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Determining hydrodynamic boundary conditions from equilibrium fluctuations
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The lack of a first-principles derivation has made the hydrodynamic boundary condition a classical issue for the
past century. The fact that the fluid can have interfacial structures adds additional complications and ambiguities
to the problem. Here we report the use of molecular dynamics to identify from equilibrium thermal fluctuations
the hydrodynamic modes in a fluid confined by solid walls, thereby extending the application of the fluctuation-
dissipation theorem to yield not only the accurate location of the hydrodynamic boundary at the molecular
scale, but also the relevant parameter value(s) for the description of the macroscopic boundary condition. We
present molecular dynamics results on two examples to illustrate the application of this approach—one on the
hydrophilic case and one on the hydrophobic case. It is shown that the use of the orthogonality condition of the
modes can uniquely locate the hydrodynamic boundary to be inside the fluid in both cases, separated from the
molecular solid-liquid interface by a small distance � that is a few molecules in size. The eigenvalue equation
of the hydrodynamic modes directly yields the slip length, which is about equal to � in the hydrophilic case
but is larger than � in the hydrophobic case. From the decay time we also obtain the bulk viscosity which is
in good agreement with the value obtained from dynamic simulations. To complete the picture, we derive the
Green-Kubo relation for a finite fluid system and show that the boundary fluctuations decouple from the bulk only
in the infinite-fluid-channel limit; and in that limit we recover the interfacial fluctuation-dissipation theorem first
presented by Bocquet and Barrat. The coupling between the bulk and the boundary fluctuations provides both
the justification and the reason for the effectiveness of the present approach, which promises broad utility for
probing the hydrodynamic boundary conditions relevant to structured or elastic interfaces, as well as two-phase
immiscible flows.
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I. INTRODUCTION

In contrast to the electromagnetic Maxwell equations in
which the boundary conditions can be derived from the
equations themselves, the hydrodynamic boundary condition
represents information that is additional to the Navier-Stokes
equation, and necessary for its solution. It is a classical issue
dating back to the work of Maxwell on the kinetic theory
of gases [1,2]. Over the years, there have been many studies
addressing this problem from the perspectives of kinetic theory
[3–7], fluctuations [8–21], and the Onsager principle [22–24].
At the molecular level, the hydrodynamic boundary condition
is complicated by the fluid structure near the solid boundary
[9,13,25–29], which introduces an ambiguity to the location
at which the hydrodynamic boundary condition should be
applied. Approaches involving dynamic experiments [30–33]
or simulations [9–29] for determining the hydrodynamic
boundary condition and its relevant parameters usually suffer
from complications, such as the precise location of the hydro-
dynamic boundary, as well as effects inherent to dynamics that
make the hydrodynamic boundary condition imprecise at the
molecular scale. The fluctuation-dissipation theorem (FDT)
[34], a remarkable relation linking the macroscopic linear
response coefficients to the microscopic correlation functions,
represents an obvious avenue to obtain the parameters of the
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hydrodynamic boundary condition from molecular dynamics
(MD) simulations. Bocquet and Barrat [9] pioneered in writing
down the relevant FDT for the fluid-solid interfacial dissipation
coefficient for a semi-infinite fluid bounded by a solid bound-
ary. However, subsequent adaptation of its use in molecular
dynamics simulations of finite fluid systems has yielded
results that are sample-size dependent [12,13,21]. In particular,
Petravic and Harrowell performed a series of works showing
that the friction coefficient obtained by applying Bocquet-
Barrat theory corresponds to an empirical friction coefficient
with clear geometric dependence on the channel width, rather
than the intrinsic friction coefficient that should be solely
determined by the interfacial characteristics [10,12,13]. In
particular, it was shown that the force autocorrelation integral
calculated from MD simulations varies inversely with the sum
of the channel width plus twice the slip length. This behavior
is in contradiction to the expectation of a constant value that
would correspond to the intrinsic interfacial friction coefficient
as proposed by Bocquet and Barrat. Similar observations and
objections have been reported by others [16,18,21], supported
by numerical evidence. Since the intrinsic interfacial friction
arises physically from the presence of a liquid-solid interface,
information regarding the interfacial friction should be fully
describable for a nanoconfined system where the number of
liquid molecules is finite and far from the thermodynamic
limit. Hence the attribution of such size-dependent effect to
the intrinsic limitation of a finite system is clearly unten-
able [21]. There were also reports that the application of
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Bocquet-Barrat theory leads to an interfacial friction coeffi-
cient that is inconsistent with that obtained from nonequi-
librium MD simulations [13,21]. A related issue is that
the derivation of the Bocquet-Barrat theory assumed only
the mode with eigenvalue k0 = 0 [9] to be relevant to the
hydrodynamic boundary condition, where kn denotes the
periodicity of the nth hydrodynamic mode along the (fluid)
channel width direction. However, in any simulations of finite,
confined systems, the removal of the center-of-mass motion,
e.g., by considering only antisymmetric modes, would imply
that k0 = 0 is a trivial solution to the eigenvalue equation that
possesses no thermal energy. This fact is clearly demonstrated
below in our simulation results, and has the implication that
for finite, confined systems, only those finite-energy modes
with kn �= 0 (which also satisfy the eigenvalue equation for
the hydrodynamic modes) should be considered as the source
of information for the hydrodynamic boundary condition that
is derivable from the fluctuation-dissipation theorem. In fact, in
the last section of this work we derive a fluctuation-dissipation
theorem for a confined system, and show that the theory of
Bocquet and Barrat can be recovered in the infinite-channel-
width limit. Hence, in spite of all the criticisms in the previous
literature, the theory of Bocquet and Barrat is actually correct;
it is just inapplicable to finite systems and consequently cannot
be useful for obtaining the hydrodynamic boundary condition
information through MD simulations.

Apart from the issues raised by the theory of Bocquet and
Barrat, a serious problem for obtaining the intrinsic hydrody-
namic interfacial friction coefficient through MD simulations
is the lack of completeness and consistency in determining
all the hydrodynamics parameters [9,13,14,16,21,29]. In par-
ticular, the precise microscopic position of the hydrodynamic
boundary is a persistent problem that seems to lie beyond
any consistent framework. Owing to the liquid structures near
the solid boundary, an arbitrariness is usually introduced in
determining the reference surface at which the slip velocity
should be measured. Consequently, there can be an uncertainty
in the value of the slip length and the relevant friction
coefficient [13,14,21]. Similar arbitrariness can also arise for
those methods in which a boundary “slab” is introduced and the
boundary properties are measured inside this artificial region
[16]. Denniston and Robbins [29] have reported that a major
difficulty in finding the hydrodynamic boundary condition
arises from the necessary arbitrariness in determining the
position of the hydrodynamic boundary from MD simulation
results, owing to the fact that the system is always underdeter-
mined within the traditional frameworks. Even the sharpness
of the hydrodynamic boundary, which has been an implicit
classical assumption, has so far not been explicitly tested. If
it turns out that the hydrodynamic boundary is not sharp in
the microscopic scale, then the concept of a slip length would
become meaningless since such a length must be measured
from a sharp reference surface. This is especially the case if
the slip length is on the order of the molecular scale, as is
generally the case.

In this work, we take the approach of using MD simulation
data to answer all those questions and problems raised above,
with no a priori assumptions. It is shown that in a confined
fluid system, as equipartition of thermal energy dictates the
excitation of hydrodynamic eigenmodes with equal kinetic

energy, these eigenmodes can be unambiguously identified
in molecular dynamics simulations through the projection
approach. By using the wave numbers kn of the hydrodynamic
modes as well as the mutual orthogonality of the eigenfunc-
tions, the multiple eigenmodes form an overdetermined system
for the unique determination of the precise location of the
hydrodynamic boundary, the interfacial dissipation coefficient,
and the viscosity. In other words, we use the MD simulation
data to test the classical assumption of a sharp hydrodyan-
mic boundary. We find overwhelming consistency, even for
the large kn modes, provided that the fluid motion at the
microscopic level is long-time averaged. Such consistency is
manifested by the fact that multiple pairs of the hydrodynamic
modes, identified through the MD data projection approach,
can simultaneously satisfy the orthogonality condition over the
same spatial domain. This is possible only if the hydrodynamic
boundary is sharp and uniquely defined. Indeed, the position of
the hydrodynamic boundary thus defined is found to be inside
the fluid domain, separated from the fluid-solid molecular
interface by a small distance. Since in a confined system the
hydrodynamic modes inherently contain the information about
the hydrodynamic boundary condition, this approach enables
us to obtain unambiguous information about the slip length.
A side benefit is that the bulk viscosity can also be deduced
and is shown to be in good agreement with the value obtained
from bulk simulations.

In what follows, Sec. II presents a description of the
hydrodynamic modes in the continuum limit. Our scheme is
delineated in Sec. III, and denoted the generalized fluctuation-
dissipation approach. Details about the molecular dynamics
simulations are given in Sec. IV, followed by the presentation
and discussion of results for two cases—one hydrophilic
and one hydrophobic—in Sec. V. Section VI presents the
derivation of the Green-Kubo relation [35,36] for a confined
system, which provides not only the theoretical (fluctuation-
dissipation) context for our approach, but also the limiting
scenario under which the theory of Bocquet and Barrat is
recovered.

II. HYDRODYNAMIC MODES

Consider a system of incompressible fluid confined between
two parallel planar solid walls with a separation of 2H , shown
schematically in Fig. 1. The z coordinate is defined to be

FIG. 1. (Color online) Geometry of the system and the hydrody-
namic modes. Molecular view of a sample simulation system showing
the definition of H , h, and �. Two hydrodynamic modes are also
shown. They correspond to the hydrophilic case with H = 13.2σ ,
where σ is the size parameter in the Lennard-Jones potential.
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normal to the solid walls, with z = 0 at the center of the
fluid channel. The problem considered is two dimensional, i.e.,
infinite along the y direction, and the fluid velocity is along the
x direction. In thermal equilibrium, the fluctuating transverse
(x) momentum density is defined as J (z,t) = ρ0v(z,t), where
ρ0 is the density of the fluid and v(z,t) is the fluctuating
transverse velocity. J (z,t) may be expanded as J (z,t) =∑∞

n=1 jn(z,t), with the eigencomponents jn(z,t) obtainable by
solving the incompressible Navier-Stokes equation, which can
be reduced in the present case to the following simple form:

∂

∂t
jn(z,t) = η

ρ0

∂2

∂z2
jn(z,t). (1)

Equation (1) may be solved through separation of variables.
Using jn(z,t) = Zn(z)Tn(t), we have

1

Zn(z)

d2Zn(z)

dz2
+ k2

n = 0 (2a)

and
ρ0

ηTn(t)

dTn(t)

dt
+ k2

n = 0. (2b)

Note that only the antisymmetric fluctuating modes are
considered in the present study, as the center-of-mass motion is
removed from the problem. It follows that Zn(z) = An sin(knz)
and Tn(�t) = Tn(0)e−ηk2

n�t/ρ0 , where �t denotes the time
relative to an arbitrary starting point. The coefficient An and the
wave number kn can be determined from the initial condition
of equipartition and the Navier boundary condition (NBC),
respectively. For the kn mode, the slip velocity v

slip
n is defined

as the fluid velocity at the hydrodynamic boundary z = ±h,
where h � H , with regard to the corresponding velocity
pattern zn(z) = Zn(z)/ρ0. That is:

ρ0v
slip
n = An sin (knh). (3a)

Moreover, the force balance in the boundary layer means
that the frictional stress exerted by the wall on the slipping
fluid, Gfric

n = −βv
slip
n , must be fully accounted for by the

tangential viscous stress at the hydrodynamic boundary,
Gvisc

n = η ∂zn(z)
∂z

|z=h, for each mode, yielding the equation

−βρ0v
slip
n = ηAnkn cos (knh). (3b)

Here β is the slip frictional coefficient and η is the viscosity
of the fluid. Dividing Eq. (3a) by Eq. (3b) and introducing the
slip length lslip = η/β, we get the equation

tan (knh) = −knlslip (4)

for all the eigenmodes. It is important to note here that the
hydrodynamic boundary z = ±h can differ from the fluid-solid
molecular interface z = ±H . Owing to the orthogonality of
the eigenmodes (as they constitute the eigenfunctions of a
real symmetric operator), h should be uniquely defined as the
domain over which the inner product of jm(z,t) and jn(z,t) is
zero if m �= n [the orthogonality condition ensured by Eq. (4)].
Furthermore, due to the antisymmetric nature of the modes,
it is necessary to only consider half the system. We also note
that for a finite fluid system the k0 = 0 mode does not have
any kinetic energy and therefore represents the trivial solution
of the eigenvalue equation.

III. A GENERALIZED FLUCTUATION-DISSIPATION
APPROACH

By utilizing the hydrodynamic modes and the equipartition
theorem, one can write down the FDT for the whole system.
This is shown in the last section so as not to digress from our
main line of presentation. What is important to note is that
the boundary fluctuations are intimately coupled with the bulk
fluctuations, and the two would decouple only in the limit of
H → ∞, in which case we recover the interfacial FDT as first
formulated by Bocquet and Barrat [9]. Below we propose a
different approach which may be regarded as a generalization
of the FDT to this finite system.

All the eigenmodes satisfy Eq. (4), which ensures mutual
orthogonality. If a few low lying eigenmodes can be identified
with kn being accurately measured, then both h and lslip can be
determined. We start by measuring the normalized transverse
momentum density autocorrelation function C(k,�t) from
molecular dynamics simulations. Here k is taken to be a
continuous variable. Owing to the linear response theory [37]
and the exponential form of Tn(�t), it may be concluded that
C(kn,�t) = Tn(�t)/Tn(0) = exp(−ηk2

n�t/ρ0), with a decay
time τdecay(kn) = ρ0/ηk2

n. Since the independent hydrody-
namic modes are preferably excited, their decay times should
be manifest as (local) peaks in the corresponding k spectrum.
This can also be demonstrated by solving Eq. (1) as an
initial value problem with jn(z,t = 0) = sin kz as the initial
pattern, where k can take any value. Deviation of the k value
from kn would introduce inconsistency with the boundary
condition, thereby leading to a faster decay of the initial
pattern.

From the above, a straightforward method suggests itself
for identifying the kn modes in a confined fluid system by
MD simulations. That is, we let the fluid system, through its
fluctuations, tell us directly about the information contained
in the hydrodynamic modes. From the peak decay times
one can uniquely determine the viscosity η of the confined
fluid (as the density of the fluid is generally well defined).
From the kn positions one can identify the location of the
hydrodynamic boundary z = h by applying the condition∫ h

0 sin(knz) sin(kmz)dz = 0 for any pair n �= m. For differ-
ent pairs, the h values thus obtained can be checked for
consistency. Provided the h values display only very small
discrepancies for the different pairs of n �= m, Eq. (4) can
then be numerically solved by adjusting the only unknown
parameter lslip. Dividing η by lslip then yields the value
of the slip frictional coefficient β. By carrying out this
approach for different channel widths, one can check the
expectation that the parameters � = H − h and β should
be independent of the channel width, as they pertain only
to the fluid-solid interface. If it happens that we find any
inconsistency between the hydrodynamic description and the
MD simulation results, then our approach will be able to
tell us the deviation between the hydrodynamic description
and the actual fluid system behavior at the molecular scale.
Such information can be valuable in formulating correc-
tions to the hydrodynamic theory at the nanoscale. In this
work, the results are shown to give overwhelming support
to the hydrodynamic description, even at the molecular
scale.
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FIG. 2. (Color online) Decay of the hydrodynamic modes. Nat-
ural logarithm of the normalized autocorrelation functions measured
from MD simulations for the three eigenmodes in the hydrophilic
channel with H1 = 13.2σ . The decay time can be evaluated from the
inverse of the slope for each straight line.

IV. MOLECULAR DYNAMICS SIMULATIONS

MD simulations of a Lennard-Jones (LJ) fluid, confined
between two parallel planar solid walls, were performed to
demonstrate the implementation of our method. The wall
atoms were arranged in a face-centered-cubic lattice and
constrained to be in the vicinity of the lattice sites by a
harmonic spring potential. The force constant was chosen to
ensure that the mean square displacement of wall atoms does
not exceed 10% of the nearest-neighbor distance, obeying
the Lindemann criterion [22]. Interactions between the wall
atoms were removed. Each wall comprised two [001] atomic
planes perpendicular to the z axis [22–24,27,38]. Periodic
boundary conditions were imposed along the x and y di-
rections. We have carried out simulations on three systems
with the equilibrium positions of the two interfacial [001]
wall planes at z = ±H1 = ±13.2σ , z = ±H2 = ±26.1σ , and

z = ±H3 = ±51.9σ . Here σ is the LJ potential’s molecular
size parameter (see below). In addition, for each channel
width we considered both a hydrophilic scenario and a
hydrophobic scenario, by varying the attractive term in the LJ
potential for fluid-wall interaction [13,22,26] while keeping
the atomic configuration of the walls, the fluid density, and
the fluid-fluid interaction unchanged. Both the fluid-fluid
and wall-fluid atomic interactions are described by the LJ
potentials uij (r) = 4εij [(σij /r)12 − δij (σij /r)6], where i and
j can be either “f ” for fluid or “w” for wall. In the
present study, the reduced LJ-unit system was adopted, with
εff = ε, εwf = 1.16ε, σff = σ , σwf = 1.04σ , and δff = 1.
For the hydrophilic scenario, we set δwf 1 = 1, whereas for
the hydrophobic scenario we set δwf 2 = 0.7. Here the terms
“hydrophilic” and “hydrophobic” are used to distinguish the
slightly different degrees of wettability of the two cases. The
fluid is wetting to the wall (with a contact angle smaller than
90°) in both cases [13]. It should be noted that the equilibrium
wall-fluid atomic distance for the hydrophobic scenario has
been estimated to be only ∼0.1σ larger than that for the
hydrophilic scenario [13], much smaller than the channel
width.

The main purpose of considering both hydrophobic and
hydrophilic scenarios is to demonstrate that the consistency
and validity of our approach hold for different cases of
wall-fluid interaction. All the LJ interactions are cut off at rc =
2.5σ . The additional noise introduced by the cutoff has been
noted to be negligible, with the total energy remaining constant
and the kinetic energy oscillating around the equilibrium value
[38,39]. The atomic mass is denoted by m, and the average
number density for the fluid is set at ρf = ρ0 = 0.81/σ 3. For
wall atoms, the mass is the same as that of the fluid atoms, but
the number density is higher, set at ρw = 1.86/σ 3. A constant
temperature of 2.8ε/kB was maintained for the two walls
using a Langevin thermostat. Throughout the simulations,
the equation of motion was integrated with a time step of
0.002

√
mσ 2/ε. Center of mass motion was removed from the

simulation.
From the MD trajectories, the fluctuating transverse mo-

mentum density autocorrelation function C(k,�t) was mea-
sured for different input values of k ranging from 0.001 to 1 in
intervals of 0.001 (all in units of σ−1):

C(k,�t) =

〈(
N∑

i=1
vi(t = t0) sin [kzi(t = t0)]

)(
N∑

i=1
vi(t = t0 + �t) sin [kzi(t = t0 + �t)]

)〉
〈(

N∑
i=1

vi(t = t0) sin [kzi(t = t0)]

)(
N∑

i=1
vi(t = t0) sin [kzi(t = t0)]

)〉 , (5)

where vi(t) and zi(t) denote the velocity and z coordinate
for atom i at time t , respectively. The summation runs
over all fluid atoms, and 〈〉 represents the time averaging.
The time resolution of 0.5

√
mσ 2/ε was chosen to be two

orders of magnitude larger than the simulation time step
to ensure that C(k,�t) was measured in the overdamped
regime where hydrodynamics should be valid. Here m is
the molecular mass and ε is the LJ interaction energy
unit.

Equation (5) is the expression of the projection approach
in which the random thermal velocities are projected onto a k

mode so that its normalized time correlation can be evaluated.
The decay time τdecay(k) was estimated by taking the negative
reciprocal of the slope of ln[C(k,�t)] (plotted as a function of
�t). The exponential decay for the three hydrodynamic modes
of the H1 = 13.2σ hydrophilic case are shown in Fig. 2. It
is seen that the exponential decay is an extremely accurate
description of the data.
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V. RESULTS AND DISCUSSION

A. The hydrophilic case

Figure 3 shows the decay time τdecay plotted as a function
of k for the three hydrophilic cases. The positions of the
peaks corresponding to the eigenmodes kn were determined
by using ORIGIN to subtract the bottom and then locating the
peaks. This operation is shown in the inset to Fig. 3(a) for the
narrow-channel case of H1 = 13.2σ . The results are marked
by the red arrows and also tabulated in Table I. It is noted that
values of larger kn’s obtained from MD simulations are not
simple multiple integers of the smallest k1, owing to the slip
boundary condition. The latter is noted to be incorporated in
Eq. (4). The viscosity η of the confined fluid can readily be
obtained by fitting τdecay(kn) with τdecay(kn) = ρ0/ηk2

n, with
ρ0 = 0.81m/σ 3. The fitting curves (dash-dotted lines) are
plotted in Fig. 3 for all three cases. Excellent agreement
with the height variation of the eigenmodes is seen. It
implies that fluid viscosity is a bulk property and therefore
is a manifestation of the fluid-fluid atomic interaction only,
regardless of the wall-fluid atomic interactions at the wall-fluid
interface. From different cases, all values of η are around
1.84

√
εm/σ 2, consistent with each other and only slightly

different from that evaluated by nonequilibrium MD (NEMD)
simulations, which are known to display shear-rate dependence
[40]. To verify this fact, an average value of 1.88

√
εm/σ 2 for

the viscosity is obtained from ten NEMD simulations with
different shear rates, with the maximum and minimum at
1.98

√
εm/σ 2 and 1.76

√
εm/σ 2, respectively.

The mutual orthogonality of the eigenmodes can be used to
unambiguously determine h so as to locate the hydrodynamic
boundary. Then Eq. (4) can be used to determine lslip. We wish
to first call attention to the values of kn tabulated in Table I.
For the h (�) and lslip values given in each channel width H ,
remarkable agreement is achieved between all the kn values
measured from MD simulations and those predicted from
the hydrodynamic theory. The values of h (�) in each case
display only very small error bars, obtained by carrying out
the orthogonality integration between pairs of modes kn and
km, with n �= m. It is seen that in general, the hydrodynamic
boundary is located somewhere inside the fluid, with H > h in
all the cases. The distance between the molecular solid-liquid
interface and the hydrodynamic boundary, � = H − h, is
dependent on the wall-fluid atomic interaction. However,
changing the geometry of the systems does not affect �. Hence
� ∼= 2.2σ−2.3σ is an intrinsic parameter of the interface; it is
physically associated with the fluid density oscillation near the
solid wall, caused by the fluid hydration effect [9,13,25–29].

The slip length lslip, or equivalently the slip frictional
coefficient β, is determined by numerically solving Eq. (4)
with lslip treated as the only unknown parameter. The resulting
solution set k′

n(h,lslip) can be compared with the kn values
obtained from direct MD measurement. The optimal value for
lslip that gives the best agreement is shown in Table I. Similarly
to the parameter � discussed above, lslip is also an intrinsic
parameter that depends only on the physical and/or chemical
properties of the specific interface, regardless of the system
geometry. In the hydrophilic case, lslip is about 2σ−2.1σ for
the present case. Dividing η by lslip gives the value of the slip
frictional coefficient β = 0.86−0.92

√
εm/σ 3.

FIG. 3. (Color online) Decay time of the hydrodynamic mode
as a function of its wave vector for the hydrophilic channels. (a)
For channel width H1 = 13.2σ , there are three discernible modes,
signified by peaks in the decay time. Their k values are indicated
by the red triangles on the horizontal axis. From the orthogonality
requirement of the eigenfunctions, these k’s uniquely determine a
value of h = 10.9σ , or � = 2.3σ (see Table I). The inset shows the
same curve after ORIGIN has subtracted its bottom so as to accurately
locate the peak positions (shown as red dots). The dash-dotted curve
shows the theoretically predicted decay time of the hydrodynamic
mode plotted as a function of k, treated here as a continuous variable.
Here ρ0 denotes the mass density used in the simulations. It is seen
that the curve describes extremely well the height variation of the
peaks, with η = 1.84η0 being the value obtained from a best fit to
the peak heights. Here η0 = √

εm/σ 2 denotes the viscosity unit. This
compares favorably with η = 1.95η0 obtained from bulk simulations.
(b) As (a), for H2 = 26.1σ . Seven modes can be identified (see
Table I), with their k positions indicated by the red triangles. These
k’s uniquely determine a value for h = 23.8σ , or � = 2.3σ . It
should be noted that the value of � is almost exactly the same
as that in (a), thereby indicating its interfacial characteristic, i.e.,
independence from H . The dash-dotted curve now corresponds to
an η value of 1.84η0. Again, very good agreement is obtained with
the predictions based on hydrodynamic mode description. (c) As (a)
and (b), but with H3 = 51.9σ . The number of discernible modes
has now increased to 16 (see Table I), as indicated by the red
triangles. Their agreement with the theory prediction is within 1%.
Here � = 2.2σ . The slipping lengths obtained from the three cases
are 2.0, 2.0, and 2.1σ for (a), (b), and (c), respectively. It is noted
that, for the present hydrophilic case, lslip is approximately equal to
�. This coincidence makes the nonslip boundary condition, with the
boundary set at the molecular interface, very accurate for most of the
calculations.
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TABLE I. Parameter values for the hydrophilic case.

(kn in units of 1/σ )

H = 13.2σ, h = 10.9 ± 0.1σ, � = 2.3 ± 0.1σ, l slip = 2.0 ± 0.1σ, η = 1.84η0

kn MD 0.246 0.504 0.777
kn Theory 0.246 0.504 0.774

H = 26.1σ , h = 23.8 ± 0.2σ , � = 2.3 ± 0.2σ , l slip = 2.0 ± 0.1σ , η = 1.84η0

kn MD 0.122 0.246 0.371 0.496 0.627 0.756 0.878
kn Theory 0.122 0.245 0.369 0.495 0.622 0.75 0.879

H = 51.9σ, h = 49.7 ± 0.1σ , � = 2.2 ± 0.1σ , l slip = 2.1 ± 0.1σ , η = 1.81η0

kn MD 0.061 0.121 0.182 0.244 0.304 0.367 0.428 0.489
kn Theory 0.061 0.121 0.182 0.243 0.305 0.366 0.428 0.490
kn MD 0.555 0.611 0.678 0.744 0.795 0.864 0.934 0.98
kn Theory 0.552 0.614 0.676 0.739 0.801 0.4 0.926 0.989

The MD simulation data can also be employed to test the
classical assumption of a sharp hydrodynamic boundary in
nanoconfined systems. One piece of evidence is that multiple
pairs of the hydrodynamic modes, identified through the
MD data projection approach, can simultaneously satisfy the
orthogonality condition over the same spatial domain. In
addition, the same value of the slip length is obtained for
all the hydrodynamic modes at the uniquely defined, sharp
hydrodynamic boundary. To demonstrate this, we plot in Fig. 4
the absolute value of tan−1(−zn(z)/zn

′(z)
lslip

) with the kn values mea-
sured from MD simulations for each mode of the hydrophilic
case with H2 = 26.1σ . Here zn(z) is the velocity profile for
the mode kn. For each mode, −zn(z)/[∂zn(z)/∂z] gives exactly
the slip length lslip at the hydrodynamic boundary z = h.
Therefore, we can apply the tan−1 operation to transform the
normalized quantity [−zn(z)/zn

′(z)]/lS to an angle that equals
π/4 at the hydrodynamic boundary. It can be seen that all the
curves intersect at a single point (h,π/4). This provides clear
evidence that the multiple eigenmodes form an overdetermined
system for the unique determination of the precise location of
the hydrodynamic boundary and the slip length.

0 10 20 30
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 0.246
 0.371
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 0.627
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)

FIG. 4. (Color online) Absolute value of tan−1{[−zn(z)/
zn

′(z)]/lS} with the kn measured from MD simulations for each mode
of the hydrophilic case with H2 = 26.1σ . Here zn(z) is the velocity
profile for mode kn. The multiple eigenmodes are seen to form an
overdetermined system for the unique determination of h, �, and
lslip.

A direct comparison has been made between the velocity
profile obtained from the NEMD simulation of the Poiseuille
flow in a hydrophilic channel with H = 6.7725σ and that
predicted by the hydrodynamic boundary parameter values of
our theory. The Poiseuille flow was induced by applying a body
force f = 0.005ε/σ to each fluid atom along the x direction.
As shown in Fig. 5, very good agreement has been achieved.
Note that the value of H was purposely chosen to be just half
that of the smallest one in the present study (since the deviation
from the classical theory prediction is usually the largest for
small nanochannels), to demonstrate the applicability of our
theory to nanochannel systems.

B. The hydrophobic case

In the hydrophobic case, the less attractive LJ wall-fluid
interaction gives rise to a larger contact angle, which, however,
is still smaller than 90◦ [13]. The values of decay time obtained
from MD simulations are plotted as a function of k in Fig. 6.

It is to be noted that the value of the viscosity remains
about the same as in the hydrophilic case, since it depends

-5 0 5
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0.03
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0.06
 MD Velocity
 Prediction

Solid Solid

Hydrodynamic boundaries
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FIG. 5. (Color online) Velocity profile obtained from the NEMD
simulation of Poiseuille flow in a hydrophilic channel with H =
6.7725σ , compared to that predicted by using the hydrodynamic
boundary parameter values obtained from our theory. Excellent
agreement is seen.
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FIG. 6. (Color online) Decay time of the hydrodynamic mode
as a function of its wavevector for the hydrophobic channels. (a)
For channel width H = 13.2σ , there are three discernible modes,
with their k values indicated by the red triangles. These k’s uniquely
determine a value for h = 10.8σ or � = 2.4σ (see Table II). The
inset shows the same curve after ORIGIN has subtracted off its
bottom so as to accurately locate the peak positions (shown as
red dots). The dash-dotted curve corresponds to an η value of
1.81η0, with η0 = √

εm/σ 2, in good agreement with that obtained
in the hydrophilic case. Note that bulk viscosity only depends on
the fluid-fluid interaction and the two sets of simulations should
therefore give the same value for η. (b) For H = 26.1σ , seven modes
can be identified, with their k positions indicated by the red triangles
(see Table II). These k’s uniquely determine a value of h = 23.6σ ,
or � = 2.5σ . The consistency in the value of � with the case shown
in (a) also indicates that it is an interfacial characteristic. From the
dash-dotted curve, the η value is estimated to be 1.81η0. (c) For
H = 51.9σ , the number of discernible modes has now increased to
16 (see Table II). Their agreement with the theory predictions is
within 1%. Here � = 2.2σ . An η value of 1.83η0 is obtained. The
slipping lengths obtained from the three cases are 3.0σ , 3.0σ , and
3.1σ for (a), (b), and (c), respectively. It is noted that, for the present
hydrophobic case, lslip has increased by about 50% as compared to
the hydrophilic case. It is also noted to be larger than �.

only on the fluid-fluid interaction, which remains unchanged.
The consistent result for fluid viscosity obtained from all the
simulations further reveals the fact that the fluid density is
well maintained for all the simulations [41]. However, the slip
length exhibits a ∼50% increase from the hydrophilic case,
to 3σ , while the value of � remains about the same. The
value of the interfacial dissipation coefficient is obtained to be
β = 0.6

√
εm/σ 3, much smaller than in the hydrophilic case

as expected.

FIG. 7. (Color online) Number density profile across the channel.
Here the hydrophilic case is delineated by the dotted red curve, and
the hydrophilic case is delineated by the dark blue solid curve. The
curves are truncated in order to enlarge the profiles near the solid
interface. Convergence of the density to a common value is clearly
seen. The positions of the hydrodynamic boundaries are indicated by
the black and red dashed lines for the hydrophilic and hydrophobic
cases, respectively. There are only very small differences between
the hydrophilic and the hydrophobic cases, since the changes in the
LJ parameters between the two are small. The vertical dashed black
lines indicate the positions of the first layer of solid atoms. The
vertical dashed dark blue line and the vertical dashed red line indicate
the positions of hydrodynamic boundaries for the hydrophilic and
hydrophobic cases, respectively. For each case, only one boundary is
marked so as to allow a clear view.

The relatively small change in � agrees well with the
estimation of ∼0.1σ increment in the equilibrium wall-fluid
atomic distance as a result of the adjustment of δwf from
1 to 0.7 [13]. This fact can be clearly seen from the plot
of the fluid number density profile across the H2 = 26.1σ

channel for both the hydrophilic (dark blue solid curve) and
the hydrophobic (dotted red curve) cases, as shown in Fig. 7.
The number density profiles reveal that (1) the fluid atoms form
strongly layered structures at the fluid-solid interface for both
cases, which is the usual behavior for a wetting fluid; (2) the
positions of the density peaks slightly shift away from the wall
by ∼0.1σ when δwf is adjusted from 1 to 0.7, and the heights
of the peaks decrease, implying that the fluid is less wetting
to the wall for the case of δwf = 0.7; (3) the bulk density
is well maintained in both cases; and (4) the position of the
hydrodynamic boundary is near the second-highest peak in the
density profile in both cases. It should be noted that there has
been a previous report of an interfacial fluid layer, generally a
few molecular diameters in thickness, over which the viscosity
and diffusion constant differ from their bulk values [29].
This observation is consistent with the density layers and the
position of the hydrodynamic boundary described above.

The kn values measured in MD simulations are tabulated in
Table II, and compared with their respective theory predictions.
Except for one peak in the large-channel case that cannot be
well resolved, all the other peaks exhibit excellent agreement.
This consistency gives confidence in the location of the
hydrodynamic boundary and the relevant parameter values.
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TABLE II. Parameter values for the hydrophobic case.

(kn in units of 1/σ )

H = 13.2σ , h = 10.8 ± 0.2σ , � = 2.4 ± 0.2σ , l slips = 3.0 ± 0.1σ , η = 1.81η0

kn MD 0.235 0.492 0.767
kn Theory 0.234 0.492 0.767

H = 26.1σ , h = 23.6 ± 0.2σ , � = 2.5 ± 0.2σ , l slips = 3.0 ± 0.1σ , η = 1.81η0

kn MD 0.119 0.242 0.367 0.491 0.619 0.744 0.873
kn Theory 0.119 0.240 0.364 0.492 0.621 0.751 0.882

H = 51.9σ , h = 49.7 ± 0.2σ , � = 2.2 ± 0.2σ , l slips = 3.1 ± 0.1σ , η = 1.83η0

kn MD 0.0593 0.12 0.179 0.24 0.301 0.365 0.421 0.489
kn Theory 0.0595 0.119 0.179 0.24 0.301 0.362 0.424 0.486
kn MD 0.55 0.609 0.677 0.736 0.804 0.866 – 0.983
kn Theory 0.548 0.610 0.672 0.735 0.798 0.861 0.924 0.986

VI. GREEN-KUBO RELATION FOR A FINITE
FLUID SYSTEM

To complete the picture, it is important that we have an
overall picture of the FDT for a finite fluid bounded by
solid walls, so that the condition for the emergence of an
independent interfacial FDT may be clarified. This would
better connect the present work with the previous literature.

Consider the system shown in Fig. 8. Here we consider
only the domain over which the hydrodynamic description
applies, i.e., z = ±h. Hence the “wall” shown in the figure
automatically includes the fluid layer denoted by �. By
removing the center of mass from our considerations, only
the antisymmetric fluctuating modes for an incompressible
fluid need to be considered. Since we wish to include in
our consideration the interfacial dissipation, the system will
contain a thin lubrication layer next to the wall, with some
artificial viscosity denoted as η2 that is taken to be proportional
to the thickness of the lubrication layer, denoted by l. The bulk
viscosity is denoted by η1. At the end of the derivation we shall
see that l = lslip if we set η2 = η1. We specify the velocity v

(both normal and tangential components) to be zero at the
interface between the wall and the boundary layer.

The strategy we wish to pursue is to combine the bulk
and interfacial dissipations into a single system for unified
treatment. By letting l to approach zero (but maintaining η2/l

to be a constant) and h to approach infinity, we can separate
out the interfacial component at the end.

FIG. 8. (Color online) Geometry of the system under consider-
ation. In order to consider the bulk and interfacial dissipations as a
single system for unified treatment, the interfacial region is artificially
magnified and endowed with an artificial viscosity coefficient η2.

The fluctuating transverse momentum (x component) den-
sity is defined by J (z,t) = ρ0v(z,t). Its eigencomponents
jn(z,t) can be obtained by solving Eqs. (1) and (2). From
Eq. (2a), the antisymmetric solutions are given by Zn(z) =
An sin(knz) for z within the region of ±[0,h − l], and Zn(z) =
V S

n (h − z)/l for z within the region of ±[h − l,h], valid for
knl � 1. Here we have defined the (slip) velocity vS

n = V S
n /ρ0

at z = h − l. In addition, the condition Zn(z = ±h) = 0 is
noted to be contained in the form of the solution in the
lubrication layer region. From Eq. (2b), we obtain Tn(t) =
exp[−t/(ρ0/ηk2

n)] by setting Tn(0) = 1.
The solution in the two regions must satisfy the interfacial

conditions of tangential stress and transverse momentum
density be continuous at z = h − l:

V S
n = An sin [kn(h − l)], (6)

−η2V
S
n / l = η1Ankn cos [kn(h − l)]. (7)

Dividing Eq. (6) by Eq. (7), we obtain the eigenvalue
equation

tan [kn(h − l)] = −η1knl

η2
. (8)

In the following we wish to (a) apply the equipartition
theorem to each of the hydrodynamic modes, and (b) write
down the traditional FDT for the whole domain z = ±h in
which we have only viscous dissipation.

A. Application of the equipartition theorem

The application of the equipartition theorem
2S

∫ h

0 Zn(z)2dz = ρ0kBT leads to

2S

[∫ h−l

0
A2

nsin2(knz)dz +
∫ h

h−l

(
V S

n

l
(h − z)

)2

dz

]
= ρ0kBT .

(9)

The first and second terms on the left-hand side of Eq. (9)
represent the bulk and boundary contributions, respectively,
and the factor of 2 is present because we have two halves and
hence two interfaces in the present case. Since An and V S

n are
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present in both Eqs. (6) and (9), they can be solved to yield

A2
n = ρ0kBT

S
[
h − l − sin [2kn(h−l)]

2kn
+ 2lsin2[kn(h−l)]

3

] , (10)

(
V S

n

)2 = sin2[kn(h − l)]ρ0kBT

S
[
h − l − sin [2kn(h−l)]

2kn
+ 2lsin2[kn(h−l)]

3

] . (11)

From the eigenvalue Eq. (8), we can get

sin [2kn(h − l)] = 2 tan [kn(h − l)]

1 + tan2[kn(h − l)]
= − 2η1η2lkn

η2
2 + η2

1l
2k2

n

,

(12)

sin2[kn(h−l)] = 1

2

(
1− 1−tan2[kn(h−l)]

1 + tan2[kn(h−l)]

)
= η2

1l
2k2

n

η2
2 + η2

1l
2k2

n

.

(13)

Application of the FDT for viscous dissipation
The FDT for each mode of the whole system may now be

written as

2S

∫ +∞

0
dt

∫ h

0
dz

(
η

〈(
∂jn(z,t = 0)

∂z

)(
∂jn(z,t)

∂z

)〉)
=ρ2

0kBT ,

(14)

where the angular brackets denote statistical thermal aver-
aging, the effect of which is essentially the equipartition
condition that we have expressed above already, and η = η1

for z in the region of ±[0,h − l], and η = η2 for z in the region
of ±[h − l,h]. Equation (14) can be expressed as

2S

[∫ h

0
η1

(
∂Zn(z)

∂z

)2

dz+β
(
V S

n

)2

] ∫ +∞

0
Tn(t)dt = ρ2

0kBT ,

(15)

where β = η2/l. The bulk and boundary layer dissipation
components can be clearly seen as the two terms in the square
brackets. In fact, it is straightforward to show that if V S

n = 0,
i.e., for the nonslip case, then Eq. (15) is an identity, η1 = η1.

To proceed further, we wish to evaluate the boundary layer
and the bulk dissipations, D

boundary
n and Dbulk

n , in the limit of
h/l � 1 . With the aid of Eqs. (12) and (13), we obtain

Dboundary
n = 2Sβ

(
V S

n

)2 → η1k
2
nρ0kBT

1 + η1β

h(β2+η2
1k

2
n)

2η1β

h
(
β2 + η2

1k
2
n

)
(16)

and

Dbulk
n = Sη1A

2
nk

2
n

(
h − l + sin [2kn(h − l)]

2kn

)

→ η1k
2
nρ0kBT

1 + η1β

h(β2+η2
1k

2
n)

×
(

1 − η1β

h
(
β2 + η2

1k
2
n

)
)

. (17)

B. Defining the fraction of boundary dissipation

One can define a dimensionless boundary dissipation
fraction Cn for each mode:

Cn = 1

2

D
boundary
n

Dbulk
n + D

boundary
n

= η1β

h
(
β2 + η2

1k
2
n

) + η1β
. (18)

The FDT for the boundary momentum density fluctuation
for one mode, in the large h/l limit, can now be written as

Sβ
(
V S

n

)2
∫ +∞

0
Tn(t)dt ∼= Cnρ

2
0kBT ,

or more generally as∫ +∞

0
〈jn(z = h,t = 0)jn(z = h,t)〉dt ∼= Cnρ

2
0kBT

Sβ
. (19)

From Eq. (14), the total bulk and boundary dissipation in
the large h/l limit may be expressed as

2S

∞∑
n=0

[∫ h

0
η1

(
∂Zn(z)

∂z

)2

dz

∫ +∞

0
Tn(t)dt+β

(
V S

n

)2
∫ +∞

0
Tn(t)dt

]

= 2S

∫ +∞

0
dt

∫ h

0
dz

〈
η1

(
∂J (z,t = 0)

∂z

)(
∂J (z,t)

∂z

)〉

+ 2Sβ

∫ +∞

0
dt〈J (z = h,t = 0)J (z = h,t)〉

∼=
∞∑

n=0

(1 − 2Cn)ρ2
0kBT +

∞∑
n=0

2Cnρ
2
0kBT . (20)

In the above, Cn is noted to be a function of h/l, and we
have used the relation

〈J (z = h,t = 0)J (z = h,t)〉

=
∞∑

n=0

jn(z = h,t = 0)jn(z = h,t) =
∞∑

n=0

(
V S

n

)2
Tn(t).

C. Separate FDTs for bulk and interfacial dissipations

The bulk FDT can now be written as∫ +∞

0
dt

∫ h

0
dz

〈(
∂J (z,t = 0)

∂z

)(
∂J (z,t)

∂z

)〉

= ρ2
0kBT

2Sη1

∞∑
n=0

(1 − 2Cn), (21)

whereas the boundary FDT is given by∫ +∞

0
〈J (z = h,t = 0)J (z = h,t)〉dt =ρ2

0kBT

Sβ

∞∑
n=0

Cn. (22)

We have numerically evaluated the sum
∑∞

n=0 Cn = �,
which is shown in Fig. 9 as a function of h/l. It is seen
that � → 1/2 as h/l → ∞. Hence in the limit of h/l → ∞
the bulk dissipation is proportional to N − 1, where the total
number of modes N → ∞. The boundary FDT, on the other
hand, displays an h-dependent form, which (except for a
factor of 2 since here we have two interfaces) is exactly the
expression given by Bocquet and Barrat [9] in the limit of
h/l → ∞. In practical terms, Bocquet and Barrat’s expression
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FIG. 9. (Color online) The h dependence of �. The asymptotic
approach to the limiting value, shown as the red dashed line, has the
form � ∼= 1/2 − l/2h as h/l → ∞.

could be close to being valid when h is at least two orders
of magnitude larger than l, since � is nearly sample-size
independent in that regime.

The lesson learned from this derivation is that, for small
h/l, the boundary and bulk dissipations are inseparable, and
the finite-size simulation of the boundary FDT would lead to
a clear size dependence as observed previously [12,13,21].
Separation of the two components, with size independence of
the boundary FDT, is achieved only at the large h/l limit.

VII. CONCLUDING REMARKS

By using molecular dynamics to evaluate the time cor-
relation function of projected hydrodynamic modes, we have
generalized the FDT to the case of a finite fluid system bounded
by solid walls. From the multiple-peak structure of the k

spectrum of the decay time, we are able to relate the infor-
mation obtained from microscopic equilibrium fluctuations to
the parameters of the macroscopic hydrodynamic boundary
condition. By showing that such information is inherently
contained in fluctuating modes, the present approach has
opened up obvious but nontrivial extensions to cases involving
chemically patterned or geometrically undulating interfaces,
soft elastic boundaries, and two-phase immiscible fluids
separated by a contact line at the solid wall. Application of
the present approach to the latter may yield parameters of the
moving contact line boundary condition [22–24,33] that can
shed further light on this classical problem.
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