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Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active
field driven by scientific discoveries and diverse application potentials. This review traces the development of
acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally
resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter
values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include
compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the
new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-
inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians.
Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as
arising from the collective manifestations of constituent resonating units, but they continue to extend wave
manipulation functionalities beyond those found in nature.
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INTRODUCTION

The study of electromagnetic and acoustic waves is an endeavor that
dates back centuries. Starting about three decades ago, the incipient
stage of a revolution has occurred in this classic field, propelled by
both theory and experiments, which demonstrated the feasibility of
realizing man-made materials with wave manipulation functionalities
beyond the defined limits of those found in nature. Initially inspired
by an analogy with the quantum mechanical band theory of solids in
which electronic waves interact with a periodically arranged atomic
lattice to form energy bands separated by bandgaps, photonic and
phononic crystals were proposed theoretically (1–4) and realized
experimentally (5–7). To be effective, the lattice constants of photonic
and phononic crystals have to be on the order of the relevant
electromagnetic and elastic/acoustic wavelength. Owing to the large
wavelength of acoustic waves in the audible regime ranging from
centimeters to meters, phononic crystals were mostly realized in the
ultrasonic regime, because lower frequencies would require rather
bulky samples (6). The emergence of acoustic metamaterials not only
resolved the sample size problem but also introduced new function-
alities not found previously.

The term “metamaterials” was originally coined to denote a class of
structured composites whose wave functionalities arise as the collective
manifestations of its locally resonant constituent units. Because the
resonant frequency of a unit depends only on its inertia (for example,
the mass) and the restoring force (for example, that of the spring), the
relevant wavelength at the resonant frequency can be orders of magni-
tude larger than the physical dimension of the resonant unit. This
subwavelength characteristic is therefore a common feature of all
types of metamaterials, whose definition has now broadened to include
subwavelength structures with functionalities not found in nature.
This review would consider the term “metamaterials” in such a
broader sense.

Acoustic metamaterials are useful in manipulating acoustic waves
that are governed by Newton’s law of motion, the fluid continuity
equation, and the thermodynamic equation of state (for adiabatic pro-
cess). The acoustic wave equation in a homogeneous medium absent
of a source is given by

∇2P � r
k
∂2P
∂t2

¼ 0

where P is pressure and the two constitutive parameters are the mass
density r and the bulk modulus k. The speed of sound v is given by

ffiffiffiffiffiffiffiffi
k=r

p
.

In an acoustic metamaterial, the two constitutive parameters can take
unusual values when considered in the effective medium sense (for
example, negative, zero, or close to divergent). Such values imply
acoustic wave characteristics that are usually not associated with ordi-
nary composites. However, if such unusual features arise from local
resonances of the constituent components, then they are “narrow
band” in character (that is, occurring only in the vicinities of the res-
onant frequencies).

Acoustic waves in fluids are longitudinal scalar waves. In contrast,
electromagnetic waves are transverse vector waves with two polariza-
tions. However, an analogy between the two can still be made easily,
owing to their wave equations having the same mathematical form. The
two constitutive parameters can be mapped as r → D and k → m−1,
where D and m are dielectric constant and magnetic permeability, re-
spectively. This also indicates that the two types of waves share much
(but not all) of the underlying physics, which is the reason that
electromagnetic/optical metamaterials and the related intriguing phe-
nomena [such as negative refraction (8, 9), superlensing (10), and
cloaking (11, 12)] have developed hand in hand with their counterparts
in acoustic metamaterials.

In what follows, we first delineate the local resonant structures that
give rise to the unusual values of effective mass density and bulk
modulus. Decorated membrane resonators (DMRs) are a special class
of metamaterials that were chosen to demonstrate the unusual values
of effective mass density and bulk modulus dispersions and their
underlying physics. The diverse functionalities of acoustic meta-
materials will then be explored, including superresolution, cloaking,
phase manipulation using space-coiling structures, absorption, and
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moving media, nonlinearity, and graphene-inspired acoustic com-
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SPRING-MASS MODEL AND DYNAMIC EFFECTIVE MASS

A composite that allows relative motions between the constituent
components can display an inertial response that differs from that
of a rigid body. A familiar example is the sloshing of water inside a
bucket, which makes it difficult to carry. To mathematically clarify this
effect, we consider the dynamics of a simple one-dimensional coupled
oscillator under an external harmonic excitation force F(w), where w
is the angular frequency. An illustration of this model is shown in
Fig. 1A. If mass M2 is considered to slide inside the cavity formed
by massM1 without friction, then the total force exerted onM1 is given
by F(w) + K(x2 − x1), where the second term arises from the contact
point where the spring is fixed on mass M1, and x1 and x2 are the
displacements of M1 and M2, respectively. Mass M2 can undergo har-
monic oscillation, whose equation of motion is given by M2€x2 ¼
�Kðx2 � x1Þ, where the double overdot denotes a second-order time
derivative. By equating €xð1;2Þ with −w2x1,2, one can solve x2 in terms of
x1 so that, in terms of the displacement x1, we have

F ¼ M1 þ K
w2
0 � w2

� �
€x1

where w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M2

p
is the local resonance frequency of M2. If an

observer cannot see the inner structure of this system, then the system’s
“apparent” inertia acquires a frequency dispersion

M wð Þ ¼ M1 þ K
w2
0 � w2

as plotted in Fig. 1B. The system’s inertial response MðwÞ can deviate
significantly from its static value. It is therefore reasonable to describe
the system with a dynamic effective mass, which allows Newton’s
second law to be satisfied in a new form: F ¼ MðwÞ€x1. The above
discussion suggests that when there are relative motions between the
constituent components in a composite, then one should define a
dynamic mass density �r as

�r ¼ 〈 f 〉=〈€x〉 ð1Þ

where f is the force density, x is the sample (unit cell) displacement,
and the angular brackets denote averaging over the surface area of the
sample (or unit cell) under consideration.

More thorough treatments regarding the effective mass of similar
spring-mass systems can be found in Milton and Willis (13) and Mei
et al. (14). An experimental visualization can be found in Yao et al. (15).

Effective mass dispersion between two resonances
A very common and general situation in which mass density dispersion
can also appear is the so-called antiresonance condition, which can
occur at a frequency between two resonances. Consider the average
displacement of a sample that has two resonances at frequencies
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
w1 and w2. When the external driving frequency w is between the
two, both modes will be excited, but with opposite phases. The av-
erage displacement can cross zero at a certain frequency, denoted
as the antiresonance frequency ~w (Fig. 1C). Because 〈€x〉 ¼ �w2〈x〉
for harmonic motion, it follows that, in accordance with Eq. 1, the
dynamic mass density can display a frequency dispersion, as shown
in Fig. 1B.

Composites that display such frequency-dispersive properties are
fascinating for both fundamental and practical purposes. Initial reali-
zation is achieved by using an acoustic metamaterial incorporating
local resonances. This metamaterial is a matrix of silicone-coated
metallic spheres embedded in epoxy (16). Photographic images of
a unit cell and a matrix are shown in Fig. 2A. The sample has low-
frequency resonances that are characterized solely by the relative
motions of constituents internal to the elementary building blocks.
The lowest frequency resonance, at around 400 Hz, corresponds
with the displacement of the metallic sphere. The second
resonance, at around 1350 Hz, corresponds with the displacement
of the silicone rubber layer, with the metallic sphere being nearly
stationary. Together, they lead to a strong frequency dispersion in the
dynamic mass density �r (17), as described previously. In particular, when
the effective dynamic mass density either diverges to a large value or ex-
hibits a negative value, acoustic waves become strongly attenuated inside
the composite structure, and near-total reflection of the wave occurs.
EFFECTIVE BULK MODULUS AND SYMMETRY OF
THE RESONANCES

Effective mass dispersion (in frequency) is always associated with the
displacement of the system’s center of mass. However, if the defor-
mation involves compression-extensional motion, then it is entirely
possible for the center of mass to be stationary. This is precisely what
occurs in Helmholtz resonators, in which the effective bulk modulus,
rather than the effective mass density, becomes frequency-dependent.

The resonance-induced anomalous effective bulk modulus �kwas
first demonstrated by Fang et al. (18) on ultrasound by a waveguide
shunted by a chain of Helmholtz resonators. Helmholtz resonance is
characterized by the oscillation of the fluid in the neck section under
the restoring force provided by the compression and expansion of the
fluid in the cavity. An illustration of the relevant sample is shown in
Fig. 2B. The sample is subwavelength in its dimension. Negative bulk
modulus, caused by the frequency dispersion of the local resonances,
was observed.

The effective mass density and bulk modulus behaviors are asso-
ciated with two distinct spatial symmetries of the relevant resonances.
For simplicity, let us consider harmonic motions in one dimension, in
which it can be easily shown that they can be considered as the
weighted superposition of symmetric and antisymmetric motions
(that is, the dipolar and monopolar resonant displacements, respec-
tively). Li and Chan (19) first related acoustic responses to the
symmetry of motions in the context of the Mie resonance of soft rub-
ber spheres. They pointed out that modes with dipolar symmetry
contribute to the inertial response, whereas modes with monopole
symmetry generate a dominantly compressive/expansive motion,
namely, a bulk modulus–type response. Later studies also showed that
modes with higher angular momenta would have responses with
interesting consequences for elastic waves (20, 21).
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Doubly negative mass density and bulk modulus
By overlapping the frequency responses with the two symmetry types,
it is possible to realize acoustic double negativity. This is achievable
through several approaches. First, a single resonator can have multiple
eigenmodes exhibiting distinctive symmetries. By careful design, it is
possible to tune the relative frequencies of these eigenmodes to enable
the realization of simultaneously negative �r and �k values. Examples
include coupled membrane resonators (22). Mie resonances of porous
silicone rubber spheres are also shown to exhibit a negative acoustic
index (23). Alternatively, combining two different resonating
structures, each having one type of symmetry, can also lead to double
negativity. Some theoretical proposals can be found in Ding et al. (24),
Christensen et al. (25), and Fok and Zhang (26). The first successful
experimental demonstration of acoustic double negativity was
accomplished by Lee et al. (27–29) in a series of publications. Frequency
dispersion in �r was induced in a sample comprising a waveguide
segmented by elastic membranes (27). The same waveguide is simul-
taneously shunted by a series of side holes to give rise to a frequency
dispersion in �k (28). Overlap in these two dispersive frequency ranges
leads to double negativity (29). Recently, the interaction between
eigenmodes with identical symmetry type also produced double neg-
ativity (30). This will be detailed in “Acoustic Superlens.”

There exists a multitude of approaches for the retrieval of the ef-
fective constitutive parameters �r and �k for locally resonant acoustic
structures (17, 31–35). The underlying philosophy in targeting the re-
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
production of far-field scattering properties by a uniform medium
characterized by the effective parameters, in which the complex
structures of the elementary scattering units are “internalized” to
appear as the frequency variations in �r and �k, is generally similar.
MEMBRANE-TYPE ACOUSTIC METAMATERIALS

DMRs constitute a class of acoustic metamaterials that can display
both mass and bulk modulus frequency dispersions, as well as double
negativity, over certain frequency ranges. Typically, its effective fre-
quency regime falls within the audible range of 50 to 2000 Hz; hence,
the application potentials are obvious because the membranes are thin
and light. An example is shown in Fig. 3A. A flexible elastic membrane
that is submillimeters thick and several centimeters wide is fixed on a
rigid rim. A uniform prestress is applied to provide the proper restoring
force for oscillations. A rigid platelet is attached to the center of the
membrane, whose mass is set by the desired resonant frequencies. This
structure may be modeled as a spring-mass oscillator by simply re-
garding the central platelet as the mass and the membrane as the
spring (also with a small mass) (36). The response of a DMR to an
incident acoustic wave is characterized by its normal displacement
profile W(x). Because of the membrane’s small thickness, the DMR’s
low-frequency eigenmodes are dipolar in symmetry, as the compressive
oscillations of the membrane are necessarily in the high-frequency
Neck area S

B

Neck length L

Cavity V

A

Fig. 2. Initial realizations of locally resonant acoustic metamaterials. (A) Images of the sample that first realized a local resonance-induced anom-
alous mass effect (16). Left: The cut-away view of a sample unit cell consisting of a small metallic sphere coated by a thin uniform layer of silicone
rubber. Right: The sample made by using epoxy to glue together the units shown on the left. The effective frequencies for total reflection by the
sample were shown to correspond to a wavelength that is between one and two orders of magnitude larger than the size of the lattice constant,
which is 1.55 cm. (B) An illustration of the sample, comprising a series of Helmholtz resonators connected to one side of a conduit, that realized the
frequency dispersion for the bulk modulus (18).
F

 

CBA

Fig. 1. The origin of anomalous constitutive parameters in acoustics. (A) A spring-coupled mass-in-mass oscillator. M2 is assumed to slide without
friction inside a cavity formed by M1, and K is the spring constant. (B) The oscillator’s apparent massM plotted as a function of angular frequency w, where
w0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M2

p
is the resonant frequency.M is divergent at w0 and can take negative values in a narrow frequency region that is shaded gray. (C) If there are

two resonances, the average displacement 〈X〉 can cross zero at an antiresonance frequency w∼ , at which the effective mass/mass density displays a
frequency dispersion similar to that shown in (B). Here, the red and green dashed curves show the displacement associated with the first and second
resonances (denoted w1 and w2), respectively. The black solid curve represents the sum of the two displacements, and it crosses zero at w∼ .
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regime. Typically, two eigenmodes can be found below 1 kHz. Their
normal displacement profiles are shown in Fig. 3B. The dipolar
symmetry of the resonances implies that the scattering characteristics
of the DMR can be reflected in the frequency variation of the effective
mass density �r.

Normal displacement decomposition and relationship to
propagative and evanescent modes
The normal displacement W(x) can be decomposed into two
components

WðxÞ ¼ 〈W〉þ dWðxÞ ð2Þ

where 〈W〉≡ 1
pR2 ∫2p0 ∫R0Wðr; fÞ rdrdf is the surface-averaged normal

displacement. Here, r and f are the in-plane radial and azimuthal
coordinates, respectively, and R is the DMR’s radius. 〈W〉 can be de-
scribed as the component representing the piston-like motion,
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
whereas dW(x) comprises the high-spatial-frequency components
after the average component is subtracted off. The spatial variation
of dW(x) can be delineated by the Fourier wave vectors k∥ in the plane
of the membrane, whose magnitude necessarily satisfies the inequality
|k∥| ≥ 2p/R. Because normal displacement is continuous across the
membrane-air interface and because the acoustic wave in air must
obey the dispersion relation given by

k2∥ þ k2⊥ ¼ ð2p=lÞ2 ð3Þ

where k⊥ is the normal component of the wave vector and l is the
wavelength, it follows directly from Eq. 3 that k⊥ is imaginary for
dW(x) because l ≫ R at the relevant frequencies. This fact implies
that dW(x) only couples to evanescent waves. In contrast, 〈W〉 is
a constant and, therefore, its Fourier k∥ components have a distribution
that peaks at k∥ = 0. Hence, 〈W〉 couples to propagating waves (that is,
reflected and transmitted waves). These are schematically illustrated in
A

D

k
k

C

B

Fig. 3. Single membrane with negative effective mass density. (A) A schematic drawing of a typical DMR (36). (B) Out-of-plane displacement
amplitude |W(x)| of the low-frequency eigenmodes (measured with a laser Doppler vibrometer) of two DMRs (194). Light yellow indicates a large normal
displacement amplitude, whereas darker colors indicate small or no normal displacement. Cyan circles delineate the edge of the membrane and the
position of the platelet. The first mode is characterized by the large up-and-down oscillation of the platelet, pulling along the entire structure (left). In the
second mode, the platelet is almost motionless (right), and the oscillation amplitude is largest in the surrounding membrane. (C) A schematic illustration
indicating that, as a result of the deep-subwavelength size of the DMR, the large in-plane wave vectors k∥ only contribute to evanescent waves (blue
dashed lines), owing to the fact that the lateral fast variations of the up-and-down displacements tend to cancel each other in air, and the net amplitude
decays exponentially as a result. The far-field propagating wave is determined by the k⊥ of the surface-averaged component of the normal displacement
(red dashed lines). In the system shown here, the DMR (black) is blocking a one-dimensional waveguide, and a planar sound wave impinges from the
bottom. The reflected field is not shown. (D) Measured amplitude transmission coefficient of a DMR (black solid curve, left axis) and the real part of the
calculated effective mass density �r (red dashed curve, right axis). Various features are explained in the text.
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Fig. 3C. It follows that, as far as the far-field wave scatterings are
concerned, the DMR can be effectively viewed as a one-dimensional
system (that is, solely determined by its 〈W〉) (14, 22).

Effective mass density and impedance of the
membrane resonator
The above observations enable the determination of �r in a simple
manner

�r ¼ � 1

w2�d

〈P〉
〈W〉

ð4Þ

where 〈P〉 is the surface-averaged pressure difference on two sides of
the membrane, 〈 €W〉 ¼ �w2〈W〉 is the surface-averaged acceleration,
and �d is the mean thickness. The result is plotted as a function of
frequency in Fig. 3D. �r becomes zero at the DMR’s eigenfrequencies,
across which it has different signs. This is of course associated with the
phase difference of p on two sides of a resonance, with the negative �r
value implying that the system’s acceleration opposes the external
force. �r can be related to the impedance of the DMR, defined as Z ¼
〈P〉=〈 _W〉 ¼ i〈P〉=w〈W〉 ¼ �iw�r�d. Thus, a near-zero �r indicates that
the effective impedance can be well matched to the air’s impedance,
which would allow DMR to optimally couple with the incident sound.
Furthermore, because the Green function G ¼ 〈W〉=〈P〉 ¼ i=wZ ¼
�1=ðw2�r�dÞ (31), a near-zero �r means that the normal displacement
can diverge in the absence of dissipation. Thus, we expect a large
transmission peak when �r crosses zero at ~230 Hz, as shown in
Fig. 3D. Near-zero �r has also been utilized to achieve supercoupling,
which allows an almost-perfect transmission through small channels
under normal incidence (37–39). From the relations of �r with the
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
impedance and the Green function, the imaginary part of �r, which is
associated with dissipation, must be positive. This can be seen from its
relation with Z, whose real part is associated with dissipation and,
therefore, must be positive.

In the frequency regime between the two resonant peaks, we can
find a particular point known as the antiresonance, as described
previously. Because 〈W〉 = 0 at the antiresonant frequency, �r diverges
in conjunction with a change in sign. When that happens, the im-
pedance also diverges, and the wave would be totally reflected. This is
observed as a transmission dip near 440 Hz in Fig. 3D. Such
characteristic enables the realization of superthin lightweight reflective
panels, which excel at blocking low-frequency noise (36, 40–44).

A somewhat nonintuitive result is that �r is negatively divergent in
the static limit. This originates from the fixed boundary condition of
the membrane, which mandates 〈W〉 → 0. Under a quasi-static force,
this imitates an infinite inertia of the system. The negative sign, how-
ever, is a reflection of Newton’s third law: reaction opposes applied
force. Such behavior of �r is also manifested in other types of structures
(27, 45). In particular, a negative �r in the low-frequency limit was
recently identified for liquid foam, which could be modeled as an
array of flexible membranes (46).

Effective bulk modulus of two coupled membrane
resonators and double negativity
As mentioned previously, the membrane’s small thickness means that
the vibrations involving the compression and expansion of the
membrane along its thickness direction must occur at the very high-
frequency regime. Such vibrations, however, are monopolar in
character and, therefore, can give rise to anomalous values of �k. To
lower the monopolar resonant frequencies, one can couple two
membranes to form a new DMR, as shown in Fig. 4A. This structure
 on O
ctober 2, 2016
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Fig. 4. Coupled membranes giving rise to both mass and modulus dispersions. (A) A schematic drawing of a DMR with two coupled membranes.
Two identical membranes decorated with platelets are placed closely together, sealing a layer of gas in between. A rigid ring is added for extra tunability.
(B) Normal displacement profiles of three low-frequency eigenmodes. Red symbols delineate the measured profiles using the laser vibrometer, whereas
the black solid curves are the results of finite-element simulations. (C) Left: The transmission coefficient of the structure shown in (A), plotted as a function
of frequency. Here, the circles denote the measured result, and the solid curve indicates the calculated result. Middle: Effective mass density �r and bulk
modulus �k, plotted as a function of frequency. Right: The real part of the effective wave vector �k ¼ w

ffiffiffiffiffiffiffiffi
�r=�k

p
, plotted as a function of frequency. The total

thickness of the DMR is 2d. Double negativity is seen in the region shaded in gray (22). The effective parameters here are extracted using the method
detailed in Yang et al. (31).
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has two dipolar eigenmodes similar to those of a single DMR; there-
fore, the characteristics of �r are largely preserved. However, a new mode
is produced, in which the two membranes oscillate against each other.
The vibration profiles of these three modes are shown in Fig. 4B. For
the new mode, it is clear that the DMR undergoes compressive/
expansive motions, with its volume pulsating but with the center of
mass remaining stationary. This mode leads to an effective bulk
modulus �k that is frequency-dispersive (Fig. 4C, middle). �k reaches
zero at the monopolar eigenfrequency and turns negative on the
higher-frequency side of this mode. The dipolar and monopolar
modes in this DMR are separately tunable. For example, in the study
by Yang et al. (22), the monopole mode is located in the vicinity of a
dipolar antiresonance. Because of the near-zero �k, the characteristic
impedance Z of the homogenized structure, comprising the two
DMRs plus the air space in between, is given by Z ¼ ffiffiffiffiffi

�r�k
p

and
can have a magnitude that matches that of air, in spite of a large �r.
When �r and �k are both negative, the effective wave vector �k ¼
w

ffiffiffiffiffiffiffiffi
�r=�k

p
is real, implying a propagating wave. Furthermore, the real

part of the effective index �n ¼ v0=
ffiffiffiffiffiffiffiffi
�k=�r

p
must take the negative sign,

where v0 denotes the speed of sound in air. This can be seen by
allowing a small imaginary part in �k, which must be negative because
P ∼ �k〈W〉 and hence �k ∼ 1=G

0
, which differs from �r ∼ �1=G by a

minus sign. Because the sign of the imaginary part of the Green
function must be fixed, it follows that the imaginary parts of �k and
�r are opposite in sign. As the imaginary part of �r is positive, as noted
previously,�r is in the second quadrant of the complex plane whereas �k
is in the third quadrant. Therefore, �r=�k must lie in the fourth quad-
rant. For a forward-propagating wave in a medium with no gain, the
imaginary part of the index must be positive. This mandates that the
real part of �n is negative as a result. In Fig. 4C (middle), both �r and �k
are negative in the gray-shaded region. Hence, a negative acoustic
index can be achieved in a finite frequency range.

From the above discussion, we can see that even though the ef-
fective density is large at around 520 Hz (Fig. 4C, middle), a trans-
mission peak is observed (Fig. 4C, left). Note that the maximum
Reð�kÞ can reach p/2d at the monopole eigenfrequency (Fig. 4C,
right), where 2d is the total thickness of the coupled DMR. Given
the small thickness of the DMR, this is much larger than the wave
vector allowed in free space (that is, k ≤ 2p/l). Such large wave vec-
tors can, in principle, be utilized for a wide range of functionalities
such as subdiffraction focusing. Various examples of these function-
alities are described in “Superresolution and Focusing Beyond the
Diffraction Limit.”
SUPERRESOLUTION AND FOCUSING BEYOND THE
DIFFRACTION LIMIT

Resolution limit and the evanescent waves
The exotic constitutive parameter values enabled by the acoustic
metamaterials, such as DMRs, have expanded the horizon of acoustic
wave manipulation. Among the many topics in wave physics, focusing
and imaging have always occupied a central position, and an important
issue here is the resolution limit, which arises from the basic constraint
imposed by the dispersion relation: k2 = (w/v)2 = (2p/l)2. The mag-
nitude of any real component of k∥ is therefore bounded by w/v. Here,
k∥ denotes the wave vector in the plane of the image. However,
because k2 ¼ k2∥ þ k2⊥ (where k⊥ denotes the wave vector component
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
perpendicular to the image plane), by allowing k2⊥ to be negative (with
k⊥ being purely imaginary), one can expand the magnitude of the
allowed k∥ components to values larger than 2p/l, thereby enhancing
the resolution of the image. However, the wave components with
imaginary k⊥ are the evanescent waves, which decay exponentially
as a function of distance away from the source/scatterer. Consequently,
details of a source/scatterer on the scale d < 2p/kmax = l are lost in the
far field and do not contribute to the image.

Reaching beyond the limit
The physics behind the diffraction limit is also informative on how
to go beyond it. With the lack of detailed information from the
source, intense focusing of energy into a subdiffraction scale re-
mains possible by modifying the medium in the vicinity of the focal
spot. Metamaterials potentially allow us to design the properties at
will and therefore hold great promise in breaking the resolution
limit. Lemoult et al. (47) reported an example of airborne sound.
They built a two-dimensional square lattice of acoustic cavity reso-
nators (soda cans). The system can be described by leaky modes,
which arise from the interference between resonating and contin-
uous fields, as indicated by the Fano-like resonance profile and the
polariton-like dispersion (Fig. 5A). Here, we can observe an almost-
flat dispersion immediately below the bandgap, implying large wave
vectors attendant to a large density of states, which constitute the
necessary elements for subdiffraction intense focusing (Fig. 5B). In
addition, “defect modes” can be created by blue-shifting the resonant
frequency of some chosen cavities of the bulk structure so that they
fall into the bulk bandgap (Fig. 5A, gray region). As a result, the
acoustic energy carried by these resonators was spatially confined
in the lateral directions because there were no propagative modes
within the bulk structure for these frequencies. Energy transport in
the deep-subwavelength scale was thereby demonstrated by line de-
fects, as shown in Fig. 5B (48).

In the above discussion, the subdiffraction focal spot is made
possible by the extra wave vectors supplied by “rescaling” the diffraction
limit near the position of the focus. To perfectly image a source,
however, one has to capture the evanescent waves before they are lost.
This generally requires focusing/imaging devices to operate in the
near-field regime of the source. Then the question becomes, What
should be the mechanism for sustaining the evanescent waves that
convey the subdiffraction information?

The mismatch in momentum causes the loss of the high-spatial-
frequency components in the far field because, for the propagating
waves, the wave vectors are bounded by the free-space dispersion
relation. One obvious path to sustaining the evanescent modes is to
introduce extra momenta through lens design. Characterized by flat
dispersions, local resonances can play such a role because the magni-
tude of k can extend to large values without changing the frequency
(Fig. 5A). For example, owing to the longitudinal nature of acoustic
waves, Fabry-Pérot resonances can be realized in waveguides with
cross-sectional dimensions ≪l, but which can have a length on the
order of a wavelength or more. These resonances have almost-flat
dispersions in which the magnitude of k can significantly exceed that
of free space. By placing an array of these waveguides in the near field
of the source, with each waveguide being capable of picking up highly
localized disturbances and then conveying this information to the
targeted locations, acoustic images with subwavelength sharpness have
been achieved (49, 50) (Fig. 5C).
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Acoustic superlens
A well-known scheme that promises perfect imaging is the superlens
(51), which was proposed more than four decades ago in the context
of electromagnetic waves—that a material with simultaneously negative
permittivity and permeability (that is, negative index materials) can
behave very differently from conventional materials. From Snell’s law,
it is easily seen that, at the interface between a conventional material
and a negative index material, an obliquely incident wave on the side
of the normal material can bend to the same side of the surface
normal as the incident wave, inside the negative index material. Such
“negative refraction” can cause a diverging wave to reconverge. It
follows that a flat slab of the negative index material, when illuminated
by a point source, can generate two foci: one inside the slab and
another one on the other side of the slab (52). This is illustrated sche-
matically in Fig. 6A (top). The first acoustic demonstration of neg-
ative refraction was reported by Zhang et al. (53). In this particular
work, they built a metamaterial interface across which the effective
index changed from positive to negative. A hot spot (that is, a
focus) was clearly observed when a source was placed on one side
of the interface.

The essence of a doubly negative superlens lies in the capture of
information carried by the evanescent wave components, made pos-
sible by metamaterials. This is schematically illustrated in Fig. 6A
(bottom). The amplification of evanescent waves can be achieved by
using not only negative index materials but also singly negative
materials alone because a surface-plasmon–like resonance can form
at the interface between conventional materials and singly negative
materials (10, 51). For acoustic waves, Park et al. (54) used the negative
�r regime of a two-dimensional membrane array to show that the
evanescent waves can indeed be amplified at the interface of the
metamaterials. Superresolution focusing was subsequently achieved
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
using a similar design (55). However, because the singly negative
superlens relies on the interfacial mode that necessarily decays expo-
nentially away from the interface, it is effective only when the thick-
ness of the lens is subwavelength.

An acoustic doubly negative superlens was recently reported by
Kaina et al. (30). The essence of the idea can be easily grasped by
means of the tight-binding model. The coupling of two eigenstates
with identical eigenfrequencies would give rise to anticrossing and
yield two modes with opposite symmetries, separated in their resonant
frequencies. On the basis of Helmholtz-like cavity resonators, which
are known to generate monopolar modes and therefore negative �k
values (18), two-dimensional lattices were constructed with a unit cell
comprising a dimer of two coupled resonators. The coupling can be
adjusted by either altering the distance between the resonators or
introducing a slight mismatch in their eigenfrequencies, effectively
tuning the frequency and intensity of the dipolar modes (two resonators
out of phase). A narrow transparency band with negative dispersion is
found inside the negative-modulus bandgap. With this design, a doubly
negative flat lens was experimentally realized, with both foci inside
and outside the lens clearly observed (Fig. 6B). The experiments also
unambiguously showed that evanescent waves could indeed be ampli-
fied by the resonators and that imaging with subdiffraction resolution
could be achieved. It is worth pointing out that the focal spot has a
sharpness (with an amplitude full width at half maximum of l/15)
that is even smaller than the size of the imaged source (l/5). This
extra sharpness is again due to the relatively flat dispersion of the
superlens’ doubly negative band, which yields a high density of states
and the attendant extra wave vectors.

A superlens does not change the decaying destiny of the evanescent
waves once they leave the superlens (56). For this disadvantage to be
overcome, a far-field superlens can be made by adding subwavelength
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Fig. 5. Superresolution with local resonances. (A) The type of dispersion relation that is commonly used for superresolution and deep-subwavelength
focusing with acoustic metamaterials. Here, the blue dotted-dashed line is the “sound line” (that is, the dispersion of acoustic wave in the homogeneous

background medium), and the red dashed line is that of the local resonance with eigenfrequency f0. Coupling between the two induces anticrossing in
the vicinity of f0 and gives rise to the dispersion delineated by the two black curves. The region shaded in gray is a bandgap. In free space, only the
k components within the blue-shaded region are accessible. However, for the lower branch, the k components much larger than those available in free
space (the blue-shaded region) become accessible. (B) Superresolution focusing (left; showing the pressure distribution) and subwavelength wave guiding
(right; showing the normalized pressure amplitude) achieved by using a two-dimensional array of air-filled cavity resonators (soda cans). The resonances of
the soda cans yield a dispersion, as shown in (A) (47, 48). (C) A two-dimensional array of subwavelength waveguides is shown on the left. The thickness of
the lens h is the same as the operating wavelength in air (not drawn to scale in this schematic drawing). These waveguides can support Fabry-Pérot
resonances that have flat dispersions, which are useful for achieving superresolution imaging (49, 50). In the imaging result shown on the right, light color
represents stronger pressure intensity. The object is in the shape of the character “E” (inset). The stroke width of “E” is ∼l/50. The lens is placed close to the
object, and an image is formed on the other side, where the shape “E” can be recognized (50).
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structures (in the context of electromagnetic waves), such as gratings
or corrugations (57, 58), to supply the additional lateral wave vectors
that bring the evanescent waves (whose lateral wave vectors are larger
than 2p/l in magnitude) back into the light cone of the free-space
propagating waves. However, so far, a working example for acoustic
waves remains lacking.

Acoustic hyperlens
An alternative approach to superresolution is the hyperlens (59). The
basic concept can be easily grasped by considering the two-dimensional
configuration. If one of the effective constitutive parameters, say �r, is
negative along the radial direction r̂ but positive along the azimuthal
direction q̂ (that is, �rq �rr < 0), then the dispersion relation k2q=�rr þ
k2r=�rq ¼ w2=�k is hyperbolic in shape, as shown in Fig. 6C.

Such a dispersion was shown to be possible for acoustic waves
(60–62). As a result, kq and/or kr is no longer bounded and can, in
principle, take arbitrarily large values and still satisfy the hyperbolic
dispersion relation without requiring any of the wave vectors to be
imaginary. Approximating this idea, Li et al. (63) demonstrated
acoustic superresolution in which �rq and �rr have the same sign but
differ by a large ratio. The relevant structure is fan-shaped, with alter-
nating brass and air stripes arranged along the q̂ direction (Fig. 6D).
Such a geometric structure implies that the effective �r can be obtained
as the arithmetic average of the two components’mass densities along
q̂ and as the average of the two components’ inverse mass densities
along r̂ . Because brass and air have hugely different mass densities,
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
these two effective mass densities can differ by a large ratio. As a result,
the equifrequency contour in such a device is elliptical, with a large
eccentricity. This allows access to large k components. Such a device
can realize superresolution without the need for negative parameter
values, which are inevitably the consequence of resonances (and there-
fore can only be effective over a narrow frequency range). Hence, its
functionality is effectively broadband. In Fig. 6D, three sound sources
placed inside the inner circle of the fan-like structure, with a separa-
tion that is four to seven times smaller than the relevant wavelength,
were seen to be clearly separated and magnified when measured
outside this hyperlens, indicating the successful conversion of evanes-
cent waves into propagating waves. An acoustic hyperlens with true
hyperbolic dispersion was recently demonstrated using metamaterial
elements similar to membranes (62), which are known to generate
negative �r values.
TRANSFORMATION ACOUSTICS AND DEVICES WITH
SPATIALLY VARYING INDEX

Determining constitutive parameter functions through
coordinate transformation
The advent of acoustic metamaterials has greatly expanded the
allowed values of the constitutive parameters. A generalized way to
appreciate the implied capabilities afforded by this new freedom is
through transformation acoustics, following the example of
n = –1
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Fig. 6. Acoustic realizations of superlens and hyperlens. (A) Top: A slab of doubly negative medium can bring diverging waves into two foci: one
inside the slab, and the other one outside. Bottom: The same slab can amplify evanescent waves, thereby theoretically enabling the formation of a

perfect image. (B) Experimental demonstration of the imaging capability of an acoustic superlens (30). Here, cavity resonators (soda cans, represented by
black circles) were arranged into a honeycomb lattice. It is clearly seen that the near field was sustained and even amplified by the metamaterial slab.
Negative refraction and the consequent foci are delineated by white dashed arrows. The normalized pressure intensity field is displayed as a color map.
The source (red dots) had an amplitude full width at half maximum of l/5, whereas the measured image size was l/15. (C) Three distinctive equifrequency
contours. The black circle represents that of a homogeneous material. Anisotropy along r̂ and q̂ can distort the contour into an ellipse (red), in which a large
kr can be accessed. However, if the material’s parameter is negative along q̂ but positive along r̂, then the contour becomes hyperbolic, wherein kr and kq
are no longer bounded (blue curves). (D) The strong anisotropy in kr and kq, such as that indicated by the red ellipse in (C), used for superresolution
imaging, as shown experimentally in Li et al. (63). Here, the fan-like structure has stripes alternating between air and brass. From the effective medium
theory, the effective mass is highly anisotropic along the r̂ and q̂ directions. The center circle of the device has a diameter of about one wavelength, in
which three sound sources were closely placed with subwavelength separations, represented by the red dots. An image of the sound sources is also shown in
the lower-right inset. Red/blue represents positive/negative pressure, with the three clearly resolved regions being representative of the magnified image
of the three sound sources.
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transformation optics (64–67). Consider the time harmonic acoustic
wave equation

∇⋅½r↔ðxÞ�1∇PðxÞ� ¼ �½w2=kðxÞ�Pðx� ð5aÞ

wherer
↔ðxÞdenotes the mass density tensor. If one applies a coordinate

transformation x′(x) to map each point x to a corresponding point x′
in another space, then the acoustic wave equation in the new space
retains the same form

∇0⋅½�r↔0ðx0Þ�1 ∇0Pðx0Þ� ¼ �½w2=�k0ðx0Þ�Pðx0� ð5bÞ

in which the constitutive parameters transform to the effective param-
eter values given by �k0ðx0Þ ¼ ½ detA�kðxÞ and �r↔0�x0Þ ¼ A½r↔ðxÞ�AT= detA.
Here, A is the Jacobian matrix of coordinate transformation, AT is its
transpose, and detA denotes its determinant. If there are no limitations
on the values of the effective constitutive parameters, then we can
design materials that can manipulate waves in almost any way we de-
sire by changing the coordinate system (66, 68). Among the kalei-
doscope of functionalities made possible by acoustic metamaterials in
conjunction with transformation acoustics, cloaking is perhaps the
most remarkable example. Norris (69) recently conducted a compre-
hensive review of this topic. Below, we briefly survey some important
results.

Acoustic cloaking
An obvious cloaking strategy is to avoid scattering by guiding the
wave around the object. Theoretical and numerical works showed
that such a scheme is in fact possible for acoustic waves (70–73). A
particularly simple example of cloaking is to expand a point into a
spherical shell, with a and b denoting the inner and outer radii of
the shell, respectively. The relevant effective density and modulus
have the following forms

�r0r r0ð Þ ¼ r0
b� a
b

r0

r0 � a

� �
2

ð6aÞ

�r0q ¼ �r0f ¼ r0
b� a
b

ð6bÞ

�k0 r0ð Þ ¼ k0
b� a
b

� �
3 r0

r0 � a

� �
2

ð6cÞ

Here, r0 and k0 denote the constant constitutive parameter values
of the original homogeneous medium, whereas r, q, and f (also r′, q′,
and f′) represent the radial, azimuthal, and polar coordinates, respec-
tively. Such a cloaking shell, if realized, can totally isolate sonically the
object placed inside the sphere of radius a. However, the parameter
values required by Eqs. 6a to 6c are very extreme and hence not likely
to be realized perfectly. Another important point to remember is that,
so far, the effective parameter values realized by acoustic metamate-
rials have been frequency-dispersive; hence, it can mean that cloaking
occurs only within a narrow frequency range. The first functional
cloaking device was achieved with water-borne ultrasound. In this
work by Zhang et al. (74), the scatterer was covered by a metallic
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
cylindrical shell engraved with an interconnected network of sub-
wavelength cavities. The effective parameters of this structured shell were
graded along the radial direction. Experimental observations showed a
clear reduction in shadowing, which is a decisive evidence of cloaking.

Another strategy is the so-called ground-plane cloak, which hides
scatterers placed on a flat reflective surface. Owing to the nearly two-
dimensional geometry and the consequent removal of the extra geometric
constraints, the requirements for material parameters become easier to
realize (75). Such cloaks were indeed demonstrated for airborne sound
(76, 77). The cloaks were made of layers of plastic thin plates perforated
with an array of subwavelength holes. They were assembled into a pyr-
amidal shape, similar to a tent covering the scatterer that was placed
on a hard reflecting surface. The cloak had a designed distribution of
effective mass density and modulus. In particular, the mass density
was anisotropic but uniform along each direction. Experiments con-
firmed a clear reduction in scattering, in spite of an impedance mis-
match between the cloak and the air. Modified versions were also
demonstrated to hide objects placed with some geometric restrictions
(78, 79). Alternatively, careful arrangement of additional scatterers
around an object can result in the cancellation (by interference) of the
original scattered waves (80–83), leading to the cloaking effect.

Zero-index medium
Zero-index medium (ZIM) can also be used for cloaking. The physics
of such materials can be easily grasped from two distinct points of
view. Phenomenologically, �n ≈ 0 indicates that the wave phase does
not advance inside the material because Df ¼ �kd ¼ �nwd=c ≈ 0,
where Df is the accumulated phase of a wave with an angular frequency
w passing through a distance d. From the point of view of transformation
acoustics, an area/volume occupied by such materials is equivalent to a
point with a measure of zero but expanded in space (66). A conse-
quence is that the wave field inside such materials will not undergo
any change and, therefore, must be constant. This also means that the
outgoing wavefront is determined by the shape of the ZIM’s boundary.
Hence, a scatterer placed inside a ZIM is hidden, in the sense that it gen-
erates no scattered wave if viewed from the outside (84).

However, it was subsequently realized that ZIM can have some
interesting hiccups. For example, a plane wave passing through a slab
of ZIM with thickness d would accumulate no phase. However, the
same wave propagating through the background medium with a
refractive index n would advance in phase by Df = nwd/c. It is
easy to see that the apparent phases of the outgoing waves in these
two cases are different unless d ¼ 2mp c

nw, where m is an integer. This
puts a constraint on the thickness of a perfect ZIM cloak because,
otherwise, the cloaking effect would be lost through a comparison of
the phases. Moreover, ZIM cloaking can only happen with normal
incidence. A wave with oblique incident angles will encounter total
“internal” reflection at the interface. This interesting characteristic
can in fact be turned into an advantage. A simple example is a prism
made with ZIM, in which the two boundaries make a nonzero angle.
If one boundary of this prism is parallel to an incoming wavefront
(that is, normal incidence), total transmission through both prism
interfaces is expected. However, a wave propagating in the reverse
direction (to that of the incident wave) would see a nonzero incident
angle and therefore is totally reflected by the prism. Asymmetric trans-
mission can be realized by this restricted geometry (85). Reciprocity is
not broken in the system (more details on this matter will be discussed
in “Nonreciprocal Acoustic Devices”). In addition, a ZIM’s functionality is
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highly sensitive to the nature of defects. Wave behaviors inside a
ZIM are ultimately governed by the wave equation and the relevant
boundary conditions. Imagine a defect with an acoustically soft
boundary (defined as P = 0) placed inside a ZIM. This would mandate
the wave field inside to be zero everywhere, thereby causing total
reflection of the incident waves (86–88). Recently, it was proposed
that this boundary dependence of ZIM in the elastic wave context
be used to mitigate the transverse-longitudinal mode conversion of
scatterers, which was ubiquitous for traditional elastic materials (89).

Acoustic “black hole” and “illusion” devices
Besides cloaking, transformation acoustics also proves to be a powerful
tool for designing a wide range of acoustic functionalities. Opposite to
the functionality of a cloak, which detours the incident wave around a
scatterer, a device can be designed to guide the incident wave into the
core region without being scattered. By placing absorbing agents in the
core region, these acoustic “black holes” can display absorption
performance independent of the incident angle (90–92). A number
of different acoustic “illusions” also demonstrate the power of
transformation acoustics. An example is an acoustic wavefront rotator.
In a two-dimensional cylindrical geometry, the design follows a
transformation only in the azimuthal coordinate: r′ = r; q′ = q
for r > b, q′ = q + q0 for r < a, and q′ ¼ qþ q0 b � r

b � a for a < r < b,
where a and b are the inner and outer radii of the annular region oc-
cupied by the device, respectively. This coordinate transformation is
then mapped to the mass density tensor of the device. Such a device
was experimentally realized and demonstrated to be capable of rotating
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
a planar wavefront by an angle q0 in the region r′ < a, which created an
illusion of the incident angle (93). Similarly, this design was used to alter
the radiation directivity of a sound source that was enclosed inside (94).
A more sophisticated illusion was experimentally demonstrated, in
which the scattering of a cylinder was reshaped into that resembling
the scattering by a block (78). Some other examples, such as aberration
correction (95) and radiation collimation (96), were investigated with
theory and numerical simulations.
SPACE-COILING AND ACOUSTIC METASURFACES

Incurring large phase delays within a small space
Acoustic waves are longitudinal in character. Hence, acoustic wave-
guides have no cutoff frequency. This feature can be exploited to be
an advantage in the design of acoustic metamaterials. Liang and Li (84)
proposed a design with complex labyrinth passages that are deep sub-
wavelength in their cross sections. Dubbed “space-coiling,” this design
essentially forces sound waves to propagate through passages that are
much longer than their external dimension. An example is shown in
Fig. 7A. The coiled-up passage introduces a large phase delay Df =
k0L, where k0 is the wave number in the background fluid and L is
the “acoustic path.” Historically, similar structures have found applica-
tions in bass woofers that were sometimes called folded-horn
speakers, a name that aptly describes the enclosure design (97). By ad-
justing the total length of the passage, one can tune the apparent phase
and group velocities and hence the effective index and the dispersion
 on O
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Fig. 7. Space-coiling and acoustic metasurfaces. (A) An example of the space-coiling structure and the relevant sound pressure field inside (84). The color
indicates the phase of the propagating sound wave. Here, a large phase delay Df ≫ Df0 = k0a can be caused by the coiled channels, where k0 is the wave
vector in the background fluid and a is the exterior dimension of the cell. With proper design, such structures can be used for many novel effects, such as the
negative-refracting prism shown in (B) (84). Here, space-coiling unit cells are assembled into a prism. Sound incidents from the left, and encounters of negative
refraction as it emerges from the prism, are indicated by white arrows. Red/blue represents positive/negative pressure. (C) A design of reflective acoustic meta-
surface that is capable of generating phase changes up to 2p. This can be seen from the color (red and blue represent positive pressure and negative pressure,
respectively) and the undulations of the stripes (108). The metasurface is shown on the lower left, and the wave is incident normally on the surface. The ridge
of red stripe sections indicates the emergence of a reflected wave at a nonspecular angle. Inset: Implementation of a slightly modified space-coiling design
of the metasurface, with a lateral gradient of phase delays (109). (D) A design of the metasurface that generates negative refraction for the transmitted wave.
Left: The simulation result (white arrows delineate incident and refracted beam directions). Right: The experimentally measured pressure map (113) (red and
blue represent positive pressure and negative pressure, respectively) (top) and a photographic image of a section of the actual sample (bottom).
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relation. Novel effects such as negative refraction (Fig. 7B), near-zero-
index cloaking, and Dirac-like dispersion were envisioned. Subsequent
experiments proved the effectiveness of this concept (98–100).

Because of its effectiveness and ease of implementation, the space-
coiling design has attracted considerable attention immediately after its
initial proposal. Functionalities such as zone-plate focusing (101–104),
one-way transmission (85), high transmission (103, 105), and high ab-
sorption (106) were successfully demonstrated. In a recent paper, Cheng
et al. (107) reported a cylindrical unit cell with fan-shaped space-coiling
segments. The winding air passage gave the unit cell a high effective
index, thereby allowing multiple Mie-like resonances of distinct an-
gular momenta. Single negativity in�rand�kwas shown to be possible.
Its strong resonant features also enabled a large scattering cross sec-
tion, which led to a high reflection even with sparsely positioned units.

Acoustic metasurfaces for phase manipulations
Space-coiling structures are particularly effective for constructing
“acoustic metasurfaces.” These are essentially acoustic phase arrays
with subwavelength thickness, which are capable of generating an
abrupt phase shift (up to 2p) across a single layer. This phase shift
supplies the incident wave with an extra momentum, thereby causing
it to reflect/refract at an “abnormal” angle. A feasible design was pro-
posed by Li et al. (108) in a reflective geometry (shown in Fig. 7C) in
which part of the incident wave can enter the coiled channels, which
are designed in such a way that the reflected wave would acquire a
laterally varying phase delay so that a nonspecular reflected beam
can appear. The wavefront of the latter can be identified by the red
ridge in Fig. 7C. Experiments quickly followed (109), in which the
intriguing effects (including negative refraction, focusing, and surface
wave conversion) were observed. One drawback of the space-coiling
structures is the large impedance mismatch to the incident wave. That
can mean some challenges for the transmission configuration because,
in addition to phase shifts, impedance matching is also required to
achieve optimal results. This point was considered in some theoretical
works (110, 111). Recent experimental demonstrations have sought to
improve impedance matching by adding horn-like designs (112–114)
(Fig. 7D, inset) or by using resonances (115, 116) to improve coupling.
In particular, in Fig. 7D, negative refraction was demonstrated in
transmission by using a lateral gradient in phase delays. However,
some of these designs somewhat sacrificed the thickness of the devices
(which is close to l/2) in exchange for better performance. Li et al. also
demonstrated complex wavefront shaping, such as the formation of
self-bending beams, by imprinting spatial functions to the phase profile
generated by the metasurface. However, these exotic functionalities are
dependent on the conditions of the incident wave such as the beam
shape, incident angle, and source geometry and position (109, 116).
ABSORPTION

Acoustic absorption is important for both noise mitigation and inte-
rior acoustics optimization. Two elements are central to absorption
performance. First is an effective means for dissipation. A most
straightforward strategy is through friction. Hence, porous materials
such as sponges, mineral wools, fiber glass, and cotton are commonly
used as sound-absorbing materials (117). Second is impedance
matching, which enhances coupling of the incident acoustic energy
with the absorbers. To this end, gradient index is a standard method
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
used to improve absorption performance. For example, porous
materials are prepared with spatially varying filling density, and blocks
of absorbing materials are cut into wedge or conical shapes to improve
impedance matching (for high-frequency sound, this also adds the
benefit of a diffusor). In addition to these two elements, resonances
can also be advantageous because they are usually accompanied by high
energy density and improved impedance matching. Microperforated
panels with back cavities constitute an example along this line (118).

The abovementioned examples generally show good absorption
performance for a relatively broad range of frequencies. However, they
become less effective in the low-frequency regime. The reasons are
both fundamental and practical. Dissipation in linear response systems
is necessarily quadratic in rates; therefore, absorption is intrinsically
weak at low frequencies. A straightforward way to enhance absorption
is to use a large amount of absorptive materials—typically with a
thickness on the order of several wavelengths. This is usually an
impractical scenario for low-frequency sound, whose wavelength can
exceed 1 m. Acoustic metamaterials bring a new perspective to this
traditional challenge. With proper design, energy density within
subwavelength resonators can reach a very high level. Because absorp-
tion is proportional to the product of energy density and the absorption
coefficient, the small magnitude in the latter (in the low-frequency
regime) can be compensated for by a large magnitude in the former.
An example of large absorption is reported in a study by Mei et al.
(119), in which elastic membranes of submillimeter thickness were
decorated by asymmetrically shaped rigid platelets. Because of the
contrast in flexural rigidity at resonances, a large energy density
can be concentrated within small regions near the perimeter of the
rigid platelets (Fig. 8A). These regions have lateral dimensions that
are much smaller than the relevant wavelength. Hence, the high
energy densities are decoupled from the propagating modes (see
Eq. 2 and the argument related to dW) and can only be absorbed.
Further investigations revealed that high local energy density and
perfect impedance matching can be simultaneously attained (120).
The idea is to hybridize the two low-frequency eigenmodes of a
DMR (Fig. 3B) in the formation of a new resonant mode by add-
ing a thin layer of sealed gas behind the DMR (Fig. 8B, left). Be-
cause the hybridized mode profile is necessarily the linear
superposition of the two low-frequency eigenmodes, the two com-
ponents of the normal displacement, 〈W〉 and dW(x) in Eq. 2, be-
come separately tunable degrees of freedom. It is then possible to
optimize 〈W〉 for perfect impedance matching to air, whereas dW(x)
can be very large so as to absorb all the incident wave energy (Fig. 8B,
right). This combination leads to a low-frequency narrow-bandwidth
total absorber with an extremely small thickness.

Various alternative concepts also show good promise. An ultrathin
resonant absorber with a design concept similar to space-coiling was
reported (106), in which sound was forced to go through a convoluted
air passage for a distance on the order of l/4 so that the total reflection
was reduced. The thin air passage, which resembled a perforated plate,
also served as the absorbing medium. Jiang et al. (121) demonstrated
broadband absorption by stacking multiple quarter-wave resonators in a
tapered manner. Originally studied in optics, coherent perfect absorption
(CPA) arises from the destructive interference between counter-
propagating waves, which can lead to the cancellation of outgoing
waves and, thus, total absorption. Theoretical investigations suggest
that CPA also applies to acoustics, albeit with stringent requirements on
material properties and geometry (122–125). In particular, Leroy et al.
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(125) demonstrated high absorption in water-borne ultrasound by
covering a sound reflector with a subwavelength layer of resonant
“bubbles” that were hollowed in a soft polymer film. Degenerate critical
coupling is another possible route for total absorption. It requires the ex-
act degeneracy of two eigenmodes with different symmetries (126), a con-
dition that can, in principle, be satisfied with proper metamaterial designs.
A particular realization of total absorption by two degenerate resonators
was recently reported (127), in which a monopolar resonator and a di-
polar resonator, both deep subwavelength in scale and resonant at the
same frequency, were placed closely together so that the incident wave
perceived the two as a single unit. At resonance, the average imped-
ance of the two subunits perfectly matched the air so that the inci-
dent wave generated no reflection, whereas the different symmetries of
the two resonators caused the transmitted wave to be cancelled. That
resulted in total absorption.

So far, the high absorption achieved by acoustic metamaterials
remains within narrow frequency bands. It complements well the
acoustic absorption of the traditional approaches in the low-frequency
regime, where machine-generated noise can be an important source.
ACTIVE CONTROL

As “tuning” acoustic metamaterials usually amounts to the fabrication
of new samples, reconfigurable metamaterials are important for their
versatility and broadened application potentials. Indeed, increasing
efforts have been drawn toward such designs. Certain nonlinear pro-
cesses can introduce multistable configurations that are controllable by
external means, such as static force loading. This was exploited to add
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
tunability to metamaterials. Successful examples were demonstrated
with ordered granular chains/crystals (128–130) and buckling elasto-
mers (131, 132). Piezoelectric elements, which have long been used for
acoustic-electric transducers, can display an acoustic response that is
variable under different external electric controls (133–137). Schemes
based on the electrical control of resonant frequencies in membrane-
type metamaterials have been proposed and realized (138).

Besides reconfiguration, powered devices are also exploited to
achievemore exotic functionalities such as asymmetric scattering. These
functionalities are partly derived from the controlling electronics. For ex-
ample, Popa and Cummer (137) constructed a nonreciprocal acoustic de-
vice in which an electronic frequency converter was loaded onto a
piezoelectric membrane, which gave it a nonlinear response that can up-
convert the frequency of the incident sound. A Helmholtz resonator
was then connected to one side of this membrane to filter the incident
sound, leaving the up-converted frequency unaffected. This combination
resulted in the strong asymmetric transmission of acoustic energy. Fleu-
ry et al. (139) treated an electronically controlled loudspeaker as a gain
component, used to compensate for the energy that was lost to an ab-
sorber. This allowed the realization of anisotropic transmission
resonance: for incidence from both sides, transmission reached almost
unity, but because of the asymmetrically positioned gain and loss com-
ponents, reflections were highly asymmetric.
EMERGING NEW DIRECTIONS AND OUTLOOKS

Acoustic metamaterials are rapidly evolving both in the diversity of
functionalities and in new directions that may not fit the original
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definition of acoustic metamaterials as constituted by resonant units, but
nevertheless display characteristics that are beyond those found in nature.

Nonreciprocal acoustic devices
In recent years, many structures with cleverly designed spatial
asymmetry have been demonstrated to display asymmetric transmis-
sion. However, asymmetric transmission and nonreciprocity are
fundamentally different, in spite of some cursory similarities. An easy
test for nonreciprocity, in the absence of dissipation and gain, is to time-
reverse the outgoing waves and compare the waves formed on the other
side of the sample with the original incident wave. If the two are not the
time-reversed versions of each other, then we have nonreciprocity. More
detailed discussions can be found in the studies of Maznev et al.
(140) and Jalas et al. (141). Nonreciprocity can be acquired with
relative ease in electronic and photonic systems, owing to their in-
herent sensitivity to magnetic fields whose presence breaks time-
reversal symmetry. However, acoustic systems generally do not
respond to magnetic fields, and new tricks are therefore needed
to achieve similar effects. A feasible method is to use moving fluid.
For example, the Aharonov-Bohm effect in electronic systems can
be mimicked by performing a time-reversal acoustic experiment (in
which sensed acoustic waves are time-reversed by computer and
emitted back through the same transducers) in the presence of a water
vortex (142). In a recent experiment, Fleury et al. (143) constructed a
ring-shaped resonator in which the air was set into circulation. The
flowing medium induced a strong Doppler effect, through which
sound propagation was shown to be nonreciprocal among the three
outlet ports. This is a system that breaks reciprocity and therefore
enables true acoustic isolation. Incorporation of nonlinearity into
acoustics has shown very interesting results such as reconfigurability
(130–132), high-intensity focusing (128), and nonreciprocal trans-
mission (129, 137, 144–146). Systems whose property (for example,
effective mass) is temporally modulated are also able to display
nonreciprocity (147).

Elastic and mechanical metamaterials
Acoustic metamaterials have also influenced the study of structural
elastic waves in the past few years. For example, local resonances were
shown to be effective for manipulating elastic surface waves (148–151).
Cloaking (152–155), negative refraction (156–158), and subdiffraction
focusing (158, 159) were demonstrated in thin plates. Several theore-
tical and numerical investigations on resonant elastic metamaterials
revealed fascinating possibilities such as negative shear modulus (21)
and superanisotropy (20). However, experimental efforts are still rare.
A particularly ambitious target is the mitigation of the destructive
effects of seismic waves. Recently, a full-scale seismic wave experiment
was reported by Brûlé et al. (160), wherein a rectangular array of
boreholes drilled into the ground surface showed the clear effect of
blocking low-frequency surface vibrations.

Originally proposed by Milton and Cherkaev (161) and Milton
(162), “pentamode” mechanical metamaterials represent a novel type
of structural material in which rigidity is maintained through point
contacts between the tips of the elongated structural elements. Because
bending and rotational motions about these point contacts encounter
much smaller resistances, these structures consequently can have a
bulk modulus that is much larger than the shear modulus, leading
to the interesting characteristic that the compression and transverse
vibrations are essentially decoupled. The past few years have witnessed
Ma and Sheng Sci. Adv. 2016; 2 : e1501595 26 February 2016
the realization of pentamode metamaterials, thanks to new fabrication
technologies such as lithography and three-dimensional printing
(163–166).

Graphene-inspired metamaterials
The successful fabrication of graphene and the subsequent wave of
research studies have sparked a tremendous interest in realizing, for
acoustic waves, dispersion relations that are similar to those found in a
semimetal electronic band structure known as the Dirac cone,
featuring crossed linear dispersions at a point in the reciprocal space
(98, 167–171). Such linear dispersions have several important implica-
tions. For example, a Dirac-like dispersion located in the Brillouin
zone center (G point, where k ∼ 0) is related to a near-zero refractive
index (169, 172). Therefore, it can serve as a straightforward platform
for the study of zero-index physics and relevant functionalities. In
addition, Dirac-like dispersion is characterized by two (or more) states
that can become degenerate. This is an indication that they have dif-
ferent types of symmetry. The evolution of symmetry for these
isolated bands may be characterized by geometric phases and/or
topological entities such as the Chern number. For example, the
symmetry of Bloch states is closely related to the geometric phases
of the bands, and their direct observation is easier in macroscopic
systems such as phononic crystals (173). This is the reason that
Dirac-like dispersion is usually a good starting point for the reali-
zation of relevant exotic physics, which has attracted significant atten-
tion in electromagnetism and optics, in particular for photonic crystals
(174). Recently, topological transition was observed in one-dimensional
phononic crystals (173). A number of theoretical works have investi-
gated its potential realization in higher dimensions, including the unique
chiral edge modes that are immune to backscattering (175–181).
Because acoustic waves are insensitive to magnetic fields, which are
crucial elements in the appearance of the chiral edge modes in graphene,
artificial gauge fields of various types have been proposed to mimic
the effect of magnetic fields in the context of acoustic metamaterials.
Realizations of the chiral edge modes in mechanical systems have also
appeared in systems such as a two-dimensional array of coupled
pendula (182) and an oscillator array consisting of spinning masses
(183). Recently, Weyl points have been observed in photonic crystals
(184), and a proposal for its realization in acoustics has also been
reported (179).

Acoustic metamaterials with characteristics describable by
non-Hermitian Hamiltonians
Another new direction is the physics of non-Hermitian Hamiltonians,
which describes systems with loss and/or gain (185). Originally studied
in nuclear systems to explain phenomena such as the lifetime of
excited states, real observable eigenstates have been shown to exist,
despite the fact that the relevant eigenvalues may be imaginary.
Intriguing phenomena related to exceptional points, at which two
or more eigenstates coalesce when driven by a system parameter (such
as loss) (186), have found applications such as asymmetric reflection
(187), single-mode lasing cavity (188), and loss-induced lasing revival
(189) in optical systems. Investigations in the context of acoustics have
also started to appear (139, 190, 191).

An active field with a promising future
Acoustic metamaterials have undoubtedly expanded the capabilities of
acoustic wave manipulation. Reliance on resonances implies frequency
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dispersions and narrow frequency bands in the effectiveness of
acoustic metamaterials. Hence, broadening the frequency range of
operation of acoustic metamaterials is an obvious direction for solidi-
fying their roles in diverse applications. Acoustic metamaterials are
also expected to affect ultrasonic acoustics, where countless applica-
tions (such as medical imagining) lie. However, even in the present
state of acoustic metamaterials, new thinking such as “digitizing” meta-
materials into binary units (192) has already made some promised
functionalities more accessible, such as actively controllable meta-
surfaces. Owing to the simplicity of the fabrication process (compared
to those for electronic and display devices, for example), the commer-
cialization of some of the research results targeting old challenges such
as noise abatement and selective perception in human audition (193)
may occur in the near future. Furthermore, can acoustic metamaterials
be useful for protection against seismic waves? Such an obvious ques-
tion demands answers, and they may not be too far away.
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