinformatics, financial
engineering and massive MIMO communication systems [3],
[4], [17]–[22]. In this case, the information on the parameters
to be estimated provided by the samples is not sufficient for
statistical inference, and approaches that depend purely on the
samples are most likely to yield unreliable estimates. To tackle
this problem, shrinkage estimators are proposed that combine
the sample information with a priori information. A method
for designing shrinkage estimators is to penalize the original
loss function with a penalty term that attains its minimum at
the prior. Motivated by this idea, various versions of shrinkage
Tyler’s covariance estimator have been proposed, and have been
demonstrated to work effectively when the number of samples
is relatively small compared to the dimension of the problem
[3], [4], [18], [20], [22], [23].
In practice, there are scenarios in which both the mean and the

covariance are required to be estimated from the samples, from
fundamental techniques such as data decorrelation and principal
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component analysis [24], to high-level applications such as port-
folio optimization in financial engineering [25]. A two-step es-
timation can be done by plugging a previously estimated mean
(e.g., sample mean or sample median) into the shrinkage Tyler’s
covariance estimator. However, estimating the mean without
taking into account the correlation of each component may be
inadequate, especially in the presence of outliers. For example,
as mentioned in [8], a multivariate outlier may have none of its
components outlying by just looking at a particular coordinate,
and being treated as a normal sample consequently. Moreover,
the estimation error of the mean propagates to the covariance es-
timation since the true mean is substituted by an erroneous esti-
mate. Away to design a robust estimator that estimates themean
and covariance jointly and performs well in the small sample
scenario remains unclear.
This paper focuses on the joint mean and covariance estima-

tion problem assuming independent and identically distributed
(i.i.d.) samples from a heavy-tailed elliptical distribution when
the sample size is small relative to the problem dimension. A
regularized mean-covariance estimator is proposed defined as
the minimizer of a penalized or regularized loss function. The
loss function is chosen to be the negative log-likelihood func-
tion of the Cauchy distribution for its heavy-tail property that
is capable of modeling abnormal observations as well as the
tractability of analysis (note that the samples are not assumed to
be drawn from a Cauchy distribution). The proposed estimator
shrinks the mean and covariance matrix towards a prior target.
Theoretical results including the existence and uniqueness of the
estimator are proved under certain regularity conditions on the
samples. The conditions indicate that the shrinkage estimator
overcomes the drawback of the Cauchy maximum likelihood
estimator without shrinkage, as it exists even when the number
of samples is smaller than the problem dimension. Different
numerical algorithms are provided and compared for the pro-
posed shrinkage estimator based on the majorization-minimiza-
tion framework with provable convergence.
The paper is organized as follows: in Section II, we introduce

the robust parameter estimation problem with samples drawn
from a distribution of the elliptical family. In Section III, we
propose a regularized robust estimator for the joint mean-co-
variance estimation problem with small sample size, and
establish the conditions for the existence and uniqueness of
the shrinkage estimator. Algorithms for the proposed estimator
based on the majorization-minimization framework are de-
rived in Section IV. Simulation studies on both the estimator
performance and the algorithm convergence are conducted in
Section V. We conclude in Section VI.
Notation: stands for -dimensional real-valued vector

space, stands for vector Frobenius norm. stands for
symmetric positive semidefinite matrices, which is a
closed cone in , denotes symmetric positive defi-
nite matrices. and stand for the largest and
smallest eigenvalue of a matrix respectively. and
stand for matrix determinant and trace, respectively. is the
matrix Frobenius norm.
The boundary of the open set in the usual sense is

, which contains all rank deficient matrices in .
In this paper, with a slight abuse of notation, we also include

matrices with all eigenvalues into the boundary of
. Therefore a sequence of matrices converges to the

boundary of iff or . In the rest
of the paper, we will use the statement “ converges” equiv-
alently as “a sequence of matrices converges” for notation
simplicity without causing confusion.

II. ROBUST ESTIMATION OF MEAN AND COVARIANCE MATRIX

In this paper, we assume a number of samples
drawn independently from an elliptical popula-

tion distribution with probability density function (pdf) of the
form

(1)

with the location and scatter parameter in .
The nonnegative function , which is called the density gen-
erator, determines the shape of the pdf. We are interested in the
problem of estimating the mean and trace normalized covari-
ance matrix (if they exist), which are and , re-
spectively. The reason for not estimating the covariance matrix,
but the trace-normalized one, will be explained at the end of this
section. In the rest of the paper the notation stands for the
empirical distribution.

A. Tyler’s Estimator for Covariance Estimation
In [10] Tyler proposed a distribution-free estimator that es-

timates the trace-normalized covariance matrix with a known
. Without loss of generality, is assumed zero. Specifi-

cally, the estimator is defined as the solution of the following
fixed-point equation:

(2)

The estimator can be interpreted as the MLE of by fit-
ting the normalized samples to an angular central
Gaussian distribution with pdf [26]–[28]

(3)

Tyler established sufficient conditions for the existence of
and proved that it is unique up to a positive scale factor [10],
[26]. The estimator was shown to be strongly consistent and
asymptotically normal. Tyler’s estimator has two advantages
against the others: it is the most robust estimator in the sense
that its maximum asymptotic variance is less than the maximum
asymptotic variance of any other consistent and uniformly
asymptotically normal estimator, and it is distribution-free in
the sense that its asymptotic standard deviation does not depend
on the form of . To numerically compute , Tyler proposed
the following iterative algorithm:

(4)

and also proved its convergence.
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B. Cauchy MLE for Mean and Covariance Estimation

Tyler’s estimator assumes a given , which can be substi-
tuted by a priori consistent estimator . This leads to a two-step
estimation procedure, where the shape of the distribution cannot
be taken into account when estimating . A widely utilized
robust -estimator for the joint mean-covariance estimation
problem is the MLE of the Student’s -distribution [29], [30].
This is defined as the minimizer of the negative log-likelihood
function of a Student’s -distribution with degree of freedom
(a particular case of (1)), which takes the following form:

The estimator satisfies the following system of fixed-point
equations:

(5)

The solution of (5) can be interpreted as a weighted sample
average, for which the weight decreases as the sample gets far-
ther away from the center, i.e., the weight is inversely propor-
tional to . This property indicates
that the estimator is less sensitive to outliers than the sample av-
erage. The degree of down-weighting increases as decreases.
The properties of the MLE of the Student’s -distribution are
well-studied in the literature [31]–[34]. Under the condition that
for any hyperplane with ,

, the solution to (5) exists, and it is unique
when .
In this paper, we are going to adapt the -estimator defined

as the solution of (5) with , which corresponds to the
MLE of a Cauchy distribution, to high-dimensional estimation
problem. For completeness, we first introduce some of its prop-
erties that serve as the basis of analysis in the high dimension
regime.
Following the idea of [31] and [35], we construct the aug-

mented samples and define the following
change of variable:

(6)

The negative log-likelihood function of the Cauchy distribution
( hereafter) can be equivalently expressed as:

which can be virtually viewed as fitting to a
-dimensional angular central Gaussian distribution with

the center being zero.

C. Asymptotics
It is known that if satisfies estimating equations (5)

with being i.i.d. samples from an elliptical distribution,
then as , the asymptotic values will con-
verge in probability to the unique solution of the system of
equations

(7)

with the relation and for some scalar
that depends on [33].
From the above result, we conclude that if the mean of the un-

derlying distribution exists, we can estimate it by . How-
ever, the covariance matrix can only be estimated up to a scale
factor that depends on , which is unknown. For this reason,
we focus on the joint estimation of the mean and covariance ma-
trix normalized by its trace, i.e., and .

III. REGULARIZED ROBUST ESTIMATOR OF MEAN AND
COVARIANCE MATRIX

Assuming the samples are drawn independently from a con-
tinuous distribution , then the condition guaran-
tees the existence of the CauchyMLE with probability one [31],
and a reliable estimation requires even more samples. However,
in some applications the number of samples is relatively small
compared to the number of parameters being estimated. In this
case, the algorithm designed for the estimator may fail to con-
verge. Motivated by the idea of [20], we regularize the Cauchy
MLE by shrinking the estimator to a prior target . The ad-
vantage of a shrinkage estimator is twofold: it provides a way
to incorporate prior information into the estimator, and it helps
stabilizing the estimator in the small sample situation.
We devise the following penalty function:

(8)

for some finite-valued nonnegative parameters and . The fol-
lowing proposition shows that minimizes with

, therefore justifies that is indeed a proper penalty
function.
Proposition 1: The minimizer of (8) on the set is

given by for .
Proof: See Appendix A.

The scale-invariant property of the minimizers of
is important due to the following reason. Since asymptoti-
cally minimizes with depending on the
unknown , a way of setting a shrinkage target for
(or ) is by adding a penalty term that is
minimized for proportional to (by passing the value of ).
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The regularized estimation problem is stated below with a
shrinkage target for :

(9)
The shrinkage estimator with , which is defined
as the solution of problem (9), has to satisfy the following fixed-
point equations:

(10)

which are derived by setting the gradient of the objec-
tive function, denoted by , to zero. Note that
since and are finite-valued, the effect of the penalty
term on vanishes as . As a result,

asymptotically.
By defining , , and using the

reparametrization (6), problem (9) is equivalent to

(11)

with being a selection matrix defined as . Denote
the objective function by . A sufficient condition for
the existence of the estimator is stated in the following
theorem.
Theorem 2: For the loss function

(12)

defined on , under the assumption that is full
rank, a minimum of exists under the following
condition: for any hyperplane with dimension

, if contains ,

and if does not contain ,

Proof: See Appendix B.

Fig. 1. Values that the regularization parameters and can take for the ex-
istence and uniqueness of the shrinkage estimator.

The existence condition requires the samples to be suffi-
ciently spread out in the space. The condition is more
relaxed compared to that without regularization, which is

as stated in [31]. Notice that setting and
to zero recovers the condition without regularization.
Corollary 3: Assume that the population distribution is

continuous, then the estimator exists for if
and either of the following conditions is satisfied:

(i) if , then ,
(ii) if , then ,

where

and , .
Proof: Notice that since the distribution is continuous,

then with probability one, a -dimensional hyperplane at most
touches points. The condition in Theorem 2 can be
simplified as follows:

which is equivalent to

(13)

Since both and are nonnegative, the conditions above is sat-
isfied if . Under the case that , some algebraic
calculation reveals that (13) is equivalent to the statement of the
corollary.
The feasible region of is shown pictorially in Fig. 1.

The condition in Corollary 3 implies the tradeoff between the
regularization parameters and . Specifically, since is
decreasing in , the condition indicates that when the confidence
on the prior information of gets weaker, which corresponds to
a smaller value of , the regularization for should be stronger.
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For the special case that , the condition reduces to
, or equivalently . The

lower bound on the number of samples is decreased by as a
result of regularization.
Now that we have established the existence condition for the

shrinkage estimator , in the following theorem, we are
going to show that the estimator is unique when .
Theorem 4: Under the regularity condition in Theorem 2,

is unique when .
Proof: See Appendix C.

IV. ALGORITHMS

In this section, we are going to derive algorithms for the regu-
larized estimator based on the majorization-minimization (MM)
framework. The concept of MM [36], [37] is briefly introduced
below.
Consider the following optimization problem:

(14)

where , is assumed to be continuous in and is
a convex set.
At a given point , the MM algorithm finds a surrogate func-

tion that satisfies the following properties:

with stands for directional derivative. The surrogate
function is assumed to be continuous in both and .
The update of is given by

The limit points of sequence are proved to be the stationary
points of the original problem (14) [37].
The idea of majorizing by a surrogate function can

also be applied blockwise. Specifically, is partitioned into
blocks as , where each -dimensional
block and . At the -th iteration,

is updated by solving the following problem:

(15)

with and the continuous surrogate function
satisfying the following properties:

In short, at each iteration, the block MM applies the ordinary
MM algorithm to one block while keeping the value of the other
blocks fixed. The blocks are updated in cyclic order.

It is proved in [37] that under the following conditions:
(C1) the level set with being the
initial point is compact;
(C2) each sub-problem (15) has a unique solution for any

for at least blocks;
(C3) at any stationary point , for all

with ,
the sequence generated by block MM converges to the set
of stationary points of (14).
In the rest of this section, for any continuous function ,

we define when . With a
slight abuse of notation, refers to the initial point of
the algorithm in this section.
Recall that the optimization problem takes the form

(16)
Before introducing the algorithms, we first state the following
lemma, which is needed for proving the convergence of the al-
gorithms.
Lemma 5: Given any initial point with , the

level set is
compact.

Proof: Under the conditions stated in Theorem 2, a unique
minimizer of exists. Observe that

Suppose , then . By The-
orem 2, it is known that
as , which contradicts the fact that on ,

is bounded above. Therefore is bounded. Now
suppose is unbounded, set and we have

. Therefore is bounded. The
continuity of implies is closed. Hence is
compact.

A. Majorization-Minimization
By the concavity of , at point function (12) is

majorized by

(17)
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with weights

(18)

Setting the gradient of to zero leads to the up-
date equations in Algorithm 1.

Algorithm 1: Majorization-Minimization

1) Initialize as an arbitrary positive definite matrix, and
as an arbitrary vector.
2) Iterate

(19)

with and given in (18) until convergence.

Lemma 6: The pair given by (19) uniquely
minimizes the surrogate function (17).

Proof: Since the surrogate function upper
bounds the cost function globally, the minimum
of exists with and being finite. Ob-
serve that is the negative log-likelihood func-
tion of a Gaussian distribution and has a unique stationary point

on , it has to be the minimum.
Proposition 7: The sequence generated by Algo-

rithm 1 converges to
(i) the set of stationary points of problem (16) if ;
(ii) the global minimizer of problem (16) if .
Proof: By Lemma 5 we have that the initial level set

is compact. Furthermore, by Lemma 6, uniquely
minimizes the surrogate function . Hence the se-
quence converges to the set of stationary points of

[37]. It has been proved in Theorem 4 that the
stationary point of problem (16) is unique, and it is the global
minimum when . Therefore in this case con-
verges to the global minimizer of problem (16).

B. Block Majorization-Minimization
Instead of upperbounding the whole function at point

, majorization can also be applied blockwise. Specifi-
cally, an upperbound for can be obtained as:

(20)

with the value of fixed as , which leads to the update equa-
tion (22) in Algorithm 2 for .
Then we fix the value of as and get an upperbound

for as follows:

(21)

which leads to the update (23) in Algorithm 2 for .
Notice that the update order can be reversed, i.e., first fix

and get , then fix and get . This leads to similar
iterations to Algorithm 2.

Algorithm 2: Block Majorization-Minimization

1) Initialize as an arbitrary positive definite matrix, and
as an arbitrary vector.

2) Iterate

(22)

(23)

with and given in (18) until convergence.

Proposition 8: The sequences generated by Al-
gorithm 2 converge to
(i) the set of stationary points of problem (16) if ;
(ii) the global minimizer of problem (16) if .
Proof: We verify the sufficient conditions (C1), (C2) and

(C3) for block MM established in [37]. First, the level set
is compact by Lemma 5. Second, with fixed , the surrogate
function upperbounds , therefore

when goes to the boundary of .
This implies that given by (22), which satisfies the sta-
tionary condition of , is the unique minimizer of

. Similarly we can prove that given by (23)
is the unique minimizer of . Condition (C3) is
satisfied naturally. Therefore converges to the set of
stationary points of problem (16), which is unique and the global
minimum when .

C. Special Case for
In this subsection we provide an algorithm for the special case

, which is simpler than the previously described ones. It
has been proved in Theorem 4 that when , the objec-
tive function is scale-invariant and has a unique
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minimizer on up to a positive scale factor. The
reparametrization (6) yields the following equivalent optimiza-
tion problem:

(24)
For this special case, in addition to Algorithm 1 and 2, we pro-
pose a more efficient one as described in Algorithm 3. The con-
vergence follows the same reasoning as Proposition 17 in [22].

Algorithm 3: Algorithm for

1) Initialize as an arbitrary positive definite matrix.
2) Iterate

until convergence.

D. Accelerated Majorization-Minimization
Recall it is proved in Theorem 4 that the stationary condition

(10) can be embedded in (30), which is equivalent to the equa-
tion system (31)–(33).
Since can be solved as , we can substitute the

value of into (32) and eliminate (33). This leads to the itera-
tions described in Algorithm 4. Compared to Algorithm 1, the
update equation of in Algorithm 4 is unchanged, while that
of is multiplied by a factor of . In the case that ,
Algorithm 4 and Algorithm 3 are identical.

Algorithm 4: Accelerated Majorization-Minimization

1) Initialize as an arbitrary positive definite matrix, and
as an arbitrary vector.
2) Iterate

(25)

with and given in (18) and

until convergence.

V. NUMERICAL RESULTS
In this section, we conduct a simulation study of the perfor-

mance of the proposed shrinkage estimator and the convergence
of the numerical algorithms presented in Section IV. The esti-
mation error is measured by the symmetrized KL divergence

where all covariance matrices are normalized by their traces.
The expected error of the estimator is approximated by aver-
aging 200 independent simulations with randomly generated
data sets following the same underlying distribution. In all the
following simulations, if not specified, the scatter parameter

is set to be a Toeplitz matrix of the form

with , , and the distribution center is fixed
to be .
The first simulation compares the estimation error of the

sample average estimator, the Cauchy MLE and the MLE with
samples drawn from a Student’s -distribution with degree of
freedom parameter , denoted as . In this simulation,
varies from 1 to 100 and the number of samples is set

to be 120. The NMSE of and plotted in Fig. 2 illustrates
that even in the case that the tail of the underlying distribution
is not as heavy as the Cauchy distribution, which corresponds
to a large value of , the estimation error incurred by fitting
the samples to a Cauchy distribution is small compared to the
MLE that assumes perfect knowledge of . For this reason,
the negative log-likelihood function of Cauchy distribution
is an acceptable choice as the loss function of estimating the
parameters of an elliptical distribution.
The second simulation shows the performance of the pro-

posed shrinkage estimator with a small sample size. The es-
timators that we consider are the sample average, the Cauchy
MLE, the plug-in estimator (first estimate the location by sample
mean or sample median then estimate covariance by shrinkage
Tyler’s estimator [22] with the estimated mean), and the pro-
posed shrinkage Cauchy MLE. As for the tuning parameter of
the shrinkage estimators, we define and search
for the on the grid that yields the shrinkage
estimator with the smallest estimation error as proposed in [20],
so as to eliminate the effect of parameter tuning that is impor-
tant but not the focus of this paper. The shrinkage target is
set to be motivated by the idea of diagonal loading [17]
and is set to be the sample mean and the sample median. No-
tice that in both cases the shrinkage target does not depend on
any prior knowledge of the true parameter. Fig. 3 shows that
for Gaussian distributed samples, heavy-tailed samples

and elliptically distributed samples ,
where and , the proposed shrinkage esti-
mator with the shrinkage target being the sample mean achieves
the smallest estimation error. The proposed shrinkage estimator
is robust to the class of outliers that are distributed far away
from the “good” samples. A plot in Fig. 3(d) shows the estima-
tion error versus the percentage of outliers with normal samples
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Fig. 2. NMSE of and with 100-dimensional samples drawn
from a Student’s -distribution with degree of freedom parameter .

and outliers , where is
uniformly distributed on a -dimensional sphere and is
uniformly distributed on the interval , is set to be

. The total number of samples is .
The third simulation analyzes the sensitivity of the shrinkage

estimator to the shrinkage target . The underlying distri-
bution is chosen to be . The estimation error of the
shrinkage estimator with , , and

being a Toeplitz matrix , is
listed in Table I for and 150 respectively. The table in-
dicates that the estimation error decreases as gets closer
to the true parameter . For , the estimation
error of the MLE is 260.84, which turns out to be much larger
than the maximum error for the case in Table I. The
reason is that although is far away from , the
regularization parameter is small so that is estimated ma-
jorly based on the samples, and is close to the identity matrix
when , which still helps in improving the estimation

accuracy by shrinking the eigenvalues of towards the center
in the small sample regime. To conclude, one can expect that a
more informative prior ( is closer to ) leading to

Fig. 3. Performance comparison for different estimators. (a) Gaussian dis-
tributed samples (b) Student’s -distributed samples (c) Elliptically
distributed samples (d) Gaussian distributed samples with outlier
contamination.

a more accurate estimator . Even if the prior on the pa-
rameters is completely wrong, the shrinkage estimator performs
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TABLE I
SENSITIVITY ANALYSIS: AVERAGED ESTIMATION ERROR OF THE PROPOSED SHRINKAGE ESTIMATOR FOR DIFFERENT VALUES OF

TABLE II
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR ALGORITHMS, I.E., MM, BLOCK MM AND ACCELERATED MM, TO CONVERGE

Fig. 4. Convergence comparison for algorithms in Section IV.

no worse than the Cauchy MLE provided that the tuning param-
eters and are properly selected.
Fig. 4 and Table II demonstrate the convergence of the al-

gorithms provided in Section IV. The convergence criterion is
set to be and .
Fig. 4 plots the evolution curve of the objective value versus the
number of iterations. The parameters are set to be ,

, , , and .
While the computational cost per iteration of all the algorithms
is roughly the same, it can be seen that the accelerated algorithm
requires far fewer iterations than the MM algorithms (MM and
block MM). Table II lists the average number of iterations that
each of the algorithms require to converge as and changes.
In this simulation, and are set to be equal, consequently Al-
gorithm 3 and Algorithm 4 turn out to be the same. The ratio

is fixed to be 1.2. The data indicates that the accelerated
MM algorithm not only converges much faster, but also is not

very sensitive to the problem dimension. For these reasons, the
accelerated MM is recommended for practical applications.
Finally, we test the performance of the proposed shrinkage

estimator on a real financial data set. We choose weekly close
prices from Jan 1, 2010 to June 8, 2014, 230 weeks in total,
of stocks selected from the S&P 500 index compo-
nents provided by Yahoo Finance. The samples are constructed
as , i.e., the weekly log-returns. The
process is assumed stationary. The vector is constructed
by stacking the log-returns of all stocks. We compare esti-
mator performance in the minimum variance portfolio set up,
that is, we allocate the portfolio weights to minimize the overall
variance. The problem can be formulated mathematically as

(26)

with being the covariance matrix of . Clearly the scale of
does not affect the solution to this problem.
To estimate , we use a rolling window approach with

window size . In particular, for the nonshrinkage estimators,
at week we use the log-returns of the previous weeks to
estimate the normalized covariance and find the optimal
portfolio allocation according to problem (26). For the
shrinkage estimators, we further divide the weeks returns
into two parts with the first weeks for
estimating for different regularization parameters
and find the allocation strategy , and the remaining
weeks as validation data for selecting the best , which
is the one that yields the smallest empirical portfolio variance

. The normalized covariance is
then estimated with the overall weeks log-return and tuning
parameter .
Then we use to invest for weeks and collect the

returns . Every weeks we rebalance the
portfolio based on this procedure. Fig. 5 compares the variance
(risk) of the portfolio constructed based on different estimators.
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Fig. 5. Risk (variance) comparison of portfolio constructed based on different
covariance estimators.

The parameters are set to be and , the
shrinkage targets are and , and the step size
of the searching grid for is set to be 0.2. The size of the
rolling window is varied from 72 to 124. We can see that
in most cases the proposed shrinkage Cauchy MLE yields the
lowest risk.

VI. CONCLUSION
In this paper, we have considered the robust mean-covariance

estimation with samples drawn from an elliptical distribution
that is capable of modeling heavy tails and outliers. In partic-
ular, we have proposed a robust shrinkage estimator by adding
a penalty term to the Cauchy likelihood function, and estab-
lished the existence and uniqueness result of the shrinkage es-
timator under certain regularity conditions. Efficient numerical
algorithms have been provided based on the majorization-mini-
mization framework with provable convergence and simulation
results have shown that the proposed estimator works consid-
erably better in the small sample scenario with the presence of
erroneous observations.

APPENDIX

A. Proof for Proposition 1
We analyze the following nested optimization problem:

For any fixed value of , it is easy to see that the optimal
is . Substituting the optimal into the problem we have

Setting the gradient to zero yields the stationary condition

with solution for any . We now show that the
stationary points are actually the minimizers.
We claim that the objective function

goes to positive infinity when
tends to a singular matrix. To see this, first notice that
is scale-invariant, i.e., , therefore we add
the constraint to remove the scale ambiguity.
Eigendecompose as , and define .
The diagonal components of are all positive since .
Therefore with

being the -th diagonal component of and being the
-th diagonal component of . Without loss of generality we
can assume the ordering . Consider the case

for some , then we have

Therefore, a minimizer of exists on and has to
satisfy the stationary condition. The scale-invariant property of

implies must be a global minima.

B. Proof for Theorem 2
Notice the fact that on the boundary of

the feasible set implies theminimum exists, we there-
fore seek for the condition that guarantees

on the boundary.
Define , and matrix

we have the following identities

(27)

with . The loss function can be equiv-
alently written in as

Define the feasible set of as
. In the rest of the proof, we are going to find the condition that

ensures as for
all , which implies that a minimum exists on . Denote
the eigenvalues of as , on the set we have

and .
The quantities and are all greater than

or equal to 1 by the identities (27), therefore the corre-
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sponding terms in are nonnegative. For the term
we have

Eigendecompose as with
, and denote the eigenvector corre-

sponding to as , we can express as
, where .

Now define the function

The function if and only if .
Denote the subspace spanned by as and de-

fine with
and . The ’s partition the whole

space. Notice that since the last element of the
augmented sample is 1, therefore
and .
Partition the samples according to ’s and define

therefore the objective function can be written as
.

If , we have the following fact:

Define two integers and with , ,
and , such that for , is bounded
for , and for .
First consider the ’s with . If , then

. Since for all the ’s with
all goes to infinity, the quantity must go to

zero. This contradicts the fact that . Therefore no
lies in for , and .
Next, for the ’s with , clearly is bounded

away from both 0 and , thus does not have any effect on
the order of . Finally, consider the ’s with ,
since , we have . Since

we have , and
.

Having finished the terms associated with , we then analyze
the terms contributed by regularization.

For the term , since the ’s partition the whole
space, there must exist some that . By the previous
analysis, we have . If then

, which is , and if , .
In short, .
Finally we analyze the last term . Re-

call the definition , and denote each column of
as . Then for each vector there must

exist some to which it belongs. Denote the largest index
of such as , we have and for all

. Repeating the previous reasoning we conclude that if
or , and if
, it is some constant. In short,

.
Combining the three terms above, denote the partition that

belongs to as , i.e., , we have

with , if . By the ordering ,
to guarantee we impose the conditions

(28)

and

(29)

where the first one forces the terms in the product corresponding
to to go to zero, and the second one forces the
terms in the product corresponding to to go to zero.
Before simplifying the conditions, we first establish the fol-
lowing lemma.
Lemma 9: if and only if . If , the

corresponding takes the form , which implies
and .

Proof: Recall the definition of , which is the largest index
of that belongs to. Therefore if and only if

for all . Under the assumption that is full rank,
we have . If , since is a -dimensional
subspace spanned by , which are the eignenvec-
tors of , we have ,
where . Clearly must take the form

, which implies that and .
Consider the condition (28). can take an arbitrary integer

value from 0 to .When , or and ,
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the condition is satisfied automatically since is
always negative and . When ,

. We therefore have proved that condition (28) is
satisfied for any proper subspace of .
Now we move to condition (29). Since

and condition (29) should be valid for all
. Substituting yields the condition that for

any proper subspace with

We have if and if by the
previous argument, therefore condition (29) is equivalent to: for
any proper subspace , if and , we need

and if , which implies since the last entry of is
1, we need

and finally if , which implies , which corresponds
to the situation when and according
to Lemma 9, we actually do not have condition (29) since no

.
Notice that and belong to the same subspace if and only

if and belong to the same hyperplane, and if and only
if with . Finally we arrive at
the condition on samples: for any hyperplane with
dimension , if contains ,

if does not contain ,

C. Proof for Theorem 4

Define matrix

and assume that the following equality is satisfied:

(30)

Rewriting the equality above in terms of the original variables
yields the system of equations as follows:

(31)

(32)

(33)

where

and

By substituting (33) into (32) we get exactly the condition
(10) that a stationary point of problem (9) should satisfy.
Namely, if solves (10) then there exists a corresponding
that solves (30).
Multiplying both sides of (30) by and taking the trace gives

the identity

combined with (33), can be solved as .
Under the existence condition provided in Theorem 2, the

global minimal of (9) is a solution of (10) with , which
implies (30) has at least one symmetric positive definite solution

. It suffices to prove that the solution is unique on when
.

First consider the case , which implies .
Without loss of generality we can assume is a solution,
since if is a solution we can always define ,

and . Now assume there is another
solution and its largest eigenvalue , then

where the first inequality follows from the fact that for any
positive semidefinite matrix , , the
second strict inequality follows from the assumption that
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and the last equality follows from the assumption that is a so-
lution to the equation (30). We have a contradiction ,
hence . Similarly we can prove , therefore

.
Next consider the case , which implies . The

equation simplifies to

By the same reasoning as Theorem 6 in [22] and the fact that
, we conclude that the solution to the above

equation is unique.
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