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Geometric phase and band inversion in periodic
acoustic systems
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The geometric-phase concept has far-reaching implications
in many branches of physics1–14. The geometric phase that
specifically characterizes the topological property of bulk
bands in one-dimensional periodic systems is knownas theZak
phase15,16. Recently, it has been found that topological notions
can also characterize the topological phase of mechanical
isostatic lattices13. Here, we present a theoretical framework
and two experimental methods to determine the Zak phase
in a periodic acoustic system. We constructed a phononic
crystal with a topological transition point in the acoustic band
structure where the band inverts and the Zak phase in the
bulk band changes following a shift in system parameters. As
a consequence, the topological characteristics of the bandgap
change and interface states form at the boundary separating
two phononic crystals having di�erent bandgap topological
characteristics. Such acoustic interface states with large
sound intensity enhancement are observed at the phononic
crystal interfaces.

We use a simple photonic crystal (PC) system to demonstrate
geometric phase (GP) effects and the existence of topological
transition points in acoustic systems. The experimental set-up
is shown in Fig. 1a. The PC is a cylindrical waveguide with
periodically alternating cross-sectional areas. Each unit cell has
two wider tubes (tube-A) of length (1/2)dA and inner radius
rA=2.4cm, sandwiching a narrower tube-B of length dB and inner
radius rB=1.5cm. The tubes are filled with air (mass density
ρ=1.3kgm−3, speed of sound v = 343 m s−1) and made of hard
plastics to ensure that the inner surfaces meet the sound hard-
boundary condition. An example of a unit cell, with dA= 3.0 cm
and dB= 5.5 cm (we refer to this configuration as ‘S1’), is shown
in Fig. 1b–d, together with simulated pressure eigenfunctions
of the lowest three eigenmodes at k = 0. Their corresponding
eigenfrequencies are marked by red dots in Fig. 1e, which shows
the acoustic band structure17–19. It is clear that the lower two modes
have their pressure gradient along the propagation direction k
(Fig. 1b,c) andnegligible pressure variation along the cross-sectional
directions. These two modes represent the two band-edge states of
the second bandgap between the second and third bands, as shown
by black curves in Fig. 1e. The mode shown in Fig. 1d has a clear
pressure variation in the cross-sectional planes. The dispersion of
this mode is marked by the green line in Fig. 1e. For symmetry
reasons, this mode cannot be excited with a plane wave, and is
therefore not considered in the following discussions.

The two longitudinal modes can be further labelled as even
(Fig. 1b) and odd (Fig. 1c) with respect to the centre of tube-
A at k=0. The eigenfrequencies of these two band-edge states

can be tuned by varying 1d ≡ (dA − dB)/2 (while keeping rA, rB
and the total length a= dA+ dB constant). Their eigenfrequencies
as a function of 1d are plotted in Fig. 2. The results show
that it is possible to tune the eigenfrequencies of the two
band-edge states to cross each other, with accidental degeneracy
occurring at1d=0.49 cm. The gap closing and reopening and the
corresponding switching of the two band-edge states are analogous
to the band inversion process in electronic systems20–22, with
1d=0.49cm corresponding to a topological transition point in our
acoustic system.

The parallel can be further seen by calculating the Zak phases
of our PC systems. Originally defined for electronic systems, the
Zak phase is a special type of Berry phase in one-dimensional (1D)
periodic systems15,23. We extend the concept of the Zak phase to
acoustics as follows. The GP for the nth isolated band is given by

θZakn =

∫ π/a

−π/a

[
i
∫
unitcell

1
2ρv2

drdxu∗n,k (x ,r)∂kun,k (x ,r)
]
dk (1)

where x is the axial coordinate, r represents positions in a cross-
sectional plane, ρ is the density of air, v is the speed of sound in
air and un,k (x ,r) is the periodic in-cell part of the normalized Bloch
pressure eigenfunction of a state in the nth band with wavevector
k—that is, Pn,k (x ,r)= un,k (x ,r) exp(ikx). The factor 1/

(
2ρv2

)
is

the weight function of an acoustic system and is a constant in our
system. On the other hand, with the pressure field being uniform
in the lateral dimension, our system can be regarded as a quasi-
1D system17–19. The Zak phase of an isolated band in such systems
can also be obtained from the symmetry properties of band-edge
states15,23. As the unit cell has mirror symmetry with respect to
its central cross-sectional plane, the Zak phase can have only two
values: 0 or π (see Supplementary Information I). If two states at the
centre and edge of the Brillouin zone belonging to the same band
have the same symmetry—that is, both even or odd with respect to
the central plane of tube-A—then the Zak phase of this band is 0.
Otherwise, the Zak phase is π.

We next investigate four different PC configurations, with each
having the same unit cell length a= 8.5 cm but a different1d .
These PC configurations are denoted as S1, S2, S3 and S4, and
their corresponding 1d values are indicated by vertical dashed
lines in Fig. 2. Specifically, 1d=−1.25 cm for S1, 2.25 cm for S2,
−0.25cm for S3, and 0.49cm for S4. Figure 3 shows the calculated
band structures of these four PCs. The Zak phases of each PC are
calculated numerically using equation (1) and are labelled in red
in Fig. 3. θZak2 =π for the second band of both S1 and S3, whereas
θZak2 = 0 for the second band of S2. The second bandgap of S4
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Figure 1 | 1D phononic crystal interface system. a, Experimental set-up. The green arrow marks the position of the interface separating the PC with
configuration S1 on the left and the PC with configuration S2 on the right. The large white arrow shows the incidence direction. b–d, Simulated pressure
eigenfunctions of an S1 unit cell. b, Lowest even mode, located at 3,341 Hz. c, Odd mode, located at 4,421 Hz. d, First transverse mode, located at 4,527 Hz.
Red/blue colour indicates positive/negative local pressure. Eigenfunctions of the PC configurations S2, S3 and S4 are qualitatively similar, but have di�erent
eigenfrequencies. e, Band structure of S1, where the black lines represent fundamental modes and the green line a higher order mode. Red dots mark the
eigenfrequencies shown in b–d. The higher order mode marked by the green line is a ‘deaf mode’ that cannot be excited by the incident plane wave.
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Figure 2 | Topological transition in 1D PC system. The eigenfrequency of
eigenstates bounding the second bandgap (coloured regions) at the centre
of the Brillouin zone as a function of1d=(dA−dB)/2. The red and black
curves correspond to even and odd modes (with respect to the central
cross-sectional plane of tube-A). As the length di�erence1d increases, the
second bandgap closes and reopens, accompanied by the crossing of two
eigenmodes. This process is analogous to the band inversion process; thus
the second bandgaps are marked with di�erent colours to show that they
have di�erent topological characteristics. Four di�erent configurations are
considered, with the length di�erence1d indicated with vertical dashed
lines. It can be seen that the second bandgaps of configurations S1 and S3
are topologically identical, and di�er from that of S2. The second bandgap
of S4 closes at the centre of the Brillouin zone.

closes at the zone centre where the two modes become degenerate
at k= 0 (Fig. 3c). This marks a topological transition point. This
is also shown in Fig. 2, where a gap closing and reopening process
can be seen if the parameters of the system are tuned continuously
from those of S1 or S3 to those of S2, passing through a transition
point at 1d=0.49cm. Furthermore, the system’s mirror symmetry
is preserved when we vary 1d , and none of the first bandgaps
of the four PCs closes during this process. It follows that the first
bandgaps of these four systems remain topologically identical. Note
that the topological property of a bandgap is determined by the
summation of the Zak phases of all the bands below this gap, but
has no dependence on the properties of the higher bands24,25. For S1
and S3, θZak2 =π, and so the topological characters of their first and
second bandgaps are identical. In contrast, θZak2 =0 for S2, indicating

that the second bandgap of S2 is topologically different from that of
S1 or S3.

The determination of the GP has been theoretically proposed
and experimentally done in cold atom16,26 and photonic systems27,28.
In our acoustic system, we follow a different scheme to determine
the GP experimentally. The bulk band GP can be determined
by measuring the reflection phase φ at the boundary of the PC.
In a quasi-1D system, φ of the reflected pressure field of a PC
for frequencies inside the bandgap is a manifestation of its Zak
phase24,25. The reflection phase satisfies φ ∈ {−π, 0} or φ ∈ {0, π}
(mod 2π) inside a bandgap, depending on the topological character
of that gap25. The topological character of a gap is related to the
symmetry types (even or odd) of the band-edge states below or
above this gap, while the Zak phase yields the relationship between
the two band-edge states of a band. Thus, the Zak phase of a
bulk band and the topological characters of the two bandgaps
sandwiching this band can be related to each other through the
symmetry types of the band-edge states. Owing to the inversion
symmetry that is inherent in the system under consideration, the
geometric Zak phase can take only two values: either 0 or π (see
Supplementary Information I). It has been shown rigorously that
the relationship between sgn(φ) of the first and second bandgaps
and the Zak phase of the second band is given by24.

sgn(φ1)/sgn(φ2)=−exp(iθZak2 ), with θZak2 =0 or π (2)

where the subscripts indicate the number of bandgaps. In other
words, measuring the signs of the reflection phases of the two
bandgaps sandwiching an isolated bulk band provide sufficient
information to determine the Zak phase of that band. If the signs are
the same, the Zak phase of that band isπ. Otherwise, it is zero. This is
the first method we use to measure the Zak phase of the bulk bands.
For the measurement, we add a homogeneous waveguide with an
identical inner radius to that of tube-A between the loudspeaker
and the PC. Figure 4a shows a schematic drawing of the set-up used
to measure the reflection phase. The measured fields in the second
common bandgaps of S1, S2 and S3 are shown in Fig. 4b, together
with that of a flat sound hard surface (steel plate) for reference. The
reflection fields of S1 and S3 seem to be ‘advanced’ with respect to
the steel plate, whereas the reflection field of S2 seems to be ‘delayed’.
Thus φ2 values for the two topologically identical PCs—that is, S1
and S3—have the same sign, whereas φ2 for S2 has the opposite sign.
In comparison, the measured reflection phases of the first common
bandgaps, φ1, of all three PCs have the same sign (Fig. 4c). Excellent
agreement with the theoretical prediction is seen.
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Figure 3 | Topological transition with Zak phase changes. a–d, The band
structures (black lines) of configurations S1, S3, S4 and S2, respectively.
The regions in magenta and the region in cyan mark bandgaps with
di�erent topological characteristics. The first bandgaps of S1–S4 (all in
magenta) are topologically identical, as are the second bandgaps of S1 and
S3 (also in magenta). The second bandgap of S2 is topologically di�erent
from those of S1 and S3. The topological properties of bandgaps are related
to the Zak phases of bulk bands below these gaps. The Zak phase of the
second band is labelled in red. The second bands of S1 and S3 have Zak
phase π whereas the second band of S2 has Zak phase zero, which
indicates the existence of a transition point. S4 is at the transition point,
where the second bandgap closes at the centre of the Brillouin zone.

To further corroborate our conclusion, we use a second method
to determine the Zak phase: by directly measuring the symmetry
of the band-edge states23,25. Direct measurement of bulk states is
relatively straightforward in an acoustic wave system. We made
point-by-point measurements of the pressure distribution inside a
unit cell in the bulk PC; the experimental results are shown in detail
in the Supplementary Information II. Simply put, we found that for
S1 and S3, the acoustic modes at k= 0 and k=π/a have different
symmetries in the second band, meaning that the Zak phase must
be π (ref. 24). For S2, the acoustic modes at k= 0 and k= π/a
have the same symmetry in the second band, meaning that the Zak
phase must be 0 (ref. 24). These results agree with the prediction of
equation (2) using the reflection phase measurements. To the best
of our knowledge, this is the first experimental determination of GP
in the band structure of an acoustic system.

Although Zak phases are geometric properties of the bulk
bands, they have important consequences at interfaces. With the
bulk Zak phases of the second band determined, we can predict
the presence or absence of interface modes at the boundary
of different PC configurations24. In our system, there must be
an interface mode with a frequency inside the second common
bandgap at the boundaries separating S1 and S2, and S3 and
S2, which differ in their topological properties. In contrast, no
such mode can exist in S1 and S3. A simulated distribution of
the pressure at the PC interface between S1 and S2 is shown
in Fig. 5a, where the green arrow indicates an interface mode
predicted from bulk band GP considerations. In Fig. 5b–d, we
show respectively the experimentally measured pressure response
spectra at the interfaces of configurations S1+ S2, S3+ S2 and
S1+ S3, together with the corresponding numerical simulations.
Sharp transmission peaks are clearly observed for S1+ S2 and
S3+ S2 at 3,836Hz and 3,814Hz respectively (Fig. 5b,c). These
frequencies fall inside their second common bandgap. Such a peak
is absent for S1+ S3 (Fig. 5d). These observations are consistent
with predictions. For S1+ S2, we further measured the spatial
distribution of the pressure field at the transmission peak frequency
of 3,836Hz. The result is shown in Fig. 5e. It can be seen that
the pressure amplitude decays rapidly away from the PC interface
(chosen to be x = 0)—a clear sign that the transmission peak
appeared as a result of the interface state (details can be found
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Figure 4 | Reflection phase as a measure of the Zak phase. a, Schematic
drawing of the system set-up for measuring the reflection phase, where the
6 cm range of a measurement tube is shown. b, Self-normalized reflected
pressure field measured at 3,836 Hz—that is, inside the second bandgaps
of the S1, S2 and S3 PCs. This is also the interface state eigenfrequency of
configuration S1+ S2. c, The same quantity measured at 2,100 Hz, which is
inside the first bandgaps of all three PCs. Red and blue squares are for S1
and S2, respectively, whereas green triangles are for S3. As a reference, the
reflected pressure field of a steel plate is also shown as black circles. Solid
curves in b and c of corresponding colours are numerically fitted (with a
sine function) to the measured data. In b, the reflected phases for S1 and S3
have the same sign, which is opposite to that for S2. Phases of all three PCs
in the first bandgap, however, have the same sign as shown in c. This is
clear evidence that the second bandgaps of S1 and S3 share common
topological properties, whereas the bandgap of S2 has a di�erent set of
topological properties. Error bars in b,c are determined based on the
uncertainty in measurement position due to finite size of the microphone.

in Supplementary Information III). Recently, some zero-frequency
mechanical floppy modes similar to the interface states found here
have been reported in certain isostatic lattices—that is, lattices
comprising mass points connected by central-force springs on the
verge of mechanical instability. These floppy modes are localized
at the domain wall between two isostatic lattices with distinct
topological properties13.

Knowledge of the bulk band GP in a PC allows us to create
interface states which in turn have useful implications. For example,
we can think of it as a recipe for acoustic field enhancement.
Owing to the highly confined spatial characteristics, the sound
intensity can build up at the interface states. As an example, we
show the amplification of sound intensity using the interface of
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Figure 5 | Existence of interface states in topologically di�erent PC
systems. a, Simulated pressure field of the interface state. b–d, Pressure
response spectra at PC interfaces. The system configurations are S1
(left)+ S2 (right) (b), S2+ S3 (c) and S1+ S3 (d). All PCs have ten unit
cells. Red and black curves indicate experimental and numerical results,
respectively. In b,c, sharp transmission peaks near 3.8 kHz inside the
common gap indicate interface states, which are a consequence of the
topological di�erence between S1/S3 and S2. In contrast, no such state is
observed in d. This is clear evidence that S1 and S3 are topologically
identical. e, Spatial distribution of the amplitude of the pressure field of the
S1+ S2 system (ten units each) at 3,836 Hz, with the interface located at
x=0. Red and black curves indicate experimental and numerical results,
respectively. Good agreement between experiments and simulations is
seen. f, Ratio (τ ) of the measured sound intensity at the interface state to
the measured sound intensity in the free-space sound field. An
amplification by a factor of over 3,400 is observed.

the S1+S2 system in Fig. 5f. The enhancement ratio τ =|Pc|
2
/|Pf|

2

exceeds 3,400, where Pc is the pressure at the PC interface and Pf
is the pressure in free space. Note that, in this measurement, the
PC system is excited directly at the interface (see Supplementary
Information III). The enhancement ratio can be further increased if
the loss and leakage of sound are reduced in our system. Acoustic
field enhancement has obvious applications where strong sound
intensities are required, such as sound detection29 and biomedical
imaging30: a PC system with such an interface state can be placed in
close proximity to a sensor/receiver. The local sound intensity can

be amplified at the interface, leading to increased sensitivity of the
device at the targeted frequency.

We have shown that a periodic acoustic system is an excellent
platform to realize advanced concepts such as band inversion and
topological transition. The experimental samples can be made with
minimal cost and the results are intuitively easy to understand.
The acoustic system is rather unique in the sense that reflection
phases at boundaries can be measured straightforwardly and, at the
same time, the ‘field’ quantity (which is the sound intensity) can be
measured point-by-point inside the sample. These attributes made
possible the straightforward determination of the geometric phase
of a band. The present results pertain to systems that are periodic
in one direction. As it is technically feasible to use 3D printing to
fabricate periodic acoustic crystals that are periodic in two or three
dimensions, the periodic acoustic system could be readily employed
to explore and determine the relationship between the symmetry
of the eigenmodes, geometric phases of the bands and the bulk-
interface correspondence in higher dimensions31.

Methods
Experiments. All PC samples were fabricated using 3D printing. Polylactic acid,
a kind of hard plastic, was the material chosen to construct the unit cells. The
tube walls were printed with sufficient thickness to ensure a suitable rigidity to
reproduce a sound hard boundary. A series of small side ports were opened to
house the microphone for the measurement of the spatial pressure distribution
(Fig. 5e). The ports were sealed with air-tight putty when not in use. The PCs
were 3D-printed one unit cell at a time, and were connected with super glue, with
the joints further sealed with vacuum grease to minimize loss. S1, S2 and S3 each
consisted of ten unit cells. For measurements of the pressure response spectra, a
pulse with a central frequency of 3,840Hz was generated with an arbitrary
waveform generator (Agilent 33220A). The pulse was fed into a loudspeaker as
the sound source. In this case the system was excited from its end. The pressure
signals were picked up at the PC interface, using a 1/4-inch microphone (PCB
Piezotronics Model-378C10), and then recorded with a digital oscilloscope
(Agilent DSO6012A). The measurements were typically repeated up to 256 times
with a 0.5 s repetition period, and then averaged to minimize random errors and
obtain a highly stable readout. A Fourier transform was then performed to obtain
the pressure response as a function of frequency. The relatively shallower depths
of bandgaps in Fig. 5b–d are attributed to the noise level of our set-up. However,
this does not affect our arguments and conclusion.

For the measurement of the spatial pressure distribution and sound intensity
amplification, a small port was opened at the interface and connected to the
loudspeaker. The loudspeaker was driven by a lock-in amplifier (Stanford
Research SR850) to generate a monochromatic signal with the same frequency as
the interface state (3,836Hz). The pressure field was manually mapped by moving
the microphone across each of the side ports on the PCs. The measured signal
was also detected by the same lock-in amplifier. With a sufficient time constant,
the readout is highly stable. The sound intensity amplification was determined by
removing the PC interface while keeping the sound source and the microphone
in place. For the measurement of the reflection phase, each system was also
excited with a monochromatic sound (3,836Hz for the second bandgap, and
2,100Hz for the first bandgap). The pressure field, together with the relative
phase (with respect to a reference signal), was then manually mapped. In
measurements of the spatial pressure distribution, the finite size of the
microphone (the diaphragm diameter is ∼4mm) introduces an uncertainty in
position ≤2mm, which then propagates into the measured pressure. Error bars in
experimental data were calculated based on this uncertainty.

Simulations. All simulations were performed using the ‘Acoustics module’ of
COMSOL Multiphysics, a commercial finite-element solver package. A full
three-dimensional geometry was used. Air (density ρ=1.3kgm−3, speed of sound
v=343ms−1) is chosen as the fluid medium. Eigenmode calculations were
carried out to find the pressure eigenfunctions of the PC unit cells as well as their
band structures. Frequency domain calculations were performed to obtain the
pressure response spectra. To calculate the Zak phase, we used a discretized form
of equation (1) as follows:

θZakn =−Im
N∑
i=1

ln
[

1
2ρv2

∫
unit cell

drdx u∗n,ki (x ,r)un,ki+1 (x ,r)
]

(3)

where we have selected N points from k=π/a to k=−π/a. Equation (3) gives
the Zak phase in the limit 1ki=ki+1−ki→0. The periodic gauge was applied in
the calculation of the Zak phase, implying that Pn,k=π/a(x ,r)=Pn,k=−π/a(x ,r) for the
two eigenmodes at the edges of the Brillouin zone. For each isolated band, we
first calculated the pressure eigenfunction using the eigenmode analysis module
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of COMSOL, and then normalized the eigenfunction with the orthogonal
relationship

∫
unit cell drdx(1/2ρv

2) |Pn,k (x ,r)|2=1 to obtain the periodic-in-cell
part of the eigenpressure un,k(x ,r).
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