
J
C
A
P
0
8
(
2
0
1
4
)
0
3
6

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Blue tensor spectrum from particle
production during inflation

Shinji Mukohyama,a Ryo Namba,a Marco Pelosob and Gary Shiuc,d

aKavli Institute for the Physics and Mathematics of the Universe (WPI),
Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan
bSchool of Physics and Astronomy, University of Minnesota,
Minneapolis, MN 55455, U.S.A.
cDepartment of Physics, University of Wisconsin,
Madison, WI 53706, U.S.A.
dCenter for Fundamental Physics and Institute for Advanced Study,
Hong Kong University of Science and Technology, Hong Kong

E-mail: shinji.mukohyama@ipmu.jp, ryo.namba@ipmu.jp,
peloso@physics.umn.edu, shiu@physics.wisc.edu

Received May 11, 2014
Accepted July 16, 2014
Published August 18, 2014

Abstract. We discuss a mechanism of particle production during inflation that can result
in a blue gravitational wave (GW) spectrum, compatible with the BICEP2 result and with
the r < 0.11 limit on the tensor-to-scalar ratio at the Planck pivot scale. The mechanism
is based on the production of vector quanta from a rolling pseudo-scalar field. Both the
vector and the pseudo-scalar are only gravitationally coupled to the inflaton, to keep the
production of inflaton quanta at an unobservable level (the overproduction of non-gaussian
scalar perturbations is a generic difficulty for mechanisms that aim to generate a visible GW
signal from particle production during inflation). This mechanism can produce a detectable
amount of GWs for any inflationary energy scale. The produced GWs are chiral and non-
gaussian; both these aspects can be tested with large-scale polarization data (starting from
Planck). We study how to reconstruct the pseudo-scalar potential from the GW spectrum.
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1 Introduction

Cosmic inflation in the early universe is arguably the most promising candidate for the origin
of primordial fluctuations, from which the rich structures of our universe such as galaxies
and clusters of galaxies emerged due to gravitational instability.

One of the most important and robust predictions of inflationary cosmology is that it
generates quantum fluctuations of the graviton, a spin-2 degree of freedom that mediates
gravity, leading to a tensor-type perturbation, a.k.a. gravitational waves (GWs). In gen-
eral relativity, the power spectrum of tensor perturbation from vacuum fluctuations during
inflation is given by

PGW(k) =
2H2

π2M2
Pl

∣∣∣∣
k=aH

. (1.1)

This depends only on the Hubble expansion rate H and, for this reason, the tensor power
spectrum is usually considered as a direct probe of the scale of inflation. For the same reason,
it is commonly believed that the tensor spectrum from inflation is always red: the Hubble
expansion rate gradually decreases during inflation and thus modes with shorter wavelengths
have lower amplitudes than those with longer wavelengths.

With this interpretation of tensor spectrum, detection of primordial GWs within the
current observational reach would suggest that cosmic inflation actually occured in our uni-
verse at rather high energy scale, potentially ruling out many low-scale models of inflation.
Moreover, it would provide a strong evidence that the graviton indeed exists and follows the
laws of quantum mechasnics. For this reason, the recent detection of B-mode polarization
by BICEP2 collaboration [1], if confirmed, would be a strong motivation for further studies
of inflationary scenarios in the context of quantum gravity such as string theory.1 However,
these considerations are only relevant if the formula (1.1) is valid. It is thus important to
identify the regime of validity of this standard result, and explore novel ways to evade it.

1Inflation models in string theory are so far mostly low scale ones [2]. An exception is axion monodromy
inflation [3–5]. The new class of monodromy inflation models with F-term potentials [5] naturally evades the
eta problem and several microphysical constraints. See also [6–8] for field theoretical descriptions and [9–12]
for some recent model building efforts.
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The purpose of the present paper is to point out a possibility to enhance the tensor
power spectrum from the standard formula (1.1) in a scale-dependent way. The standard
result is the power spectrum of tensor modes obeying the free field equation[

∂2
τ + k2 − a′′

a

]
(a δgij) = Sij , Sij = 0 , (1.2)

where a is the scale factor of the universe, τ is the conformal time, k is the comoving
momentum, and δgij are the tensor perturbations of the metric. Due to the expansion of
the universe, the graviton wave function is “dragged out” from the empty vacuum state to
the power (1.1). Strictly speaking, the right-hand side of eq. (1.2) never vanishes, as the
graviton is nonlinearly coupled to itself and to any other field. However the coupling is of
gravitational strength, and the source term Sij is second order in perturbation theory, and
for these reasons Sij is typically negligible. Recently, the works [13–16] have investigated the
possibility that a substantial particle production takes place during inflation, with the aim
of obtaining a source Sij for the GWs that can dominate the observed tensor modes from
inflation. The mechanism mostly studied in [13–15] consists in introducing a field χ that
acquires a mass from its interaction with the inflaton, Mχ = M (φ). This mass is arranged
such that M = 0 for some given value φ = φ∗ acquired by the inflaton during inflation. As φ
crosses this value, a burst of quanta of χ is produced nonperturbatively [17], which are the
GW source Sij . The minimal implementation of this mechanism, however, gives rise to a
negligible GW production [16]: as the inflaton moves past φ∗, the quanta of χ quickly become
very massive and non-relativistic. This strongly suppresses their quadrupole moment (the
source of GWs). On the other hand, the same quanta also source highly non-gaussian inflaton
perturbations [16]. This production is not suppressed by the small quadrupole moment of
the non-relativistic quanta, and thus the non-observation of this non-gaussian signal puts a
phenomenological constraint on this mechanism.2

One may imagine modifying this implementation in ways that can enhance the GW
signal. For example, ref. [14] mentioned the possibility that the particles χ decay, and
that their decay products source GWs. However, it is hard to reconcile this with the non-
gaussianity bounds [16].

A more promising way to enhance the ratio between the sourced tensor and the sourced
scalar modes is to have a copious production of quanta that remain relativistic. A vector
field coupled to a rolling pseudo-scalar can experience a significant tachyonic growth during
inflation [18]. If the rolling pseudo-scalar is the inflaton, also this mechanism results in an
unobservable GW signal, due to the limits imposed by the non-gaussianity of the inflaton
perturbations [19, 20]. On the other hand, if the rolling pseudo-scalar is a different field ψ,
and if the inflaton is coupled only gravitationally to the vector field, then the vector quanta
produce a greater amount of GWs than of inflaton perturbations, and the sourced GW signal
can dominate over the vacuum one, while the sourced inflaton quanta are negligible [16].3 To

2This is true even if the scalar field that controls the mass of χ is not the inflaton; inflaton quanta are at
least gravitationally coupled to χ, and they are produced in a much greater amount than GWs [16].

3We are assuming that the energy density ρψ of the pseudo-scalar becomes sufficiently small by the end
of inflation, so that the pseudo-scalar does not contribute to the late-time observable curvature perturbation
ζobs.. Strictly speaking, for ρψ 6= 0 at reheating, the pseudo-scalar contributes to the observable curvature
perturbations. As ψ is coupled more strongly than gravitationally to the vector field A, this would generate a
component of ζobs. that is sourced more strongly than gravitationally by δA. This component is proportional
to ρψ at reheating, so it does not impact observations if ρψ is much smaller than ρφ at reheating. It is very
easy to achieve this. For example, if the pseudo-scalar reaches the minimum of its potential and becomes
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our knowledge, this is the only model of particle production during inflation which has been
proven to (i) produce a significant amount of GWs, and (ii) avoid too strong non-gaussianity
of the scalar perturbations, and for this reason we study this model in this work.

On the other hand, the tensor modes in this model are highly non-gaussian, and they can
generate an interesting equilateral non-gaussianity in the CMB temperature perturbations
and polarization [21, 22]. We show that, based on the results of these works, the current
Planck limit on equilateral non-gaussianity does not yet constrain the mechanism. However,
an interesting non-gaussian signature may emerge from the Planck polarization data and
from future CMB experiments.

A second very interesting signature of this model is a breaking of parity in the GW
signals, due to the fact that only the GWs of one given helicity are significantly produced.4

This can lead to signatures in the TB and EB correlations of the CMB anisotropy. Refs. [24–
26] studied the detectability of this signal as a function of r and of the parity violation,
showing that most of the contribution to this detection comes from the very largest scales,
` . 10 (therefore this effect does not impact the BICEP2 measurements or forthcoming
missions with a small sky coverage [26]). If the signal measured by BICEP2 is cosmological,
and it is dominated by the GWs produced by our mechanism, the parity violation may be
already detectable at the 1σ level in the Planck polarization data [25], and a more significant
detection should be expected in future full sky or nearly full sky experiments [26].

In this model, GWs are produced continuously during inflation, with an amplitude
exponentially sensitive to the speed of the pseduo-scalar field ψ, which is not the inflaton.
Therefore, the resulting tensor spectrum can be either blue or red, or can even have bumps,
depending on the pseudo-scalar potential. As we will see, these features allow to reconcile
the possible tension between Planck/WMAP and BICEP2. The Planck temperature data,
supplemented with priors from the WMAP polarization measurements, provide the limit
r <∼ 0.11 on the tensor-to-scalar ratio at the k0 = 0.002 Mpc−1 pivot scale [27]. This is
in contrast with the BICEP2 detection r = 0.20+0.07

−0.05 (without polarized dust removal) or

r = 0.16+0.06
−0.05 (with the dust removal method that they deem most reliable) [1] at somewhat

smaller angular scales (for definiteness, we take k0 = 0.0057 Mpc−1, corresponding to ` ≈ 80).
A solution to this possible tension may be a blue tilt in the tensor spectrum [28], which would
then result in a running of the tensor-to-scalar-ratio, Tr ≡ d ln r

d ln k = nT − (ns − 1) [29], where
ns and nT are the scalar and tensor spectral indices, respectively. While standard single-
field slow-roll inflation satisfies nT = −r/8, a significant blue tensor tilt can be attained —
besides from the particle production mechanism that we study here — with generalized slow-
roll [30], non-Bunch Davies initial states [31] (extending [32]), sourcing from a spectator field
with small sound speed [33], other non-standard inflationary scenarios [34–36], and some non-
inflationary mechanisms [37]. Other ideas to reconcile this possible tension include invoking
a negative running of the scalar spectral index [1, 38–44], suppression of the scalar power
at large scales [45–51], anti-correlated isocurvature perturbations [52–54], a space-dependent
r [55], cosmological birefringence [56], dark radiation [57–59], primordial magnetic fields [60],
a pre-inflationary bounce [61], and sterile neutrinos [62–66].

We note that the relation nT = −r/8 is also violated in warm inflation [67], as the tensor-
to-scalar ratio is in this case reduced compared to the standard case due to the dissipative

massive during inflation (say a few e-folds after the CMB modes have left the horizon), then its energy density
(or the one of its decay products) redshifts away to a completely negligible value as compared to the energy
density of the slow-rolling inflaton.

4A chiral GW background from inflation was first considered in [23], where parity violation arises from a
gravitational Chern-Simons term coupled to inflaton.
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effects and the much greater production of scalar with respect to tensor perturbations due
to the coupled inflaton [68].

In the model we study in this paper, the tensor spectrum contains useful information
about the properties of the pseudo-scalar field. In particular we show that one can in principle
reconstruct the potential of the pseudo-scalar field from the tensor spectrum, provided that
the measured tensor spectrum in our universe is higher than that given by the formula (1.1).
As examples, we study two different cases, one characterized by a continuously growing
particle production, and consequently continuous growth in the tensor power (under the
assumption that this continuous growth takes place for the scales relevant for the CMB
observations), and one by a sudden but momentary acceleration of the pseudo-scalar motion,
resulting in a localized burst of particle production and a localized growth of r.

This work is organized as follows. In section 2 we summarize the model, first introduced
in ref. [16]. In section 3 we discuss the gauge field production in this model, and the several
consequent observational implications of the resulting GW background for the CMB obser-
vations. In section 4 we emphasize that the GW can be blue in this model. In section 5 we
show how, at least in principle, the potential of the pseudo-scalar field can be reconstructed
from the GW spectrum. Finally, in section 6 we conclude the paper.

2 Model description

We consider the model introduced in [16], in which an inflaton ϕ and a pseudo-scalar field
ψ are minimally coupled to the Einstein gravity. The pseudo-scalar field also couples to a
U(1) gauge field in a way consistent with symmetries. Assuming canonical kinetic terms for
ϕ and ψ, the action is

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
(∂ψ)2 − U(ψ)− 1

4
F 2 − ψ

4f
F F̃

]
, (2.1)

where F and F̃µν ≡ 1
2ε
µναβFαβ are the field-strength tensor of the gauge field and its dual,

respectively, and f is a pseudo-scalar decay constant.5 We assume that ϕ and ψ take homoge-
neous vacuum expectation values (vev), ϕ̄(t) and ψ̄(t), respectively, and that the background
spacetime is of the flat FLRW form with the metric

ds2 = −dt2 + a(t)2 (dx2 + dy2 + dz2) , (2.2)

where a(t) is the scale factor. We assume that the gauge field carries no vev.

The equations of motion for ϕ̄ and ψ̄ are

¨̄ϕ+ 3H ˙̄ϕ+ V ′(ϕ̄) = 0 , (2.3)

¨̄ψ + 3H ˙̄ψ + U ′(ψ̄) = 0 . (2.4)

where H ≡ ȧ/a is the Hubble parameter, and an overdot and a prime denote the derivatives
with respect to t and to the argument, respectively. We assume that the contribution of the
pseudo-scalar ψ to the background evolution is negligible compared to that of the inflaton ϕ,
requiring

|U | � V , ˙̄ψ2 � ˙̄ϕ2 . (2.5)

5Note our normalization for f is 4π2 times larger than the conventional normalization used e.g. in [69–71].

– 4 –



J
C
A
P
0
8
(
2
0
1
4
)
0
3
6

Under this condition, the Einstein equations for the background are approximated as

3M2
PlH

2 ' 1

2
˙̄ϕ2 + V (ϕ̄) ' V (ϕ̄) , (2.6)

2M2
PlḢ ' − ˙̄ϕ2 , (2.7)

where the last approximate equality in the first line assumes the slow roll of the inflaton.

3 Gauge-field production and its effects

The coupling of the gauge field Aµ to the time-dependent pseudo-scalar vev ψ̄ leads to a
copious production of the gauge quanta. The linearized equation of motion for the Fourier
modes of the gauge field is [18][

∂2
τ + k2 ± 2kξ

τ

]
A±(τ, k) ' 0 , ξ ≡

˙̄ψ

2Hf
, (3.1)

where τ is the conformal time dτ = dt/a, and ± corresponds to the circular polarization states
of the gauge field. We assume that the motion of the pseudo-scalar vev is over-damped and
thus treat ξ as nearly constant. This condition reads6

|δξ| � 1 , δξ ≡
ξ̇

ξH
. (3.2)

Also we assume that ˙̄ψ > 0 so that ξ is positive, and the “+” state experiences a tachyonic
growth near the horizon crossing while the “−” state stays in the vacuum (the opposite

happens if ˙̄ψ is negative, and our study can be immediately applied also to this case). The
production of the “+” helicity modes can be well quantified by the approximate solution [18]

A+ '
(
−τ
8ξk

)1/4

eπξ−2
√
−2ξkτ , ∂τA+ '

√
2ξk

−τ
A+ . (3.3)

We restrict our consideration to ξ & 1, for which each mode experiences a significant expo-
nential growth eπξ � 1.

In order to avoid a significant backreaction of the produced gauge quanta to the back-
ground dynamics, we must simultaneously require (i) that the energy density of the produced
gauge field is smaller than the kinetic energy of ψ̄ and (ii) that the backreaction to the equa-
tion of motion for ψ̄, eq. (2.4), is negligible. It has turned out that (i) is more stringent a
constraint than (ii) and requires [16]

eπξ

ξ5/2
� 13.5√

εP
f

Mp
, (3.4)

where ε ≡ −Ḣ/H2 is the slow-roll parameter, and P ≡ H2/
(
8π2εM2

Pl

)
corresponds to the

result for Pζ without source. Under this condition, the produced gauge field does not alter
the background dynamics.

6Violation of the condition (3.2) does not necessarily mean that the particle production and the subsequent
generation of GWs are inefficient. In fact it would be interesting to extend this computation outside the
regime (3.2). We hope to come back to this issue in a future publication.
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The gauge field is gravitationally coupled both to the inflaton perturbations and to
the GWs, as can be seen from (2.1). Thus the produced gauge quanta (3.3) in turn source
the scalar and tensor perturbations through the Einstein equations. This sourcing effect
induces a contribution to their spectra that is uncorrelated to that from the standard vacuum
fluctuations. The total spectrum of the scalar perturbation was found in [16] to be

Pζ ' P
(

1 + 2.5 · 10−6 ε2 P e4πξ

ξ6

)
. (3.5)

The second term in the parenthesis is the contribution sourced by the gauge field while the
first is that from the vacuum fluctuations. On the other hand, the GW power spectrum was
computed in [19, 72],

PGW ' 16 εP
(

1 + 3.4 · 10−5 εP e4πξ

ξ6

)
, (3.6)

where again the first and second terms in the parenthesis correspond to the contributions
from the vacuum fluctuations and from the source, respectively.

Combining (3.5) and (3.6) we obtain

Pζ ' P
1− 0.0735ε

1− 0.0046r
, (3.7)

showing that the sourced scalar perturbations, Pζ − P, are much smaller than the vacuum
ones, P, in this model. On the contrary, the sourced GWs dominate over the vacuum ones
for ξ >∼ 3.4 when r ' 0.2. In figure 1 we plot ε as a function of ξ, once the scalar spectrum
is normalized to the observed value, and once the tensor-to-scalar ratio is fixed to r = 0.2
(red solid curve), r = 0.15 (green dashed curve), or r = 0.1 (blue dot-dashed curve). The
vacuum modes dominate at the smaller values of ξ shown in the plot, and the standard slow
roll result ε = r/16 is obtained there. As ξ increases, the sourced GW signal dominates, and
ε needs to decrease exponentially.

The scalar and tensor modes sourced by the vector field are highly non-gaussian. As
studied in [16] the sourced scalar modes are so small in comparison to the vacuum ones that
they do not lead to any observable non-gaussianity. On the other hand, as noted in [21],
the sourced tensor modes could leave a sizable non-gaussianity of nearly equilateral shape on
the CMB anisotropies and polarization. The amount of non-gaussianity is controlled by the
parameter X and estimated as [21]

fNL ' 1.1 · 10−14X3

X ≡ ε
e2πξ

ξ3
. (3.8)

In figure 2 we plot X as a function of ξ, once the scalar spectrum is normalized to
the observed value, and once the tensor-to-scalar ratio is fixed to r = 0.2 (red solid curve),
r = 0.15 (green dashed curve), or r = 0.1 (blue dot-dashed curve). The parameter X grows
with the amount of sourced GWs, and it saturates to

X ' 43

√
r

Pζ
' 3.5 · 105

√
r

0.15
. (3.9)

Using (3.8), we see that the 2σ Planck temperature limit fNL < 150 [73] would enforce
X . 2 · 105 [21], if the Planck limit could be taken at face value. However, as also mentioned
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r = 0.20

r = 0.15

r = 0.10

2.5 3.0 3.5 4.0 4.5

5´ 10-5

1´ 10-4

5´ 10-4

0.001

0.005

0.010

Ξ

Ε

Figure 1. Slow roll parameter ε vs particle production parameter ξ, when Pζ is fixed to the measured
amplitude, and for three different values of r. At the smallest ξ shown, particle production is negligible,
and ε = r/16. As ξ increases the sourced GWs become dominant, and ε needs to decrease to keep r
at the given value.

r = 0.20

r = 0.15

r = 0.10

2.5 3.0 3.5 4.0 4.5

5000

1´ 104

5´ 104

1´ 105

5´ 105

Ξ

X

Figure 2. Parameter X, defined in (3.8), controlling the amount of non-gaussianity as a function
of the particle production parameter ξ, when Pζ is fixed to the measured amplitude, and for three
different values of r. See the main text for discussion.

in [21], we cannot take the Planck limit at face value in this case, and this estimate is
likely too strong, as the contribution of the tensor modes to the temperature anisotropies
scales with ` differently than the scalar contribution (which the Planck limit assumes) and,
in particular, it becomes negligible at ` >∼ 100. This is visible in figure 1 of [22], which
also studied non-gaussianity in this model. According to [22], a dedicated analysis with the
Planck temperature data can detect X ' 5 · 105 at 1σ. This is above the values obtained
in the model (see figure 2). The inclusion of E-mode polarization data can improve the 1σ
limit to ' 3.8 ·105 and to ' 2.9 ·105 under the Planck and PRISM experiments, respectively.
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Adding the B mode polarization may allow to probe all the range of X in which the source
signal dominates, provided the instrumental error is sufficiently small [22].

Another interesting feature of the model is that the vev of the pseudo-scalar breaks
parity in the gauge sector. As described right above (3.3), only one of the polarization
states of the gauge field (we take the “+” state here) is produced. The sourcing effect can
be understood as the interaction A+ + A+ → hR, with only the right-handed state of the
GWs being efficiently generated from the gauge sourcing. The contribution from the vacuum
fluctuations of course does not discriminate between the two helical states. We can quantify
the level of chirality using a parameter [16, 24]

∆χ ≡
PRGW − PLGW

PRGW + PLGW

'
3.4 · 10−5 εP e4πξ

ξ6

1 + 3.4 · 10−5 εP e4πξ

ξ6

, (3.10)

where P
R/L
GW is the power spectrum of each state.

In figure 3 we show the amount of chirality as a function of ξ, for the same choice of
parameters as the previous two figures. The possible detection of this parity violation in
the tensor sector has been studied in [24–26]. In particular, ref. [25] presented the forecast
for detecting this signal with Planck, Spider, CMBPol, and a hypothetical cosmic variance
limited experiment. Such a violation may be observed at the 1σ level in Planck and Spider,
provided the sourced signal is dominant, while a more significant detection can be expected
from CMBPol and from a cosmic variance limited experiment. See figure 4 of [16] for the
1σ contours in the ∆χ − r plane. Ref. [26] further demonstrated that a detection with at
least 2σ is possible for maximally chiral GWs of r & 0.05, using the EPIC-2m specifications.
As mentioned in [25, 26], on the other hand, the forecasted constraints (or signals) mostly
come from low multipoles ` <∼ 10, so that we do not expect that the BICEP2 signal provide
constraints on this parity violation (and indeed their jackknife 〈TB〉 and 〈EB〉 signals appear
to be consistent with zero).

4 Blue tensor spectrum

In the previous sections, the parameter ξ has been treated as a constant to obtain (3.5)
and (3.6); however, in reality it is a reasonable assumption that ξ is an increasing function of
time for some duration during inflation. As long as |δξ| � 1, where δξ was defined in (3.2), the
rate of change is small enough for (3.5) and (3.6) to be valid, up to undetectable corrections.
However, as we now discuss, the increase of ξ can result in a growth of the tensor power at
increasingly smaller scales.

We can readily compute the tensor spectral tilt from (3.6). Using

d lnH

d ln k
' −ε , d ln ξ

d ln k
' δξ , (4.1)

up to the first order in slow roll, one finds the tensor spectral tilt as

nT ≡
d lnPGW

d ln k
' (4πξ − 6) δξ − 4 ε . (4.2)

Note that this relation is valid when the sourced contribution dominates PGW. Recall that
in order for our calculation to be valid, |δξ| � 1 and ε� 1 are required. For modestly large
values of ξ, there is room to have 0 < nT . O(1) while these requirements are satisfied.
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r = 0.20

r = 0.15

r = 0.10

2.5 3.0 3.5 4.0 4.5

0.0

0.2

0.4

0.6

0.8

1.0

Ξ

D
Χ

Figure 3. Chirality of the observed GWs ∆χ, defined in (3.10), as a function of the particle production
parameter ξ, when Pζ is fixed to the measured amplitude, and for three different values of r. The
value of ∆χ interpolates from 0 at small ξ (negligible sourced GWs) to 1 at large ξ (dominant sourced
GWs).

5 From tensor spectrum to axion potential

In this section we explicitly show how within this mechanism the potential of the pseudo-
scalar ψ can be reconstructed from the GW spectrum. The tensor spectrum is given by (3.6),
which is valid for ξ & 1. This leads to the following algebraic equation for ξ as a function of
N ≡ ln a,

e4πξ

ξ6
= 2.3 · 106 M

2
Pl

H2

[
π2M2

Pl

2H2
PGW(HeN )− 1

]
. (5.1)

Since H is a function of N , the right hand side of (5.1) is an already known function of N .7

By solving the algebraic equation (5.1) with respect to ξ, we thus obtain ξ as a function of
N , ξ = ξ(N).

We now show that the axion potential U(ψ) can be reconstructed from ξ(N) and H(N).
First, from the definition (3.1) and (3.2) of ξ and δξ, we have

˙̄ψ = 2fHξ , (5.2)

¨̄ψ = 2fH2ξ (δξ − ε) , (5.3)

where δξ = d ln ξ/dN can be considered as a function of N . By substituting (5.2) and (5.3)
to (2.4), we obtain

U ′(ψ̄) = −2fH2ξ (3 + δξ − ε) . (5.4)

7We stress that we are working in a regime in which the pseudo-scalar ψ and the vector quanta give a
negligible contribution to the background dynamics and to the scalar perturbations. Here we are working
in the hypothesis that the scalar perturbations allow us to reconstruct the inflaton potential, and therefore
H (N), with the required accuracy.
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By using (5.2) and (5.4), we can express dψ̄/dN and dU/dN as functions of N . By integrating
them with respect to N , we obtain ψ̄ and U as functions of N ,

ψ̄ = ψ̄(N) ≡ 2f

∫
ξ dN ,

U = U(N) ≡ −4f2

∫
H2ξ2 (3 + δξ − ε) dN . (5.5)

Finally, the elimination of N from U = U(N) and ψ̄ = ψ̄(N) results in the reconstruction of
the pseudo-scalar potential U = U [N(ψ̄)] = U(ψ̄).

Eqs. (5.5) define the axion potential U as a single-valued regular function of the pseudo-
scalar ψ̄. This requires that H, d lnH/dN , ξ and d ln ξ/dN are regular. On the other hand,
eq. (5.1) is valid for ξ & 1, and in such cases, eq. (5.1) can be inverted to give ξ as a
single-valued function of N . This then requires

PGW(k) ≥ PGW,0(k) [1 + 0.61PGW,0(k)] , (5.6)

where PGW,0(k) ≡ 2H2/(π2M2
Pl)
∣∣
k=aH

is the contribution from vacuum fluctuations. Since
the second term in the square brackets is much smaller than unity, this condition basically tells
that the tensor spectrum must be larger than the contribution from the vacuum fluctuations
in order for ξ(N) to be reconstructable. Once ξ(N) is reconstructed under this condition,
the regularity of ξ and d ln ξ/dN is automatic, provided that the tensor spectrum PGW(k) is
a smooth function of k and that H is a smooth function of N .

We have shown that the pseudo-scalar potential U(ψ) can be reconstructed, given the
GW spectrum PGW (and the scalar spectrum Pζ , to find H(N)). This reconstruction in
practice relies on the experimental sensitivities to deviation from the single-field relation
r = 16ε. The right-hand side of (5.1) would vanish if this relation holds exactly (recall that
in our model the scalar spectrum has been shown to be standard by (3.7), i.e. Pζ ' P), and
ξ(N) could not be obtained. Thus the reconstruction is possible only if the relation r = 16 ε
is found to be violated beyond the experimental precision.

In the following subsections, we consider some instructive examples. For illustrative
purposes, a spectrum of the tensor-to-scalar ratio r for each of the examples is shown in
figure 4. As seen from the figure, a blue spectrum between the Planck satellite and BICEP2
scales can easily be obtained in this mechanism, and the possible tension between the two
experiments can be accounted for. Regarding the growth in the blue curve in figure 4,
illustrating Example I, we caution that we are assuming that the δξ remains constant at the
CMB scales, but we are not implying that the growth continues indefinitely at smaller scales.8

We verified that these examples respect the non-gaussianity limit discussed in section 3.

5.1 Example I: constant δξ and continuously growing r

In this example, we consider constant ε(N) and δξ(N), i.e.,

ε = const. , δξ = const. , (5.7)

leading to
H(N) = Hc e−ε(N−Nc) , ξ(N) = ξc eδξ(N−Nc) . (5.8)

8We assume that the growth of the blue solid curve in figure 4 is cut off for the modes of smaller scales.
This can be done, for example, once the pseudo-scalar field ψ starts oscillating at its potential minimum,
which effectively makes the production inefficient.
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Figure 4. Two illustrative spectra of the tensor-to-scalar ratio. The blue curve corresponds to
the case in Example I, and the red dashed curve to the case in Example II. See the corresponding
subsections for the details. The Planck upper bound r < 0.11 at k = 0.002 Mpc−1 and the BICEP2
measurement r = 0.20+0.07

−0.05 at k = 0.0057 Mpc−1 (` ≈ 80) are also shown.

The corresponding tensor spectrum is

PGW(k) =
2H2

c

π2M2
Pl

(
k

kc

)− 2ε
1−ε

1 + 4.3 · 10−7 H2
c

M2
Plξ

6
c

(
k

kc

)− 2(ε+3δξ)

1−ε
exp

4πξc

(
k

kc

) δξ
1−ε

 ,

(5.9)
where kc ≡ acHc.

In this case, from (5.5) we obtain

ψ̄(N) = ψc + ∆ψc e
δξ(N−Nc),

U(N) = Uc + ∆Uc

[
1− e2(δξ−ε)(N−Nc)

]
, (5.10)

where ψc and Uc are integration constants, and

∆ψc ≡
2ξcf

δξ
, ∆Uc ≡

2ξ2
cf

2H2
c (3 + δξ − ε)
δξ − ε

. (5.11)

By eliminating N we obtain

U(ψ̄) = Uc + ∆Uc

1−
(
ψ̄ − ψc
∆ψc

) 2(δξ−ε)
δξ

 . (5.12)

An illustrative shape of this reconstructed U(ψ̄) is shown in figure 5, with ε = 10−5 and
δξ = 0.012. The value of nT = 0.6 at the domination of the sourced GWs is chosen to give
r = 0.2 at the BICEP2 scale and to satisfy the upper bound from the Planck. This choice
of parameters gives ξc = 4.6 and corresponds to the blue solid curve in figure 4. The COBE
normalization fixes Hc = 1.4 · 10−6MPl, and the value of kc is fixed at the BICEP2 scale,
kc = 0.0057 Mpc−1.
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Figure 5. Reconstructed pseudo-scalar potential for constant ε = 10−5 and δξ = 0.012 in Example I,
corresponding to the blue solid curve in figure 4. The horizontal axis is (ψ̄−ψc)/∆ψc and the vertical
axis is (U − Uc)/∆Uc.

5.2 Example II: Gaussian ξ(N) and bump in r

In the second example, we again consider ε(N) as a constant, while adopting the Gaussian
ansatz for ξ(N), that is,

ε = const. , ξ(N) = ξc e−α
2(N−Nc)2 , (5.13)

where ξc (> 0), α (> 0) and Nc are constants. This again leads to

H(N) = Hc e−ε(N−Nc) , (5.14)

and now the tensor spectrum is

PGW(k)1 =
2H2

c

π2M2
Pl

(
k

kc

)− 2ε
1−ε
[
1 + 4.3 · 10−7 H

2
c

M2
Pl

(
k

kc

)− 2ε
1−ε e4πξ̃(k)

ξ̃(k)6

]
, (5.15)

where kc ≡ acHc and

ξ̃(k) = ξc exp

{
−
[

α

1− ε
ln

(
k

kc

)]2
}
. (5.16)

This tensor spectrum has a peak around k = kc.
In this case, from (5.5) we find

ψ̄(N) = ψc + ∆ψg erf [z(N)] ,

U(N) = Uc + ∆Ug

{
1− e−2z(N)[z(N)+ ε

α ]

−3
√

2π

2α
e
ε2

2α2

[
erf

(√
2 z(N) +

ε√
2α

)
− erf

(
ε√
2α

)]}
, (5.17)
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Figure 6. Reconstructed pseudo-scalar potential for the ansatz (5.13), corresponding to the red
dashed curve in figure 4. The parameters are chosen to be ε = 2.3 · 10−3, ξc = 3.6, and α = 0.11 for
illustration. The horizontal axis is (ψ̄ − ψc)/∆ψc and the vertical axis is (U − Uc)/∆Uc.

where ψc and Uc are integration constants, erf(x) = 2√
π

∫ x
0 e
−t2dt is the error function, and

∆ψg ≡
√
πξcf

α
, ∆Ug ≡ 2ξ2

cf
2H2

c , z(N) = α(N −Nc) . (5.18)

Inverting the relation ψ̄ = ψ̄(N) to N = erf−1
(
ψ̄−ψc
∆ψg

)
, and substituting it to U(N), we can

reconstruct U(ψ̄).

An illustrative shape of the reconstructed U(ψ̄) corresponding to the red dashed curve
in figure 4 is shown in figure 6, with ε = 2.3 · 10−3, ξc = 3.6 and α = 0.11. The COBE
normalization fixes Hc = 2.1 · 10−5MPl, and the value of kc is again fixed at the BICEP2
scale, kc = 0.0057 Mpc−1.

6 Summary and discussions

We have studied gravitational waves sourced by particles produced during inflation. Our
model consists of a pseudo-scalar field that is subdominant during and after inflation, and
a U(1) gauge field in a hidden sector. Gauge field particles are produced through an axial
coupling as the pseudo-scalar rolls its potential. The stress energy tensor of produced particles
then acts as a source term for the Einstein equation and generates gravitational waves. We
have shown that gravitational waves generated in this way can acquire a blue spectrum, while
the scalar spectrum is kept standard, and can be responsible for reconciling the (possible)
tension between the recent BICEP2 result and the Planck constraints.

The standard relation r = 16ε and the consistency relation nT = −r/8 hold for vacuum
fluctuations in any single-field slow-roll inflationary models. However, both relations do
not necessarily hold in more general setups. In the model studied in the present paper, as
shown in figure 1, the amount of deviation from the standard relation is parameterized by
the quantity ξ that roughly measures the change of the pseudo-scalar in one Hubble time,
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weighted with the axial coupling constant. This is what makes it possible for the model
under consideration to generate a blue tensor spectrum (see eq. (4.2)).

This mechanism can be combined with any inflationary models, provided that an in-
flaton (or another field, such as a curvaton) can produce an observationally viable spectrum
of scalar perturbations and that the amplitude of tensor perturbations from vacuum fluctu-
ations is not too large. This would help reconcile many low-scale inflationary models with
observational data if the large tensor-to-scalar ratio reported by the BICEP2 is confirmed in
the future.

Our scenario can be discussed generally in a field-theoretical context though it also finds
a natural home in string theory. Axion-like particles are ubiquitous in string compactifica-
tions as they arise from Kaluza-Klein reduction of various antisymmetric fields on cycles of
the internal space. Interestingly, the backreaction constraint of our scenario (see eq. (3.4))
requires the axion decay constant to satisfy f/MP & 10−4 which falls into the typical range
one finds in string theory models, especially those with Grand Unified Theories like phe-
nomenology [69–71]. The hidden nature of the axion and U(1) gauge field can be ensured by
imposing some topological constraints on the underlying string construction. For example,
if the inflaton and the hidden U(1) are realized on the worldvolume of different D-branes,
these constraints amount to requiring that the axion does not serve as a portal between the
two sectors (unlike the Stückelberg portal recently investigated in [74, 75]). It would be
interesting to find concrete string models realizing our scenario.

One of the robust predictions of the model is parity violation in tensor perturbations.
If the sourced gravitational waves are dominant over those from vacuum fluctuations, the
tensor spectrum is almost maximally parity violating. It is thus expected that Planck (with
upcoming B mode polarization data) and Spider will be able to observe parity violation
in the sky at the 1σ level. Another important prediction is non-Gaussianity in the tensor
perturbations. While the predicted non-Gaussianity is consistent with constraints to date,
the Planck experiment (with upcoming B mode polarization data) can start probing this
mechanism by the non-Gaussianities in tensor perturbations.

We have argued that gravitational waves sourced by particle production can save some
low-scale inflationary models that would otherwise be in conflict with the high tensor-to-
scalar ratio. Similarly, some early universe scenarios alternative to inflation appear to be in
conflict with the high tensor-to-scalar ratio and such a situation may also be ameliorated by
particle production followed by generation of gravitational waves. Detailed investigation in
concrete setups seems worthwhile as a future work.
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