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Light carries angular momentum, and as such it can exert torques on material objects. Applications of these
opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes
powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for
particle rotation have since been demonstrated, where the structure is always subjected to a positive optical
torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We
report here an interesting phenomenon of ‘‘negative optical torque’’, meaning that incoming photons
carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite
straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete
rotational symmetry of material object plays an important role. The optimal conditions are explored and
explained.

T
he negative optical torque (NOT) phenomenon manifestly conserves angular momentum1–4. Let us consider
an object illuminated by an electromagnetic wave carrying a z-component angular momentum of Linc

z . After
being scattered by the object, the total z-component angular momentum of the light is Lsca

z . If the con-
sequence of scattering is such that Lsca

z wLinc
z , then angular momentum conservation requires that the difference

Lsca
z {Linc

z must be balanced by a NOT acting on the object. Consequently, negative optical torque is consistent
with total angular momentum conservation. The question is then whether such phenomenon, which does not
violate conservation laws, can be realized in practice. If so, is NOT easily observable? We will show that NOT is in
fact ubiquitous, as it can be realized in many transparent or weakly absorptive structures, in discrete rotationally
symmetric or even irregular structures, and also in planar or even 3D structures. We shall show that field
retardation is necessary for achieving NOT and discrete rotational symmetry enhances NOT. The realization
of NOT adds new possibility to the existing novel5–12 and practical13–21 technique of optical rotation. It may open
up new applications in areas where optical micromanipulation play a role22,23. We note that although negative
optical torque here is indeed the angular counterpart of optical pulling force24-27, it is definitely not a straight
forward corollary. For example, symmetry is not a key factor in achieving optical pulling force but it proved to be
of considerable importance in realizing NOT. Also, NOT is ubiquitous while optical pulling force can only be
observed with a carefully chosen combination of beam profile and particle properties.

Results
Explicit numerical demonstration of negative optical torque. Explicit examples of structures where NOT can
be realized are shown in Fig. 1. For the ease and accuracy of computation and interpretation, we consider planar
structures composing of dielectric microspheres located on the xy-plane. The axis for which the torque is to be
calculated is parallel to the z-axis and goes through the center of mass marked in Fig. 1, where some of the
structures possess discrete rotational symmetry but some do not. We stress that our conclusions are valid not only
for discrete system comprising of spheres, but also to a continuous piece of material.

The time-averaged optical torque C acting on the concerned structure is computed by (see Methods)

C~

ðð
s

r| T
<
D E� �

:n̂dS: ð1Þ

where the time averaged Maxwell stress tensor is given by28
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the origin of the coordinate system is chosen to be the center of mass
marked in Fig. 1, s is any surface that encloses the entire structure,
and r is the position vector originating from the center of mass.
Irrespective of the structural orientation and morphology, the z-
component optical torque calculated by Eq. (1) can be written as

Cz~
X

mi

mi�h
�hv

W(mi)
ext {

X
m

m�h
�hv

W(m)
sca , ð3Þ

where v is the angular frequency of incident wave, and mi and m
characterize, respectively, the azimuthal channels for the incident
and scattered waves. W(mi)

ext is the energy extinction rate for incident
wave from channel mi, and W(m)

sca is the rate at which energy is
scattered into the outgoing channel m. The derivation and the expli-
cit expressions of W(mi)

ext and W(m)
sca are given in the Methods section.

As long as the scattering problem can be treated accurately, Eq. (3) is
exact within the framework of classical electrodynamics. In the
numerical results shown below, we will consider objects composing
of an array of spheres as our prototypical system because the scatter-
ing problem can be solved numerically using the generalized Mie
theory for multi-sphere to a very high precision. This removes any
doubt that the NOT effects observed are numerical artifacts. And
unless stated otherwise, the incident wave is a left circularly polar-
ized28 plane wave propagating along the z-axis, with a positive angu-
lar momentum and an intensity of 1 mW/mm2.

Figure 2 shows the calculated optical torques versus ka for three
morphologically different planar structures with different types of
incident waves, where k is the wave number and a is the radius of the
comprising spheres. The results clearly show that NOT can be rea-
lized in all three structures, which include planar triangular or hexa-
gonal structures consisting of silicon or polystyrene microspheres,
illuminated by a circularly polarized plane wave, Gaussian beam, or
Laguerre Gaussian beam. The optical torques can take negative
values at some intervals of ka. The three structures in Fig. 2 are not
of special design. Other planar structures can serve the same purpose.
Figure 2 illustrates that NOT can be quite universal: it can be
observed in different structures (planar or non-planar) with different
forms of incident wave, including plane wave, Gaussian beam, and
Laguerre Gaussian beam. For the Laguerre Gaussian beam, the smal-
ler structure (yellow line) do not experience a NOT as the beam
cannot probe the structural details. While for the larger structure
(blue line), NOT is still seen.

Analytical demonstration of negative optical torque and the role
of retardation. In addition to numerical demonstration, formal
analytical understanding of NOT can be developed by considering
the following prototypical system: a pair of non-absorbing dipolar
spheres located on the xy-plane, illuminated by a z-propagating
plane wave with arbitrary polarization. Following Ref. 24 and

retaining only the electric dipole term, one can derive the formula
for optical torque:

Cz~
aj j2

2
Re mE{m\

� � Re EEE�\
� �

Re 1zam\zamE
� �

z Ezj j2{ E{j j2
� �

Im amE{am\

� �
" #

, ð4Þ

where

mE~
2eikR

4pe0R3
1{ikRð Þ,

m\~
eikR

4pe0R3
k2R2zikR{1
� � ð5Þ

are the eigenvalues of the dyadic Green’s function29, R is the
separation between the dipoles, and a is the dipolar polarizability.
Ejj and EH are the projection of the electric field parallel to or
perpendicular to the particle axis (i.e. the amplitudes of linear
polarization), E1 and E2 are the amplitudes of left and right
circularly polarized components. The effect of field retardation
manifests itself as a factor of eikR in the expression of mjj and mH,
leading to oscillatory behavior of toque versus kR. We shall see that it
is this oscillation due to retardation that opens up the possibility of
NOT.

The first term in Eq. (4) is proportional to Re EEE�\
� �

. It is an
aligning force, which vanishes for circular polarization. For linearly
polarization, it vanishes only when either Ejj5 0 or EH 5 0, corres-
ponding to the case of polarization being perpendicular or parallel to
the particle axis, respectively. Accordingly, depending on kR, this
force tries to align the particle chain to a direction that is either
perpendicular or parallel to the polarization.

The second term in Eq. (4), which is proportional to (jE1j2 2

jE2j2), also has a simple interpretation: the sign of the corresponding

Figure 1 | Examples of planar structures that can realize negative optical
torque. (a)–(g) structures composed of an array of identical dielectric

spheres. R (a) is the structure (sphere) radius. The crosses mark the centers

of mass, which coincides with the axis of rotation. (h) shows the coordinate

system. The incident plane wave has a k-vector (k) along the z-axis.
Figure 2 | Optical torque for different structures under different incident
waves carrying positive angular momentum. Red: Optical torque versus

varying k for Fig. 1(e) (er 5 2.46, a 5 0.49 mm, R 5 1.0 mm) illuminated by

a left circularly polarized plane wave of intensity 1 mW/mm2. Green:

Optical torque versus varying a for Fig. 1(a) composed of silicon spheres (er

5 12.6096, R 5 1.16a, l 5 1064 nm) in water illuminated by a left

circularly polarized plane wave of intensity 5 1 mW/mm2. Black: Optical

torque versus varying k for Fig. 1(a) (er 5 2.4649, a 5 0.5 mm, R 5

0.58 mm) illuminated by a left circularly polarized Gaussian beam

(numerical aperture 5 0.9 and total power 5 0.05 W). Yellow: Optical

torque versus k for Fig. 1(a) (er 5 2.4649, a 5 0.5 mm, R 5 0.58 mm)

illuminated by a linearly polarized 10 mW Laguerre-Gaussian beam with

topological charge of 1 and a N.A. of 0.9. Blue: Optical torque versus k for

Fig. 1(e) (er 5 2.4649, a 5 0.49 mm, R 5 1.0 mm) illuminated by a linearly

polarized 10 mW Laguerre-Gaussian beam with topological charge of 1

and a N.A. of 0.9. Negative torque (Cz , 0) means that the light beam

induces the object to rotate in the opposite sense as the angular momentum

of the incident photon.

www.nature.com/scientificreports
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torque is determined by the competition between the amplitudes of
the left and right circular polarization. Consequently, it is a rotating
force that will keep the object turning. Depending on kR, a left
circularly polarized light can induce a positive or negative torque.
Consequently, this term is responsible for NOT. Moreover, the term
vanishes identically for linear polarization.

The two terms in Eq. (4) are competing with each other. When the
incident wave is predominantly linearly polarized, the first aligning
term will be dominating and the particle chain will be aligned. On the
other hand, for circular polarization, the second turning term will
dominate and the particle chain will be set into rotation. Equation (4)
contains many salient features of light induced torque. For circular
polarization, it becomes

Cz~
a2j j
2

Ezj j2{ E{j j2
� �

f1 Im az aj jsin 2kRzdð Þ½ �, ð6Þ

where Cx 5 Cy 5 0 by symmetry,

f1~
k4R4z3k2R2z9

32p2R6e2
0

, ð7Þ

and

d~tan{1 6k3R3{18kRð ÞRe af gz 9{15k2R2zk4R4ð ÞIm af g
9{15k2R2zk4R4ð ÞRe af g{ 6k3R3{18kRð ÞIm af g

� �
: ð8Þ

The first term inside the square bracket of Eq. (6) corresponds to a
positive bias, whereas the second term carrying sin(2kR 1 d) oscil-
lates between positive and negative values due to the spatial field
retardation associated with a finite value of kR. Since jaj . Im a,
the amplitude of oscillation is larger than that of the bias, accord-
ingly, the optical torque can sometimes be negative due to spatial
retardation induced oscillation. This simple exercise not only
demonstrates analytically the possible existence of NOT, the results
also show that field retardation is essential to realize NOT.

For very small separations between the dipoles and a left circularly
polarized incident wave, Eq. (6) asymptotically approaches

Cz~ a2
�� ��E2

0
9 Im a

32p2e2
0R6

: ð9Þ

Since Im a . 0 by optical theorem30, Cz . 0. This result is not
surprising. In the long wavelength limit (kR=1), the wave cannot
probe the details of the structure. Therefore the sign of the torque
must be the same as that of the incident wave. In fact, this conclusion
holds true for any small structures, as we shall see in the following
sessions.

Physical origin of the negative optical torque. We now analyze the
physical origin of NOT for more general structures. Equation (3)
allows for a heuristic physical interpretation: W(mi)

ext =�hv is the
extinction rate for incoming photons from channel mi, and each of
these photons carries mi�h of angular momentum, therefore the rate
at which the object acquires angular momentum from all azimuthal
channels of the incident beam is given by the first term in Eq. (3).
Similarly W(m)

sca =�hv is the rate of photons being scattered into channel
m, and each of these photons gives a recoil angular momentum of
{m�h, therefore the rate at which the object obtains angular
momentum due to recoil is given by the second term in Eq. (3).
Equation (3) also shows that the transfer of angular momentum
can be interpreted as occurring in two steps. First, the photons are
intercepted by the scatterer. This induces an extinction torque given
by the first term in Eq. (3). For an incident wave consisting of solely
positive mi components, this extinction torque is positive definite. So
if NOT exists at all, it must come from the recoil torque in Eq. (3).
Depending on the material and the structural properties of the object,
some of the intercepted photons will be absorbed, while some will be
scattered. The scattered photons exert a recoil toque on the object, as

given by the second term in Eq. (3), where m , 0 (m . 0) represent a
positive (negative) contribution. If the negative contribution
dominates, we will have a NOT.

The role of symmetry. Symmetry is the explanation to why the
negative optical torque effect can actually be quite universal. Light
cannot exert an optical torque on a transparent object possessing
continuous rotational symmetry, since photons scattered by such
an object preserve their angular momentum. From this point of
view, the phenomenon of optical torque is a consequence of
broken rotational symmetry. NOT is therefore inevitably tied to
the symmetry of the structure and incident wave.

To see this, it suffices to consider objects with discrete rotational
symmetry of degree ms and for an incident wave with a single azi-
muthal channel mi . 0. In wave scattering theory, based on irre-
ducible tensor approach, wave can be decomposed into modes
characterized by two mode indices: total angular momentum index
l, termed also angular momentum channel index, and z-component
of angular momentum index m, termed also azimuthal channel index
in this paper. We will see that it is discrete rotational symmetry that
allows NOT to be observed ubiquitously.

The angular momentum selection rule for photons after being
scattered by such object is

m~mizn|ms, ð10Þ

where m is an allowed channel for the scattered wave and n 5 0, 61,
62 and so on31,32 (see part 1 of Methods for a proof). Equation (10) is
the angular counterpart of the grating effect for a periodic surface
illuminated by a plane wave. Although Eq. (10) is analogous to linear
grating (periodic in space), the rules are correct for all structures in
the rotational case because any structure is invariant under a rotation
of 2p. With Eq. (10), the z-component optical torque of Eq. (3) can be
re-written as

Cz~
mi�h
�hv

W(mi)
ext {

X
n

mizn|msð Þ �h
�hv

W(mizn|ms)
sca : ð11Þ

In principle, the positive and negative n channels contribute to NOT
and positive optical torque (POT), respectively, while the n 5 0
channel, representing no change in the angular momentum of the
photons, produces no torque. However, the contribution for chan-
nels with jmj? kR can be rather weak. When jmj? kR, the cen-
trifugal effect forces the amplitude of the mode m to decrease rapidly
for region where R , jmj/k33. There is very little overlap between the
mode m and the object, forbidding the object to scatter wave into
these channels. Consequently, these channels contribute negligibly
to optical torque.

If ms is very large, the condition of jmj? kR will be met for all
channel except the n 5 0 channel, even for the low order modes with
n 5 61. In fact, continuous rotational symmetry is an idealization
rather than reality. An object with very fine sub-wavelength details
(such as a small object with a large ms) that is beyond the diffraction
limited resolving power of the incoming wave can be thought to have
continuous rotational symmetry as far as light scattering is con-
cerned. In this case, the contributions from all channels become
vanishingly small except the n 5 0 channel. Therefore the wave
exerts vanishingly small torque on such object with high discrete
rotational symmetry and relatively small size, just like a structure
with continuous rotational symmetry. The incident wave mi can only
be scattered into the azimuthal channel characterized by the same mi.
Equation (3) thus reduces to Cz~

X
mi

mi�hW(mi)
abs =�hv, where

W(mi)
abs ~W(mi)

ext {W(mi)
sca is proportional to the energy absorption rate

in channel mi. Since both W(mi)
abs and mi are positive definite, it follows

that Cz $ 0.

www.nature.com/scientificreports
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In the other extreme situation of ms=mi, according to Eq. (3), the
torque is positive definite as

Cz<mi=v W(mi)
ext {

X
n

W(mizn|ms)
sca

 !

~mi
Wext{Wscað Þ

v
~

miWabs

v
§0,

ð12Þ

where Wabs 5 (Wext 2 Wsca) is the rates at which energy is absorbed.
If NOT can exist, it must be for some moderate value of ms , kR so

that the corresponding partial waves can reach the scatterer to trans-
fer angular momentum. This is in fact a manifestation of the optical
diffraction limit. If the small structure has some very fine sub-
wavelength details, such as patterns with high degree of rotational
symmetry located in a small region, the incident wave will not be able
to probe them. Thus the information on the symmetry will be lost,
eliminating the possibility of observing NOT. In general, NOT can be
easily observed if ms , lmax, where lmax 5 kR 1 4.05(kR)1/3 1 2 is an
empirical formula for the angular momentum truncation order of
the scatterer31,32.

Next, we argue that a larger ms favors NOT as long as jmj is not
significantly larger than kR. In Fig. 3, the optical torque acting on
objects composing of the same type of spheres but with different
values of ms (ms 5 1, 2, 3) are shown. By comparing ms 5 1 to ms

5 3, one sees that NOT is more easily observed for a larger value of
ms. These can be explained as follows. We note that according to our
simulations, and also Eq. (6), the total torque consists of a positive
bias part and an oscillatory part. It is the oscillatory part that gives
NOT. For the object with ms 5 1 (red line), the torque acting on all
three spheres are different. Therefore the negative torque acting on
one sphere may be canceled by the positive torque acting on another.
This weakens the oscillatory part of the total torque and reduces the
possibility of NOT. For the object with ms 5 3 (blue line), the torque
acting on each sphere is the same by symmetry, so the torques rein-
force each other rather than cancel each other. This preserves the
strength of the oscillatory part of the total torque and allows NOT to
be observed more easily. More discussion about the role of symmetry
can be found in the Supplementary Information.

Discussion
For the more complex systems we have considered (arrays of spheres
as shown in Fig. 1), we further argue here that spatial retardation is
also essential for NOT, as in the simple example we discussed in the
previous section. We show in Fig. 4 the optical torque due to indi-

vidual azimuthal channel for structures with three-fold (ms 5 3) or
six-fold (ms 5 6) rotational symmetry. According to Eq. (10), for
three-fold symmetric structures showed in Fig. 4(a)–(b), light is scat-
tered into azimuthal channels characterized by m 5 3n 1 1, where n
5 0, 61, 62, … etc. The m 5 1 channel [i.e. n 5 0 in Eq. (10)] does
not contribute to torque for lossless spheres. Light scattered into
azimuthal channels m 5 22, 25, 28 and so on will contribute to
positive optical torque, whereas the channels characterized by m 5 4,
7, 10 and so on will induce NOT. As multiple scattering is not strong
in dielectrics, the recoil torque is dominated by n 5 61, correspond-
ing to m 5 mi 6 ms 5 22 or 4. In Fig. 4 the oscillatory behavior of the
torques due to individual partial waves versus wavelength and struc-
tural size is the signature of retardation, while the peaks for n 5 61
channels correspond to Mie type resonance. It is precisely due to this
retardation induced oscillation that the total torque takes positive or
negative value. The situation for the six-fold symmetric structures
showed in Fig. 4(c)–(d) is similar.

Finally, we argue that small object does not favor NOT. Consider,
for example, a small three-fold (ms 5 3) rotationally symmetric
lossless structure illuminated by a left circularly polarized plane wave
(mi 5 1). If the structure is small such that wave components with
higher angular momentum cannot reach the scatterer and the trun-
cation angular momentum index lmax 5 1, then the torque is
approximately equal to zero since only n 5 0 term appears in Eq.
(11). As the size of the structure increases such that we have to take
lmax 5 2, the second term in the series (corresponding to n 5 21) is
now significant, which is given by (see Methods for the definition of
partial torque tm that is due to each individual outgoing azimuthal
channel m)

t{2~msW{2,2=v: ð13Þ

Equation (13) is positive definite and therefore corresponds to POT.
One then expects that a small scatterer cannot experience a NOT. If
we consider larger particle, NOT will become possible. For example,
the third term in the series (corresponding to n 5 1) is given by

t4~{msW4,4=v, ð14Þ

which, when larger in magnitude than t22 in Eq. (13), results in
negative total torque.

In summary, we showed that negative optical torque is ubiquitous
in simple configurations and can be induced by a broad class of
incident waves. We note that while negative optical torque can be
viewed as the angular counterpart of the optical pulling force, the
conditions under which the ‘‘negative response’’ can be realized are
very different. The optical pulling force is achievable only for special
kinds of optical beams acting on some specific particles24–27 whereas
NOT can be realized rather easily. NOT can occur if the recoil torque
happens to be negative and larger in magnitude than the extinction
torque, which is made possible by retardation effects and enhanced
by discrete rotational symmetry. We remark that our theory is valid
for both spin and orbital angular momentum (i.e. arbitrary mi) of
light.

Methods
Derivation of the azimuthal mode selection rule in electromagnetic scattering. We
shall prove that when an incident wave characterized by a single azimuthal number
mi

30,32 impinges on a structure with ms-fold rotational symmetry, it will be scattered
into azimuthal channels given by the azimuthal mode selection rule in Eq. (10).

Let us start with the total electric field for a general scattering problem, which is
given by the Lippmann-Schwinger integral equation34,35

E(r)~Einc(r)z

ð
G
<

(r,r’):½er(r’){1�k2E(r’)dr’, ð15Þ

where Einc(r) denotes the incident electric field, er(r9) is the position dependent
relative dielectric constant, and k 5 v/c is the wave number in the background. The
second term on the right hand side of Eq. (15) gives the scattered field:

Figure 3 | Optical torque versus ka for objects with different discrete
rotational symmetry. The objects are composed of identical dielectric

spheres (er 5 2.4649). The red, black, and blue lines correspond to ms 5 1,

2, and 3, respectively. The degree of discrete rotational symmetry is seen to

significantly enhance negative optical torque (i.e. higher ms favors negative

torque).
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Esca~

ð
G
<

(r,r’):½er(r’){1�k2E(r’)dr’, ð16Þ

where G
<

(r,r’) is the free-space dyadic Green’s function29, which can be written as

G
<

(r,r’)~
X
a, l, m

aamnOaml(r,h,w)Oa({m)l(r’,h’,w’), ð17Þ

where Oamn represents vector spherical wave functions Mmn, Nmn and Lmn
29,36 for a 5

1, 2, and 3, respectively. The w-dependent part of Oaml (r, h, w) is of the form eimw and
similarly Oa(2m)l (r9, h9, w9) depends on w9 through e2imw9. As a result, each term

characterized by m in the dyadic Green function G
<

(r,r’) given by Eq. (17) shows
eim(w2w9) azimuthal dependence.

Inserting Eq. (15) into Eq. (16), we arrive at

Esca ~
Ð

G
<

(r,r’):½er(r’){1�k2Einc(r’)dr’

z
ÐÐ

G
<

(r,r’):G
<

(r’,r’’):½er(r’){1�½er(r’’){1�k4Einc(r’’)dr’’dr’

z � � � ,

ð18Þ

where � � � denotes higher order scattering terms. Note that the azimuthal dependence
of the incident wave Einc(r9) on w9 is given by eimiw’ , while for a structure with ms-fold
symmetry, the dielectric constant may be expanded in a Fourier series

er(r’){1~
X?

n~{?

Aneinmsw’: ð19Þ

Therefore, for the first term on the right hand side of Eq. (18), the integration over
azimuthal coordinate w9 reads

X
a, l, m

� � �
ð2p

0
e{imw’ (

X
n

Aneinmsw’)eimiw’dw’,

which requires m 5 mi 1 nms in order to have a non-zero contribution to Esca.
Similarly, for the second term on the right hand side of Eq. (18), the integration over
w9 and w0 can be written as

X
a, l, m

X
a’, l’, m’

� � �
ð2p

0

ð2p

0
e{imw’eim’(w’{w’’)(

X
n, n’

Aneinmsw’An’e
in’msw’’)eimiw’’dw’dw’’:

It then follows straightforwardly that the non-vanishing terms should satisfy m9 5

mi 1 n9ms and m 5 m9 1 nms, implying that only azimuthal modes with m 5 (n 1

n9)ms 1 mi survive in the scattered field.
The procedure applies straightforwardly to higher order scattering terms in Eq.

(18), leading to the conclusion that the scattered field contains only azimuthal modes
with m satisfying m 5 mi 1 nms, where n is an integer. This is actually an angular
analogue of the much better known phase matching condition for a surface of peri-
odic lattice derived from Floquet’s theorem.

The contribution of individual azimuthal channel to optical torque. The time-
averaged optical torque ÆCæt acting on a scatterer is obtained from the surface

integration of the time-averaged angular momentum flux tensor K
<
D E

t
by

hCit~{

ðð
s

n:hK
<
itdS~{

ð ð
s

n:(hT
<
it|r)dS, ð20Þ

where s can be any surface that encloses the entire scatterer, and n denotes the unit

outward normal at surface s. The time-averaged Maxwell stress tensor T
<
D E

t
is given

by

hT
<
it~

1
2

Re½e0EeE�e zm0HeH�e {
1
2

(e0Ee
:E�e zm0He

:H�e )I
<
�, ð21Þ

where e0 and m0 are, respectively, the permittivity and permeability in free space, and I
<

is the unit tensor. The electric (magnetic) field Ee (He) is a sum of incident field Ei (Hi)

Figure 4 | The contribution (in absolute value) to the torque by individual partial wave azimuthal channels versus kR. (a)–(b) three-fold and (c)–(d)

six-fold rotationally symmetric dielectric structures (er 5 2.4649, a 5 0.49 mm). The incident field is a left circularly polarized plane wave (intensity is

1 mW/mm2). R 5 0.58 mm for (a) and R 5 1 mm for (b)–(d). The oscillations are due to spatial retardation.
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and scattered field Es (Hs), namely, Ee 5 Ei 1 Es and He 5 Hi 1 Hs. These can be
expanded in terms of vector spherical wave functions (VSWFs)37,38:

Ei~{
X?
l~1

Xl

m~{l

iEml ½pmlN
(1)
ml (k,r)zqmlM

(1)
ml (k,r)�,

Hi~{
k

vm

X?
l~1

Xl

m~{l

Eml ½qmlN
(1)
ml (k,r)zpmlM

(1)
ml (k,r)�,

Es~
X?
l~1

Xl

m~{l
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ð22Þ

where Eml~ E0j jilc
1=2
ml and cml~

2lz1
l lz1ð Þ

l{mð Þ!
lzmð Þ! . The expansion coefficients pml and

qml (aml and bml) are known as partial wave expansion coefficients for incident
(scattered) waves. Here, pml and qml can be obtained from an overlap integral between
the incident field and VSWFs. For a collection of spheres aml and bml can be obtained
by solving the scattering problem using the generalized Mie theory for multispheres.

By the orthogonality of the VSWFs, the integration in Eq.(20) can be worked out
analytically (for an arbitrary incident field) at a surface far away from the scatterer to
give the z-component Cz of the time-averaged optical torque,

Cz~
2pejE0j2

k3

X?
l~1

Xl

m~{l

mRe½pmla
�
mlzqmlb

�
ml{(jaml j2zjbml j2)�: ð23Þ

On the other hand, with the incident and scattered field expanded in terms of VSWFs,
the rate Wsca at which incident wave energy is scattered and the rate Wext at which the
energy is intercepted can be written as, see, e.g., Ref. 38

Wsca~{
ÐÐ

s n:hPscait dS~
P
m

W(m)
sca ,

Wext~{
ÐÐ

s n:hPextit dS~
P
m

W(m)
ext ,

ð24Þ

where

W(m)
sca ~

2pe0cjE0j2

k2

X
l

(jaml j2zjbml j2)

W(m)
ext ~

2pe0cjE0j2

k2

X
l

Re(pmla
�
mlzqmlb

�
ml),

and the timed-averaged Poynting vectors ÆPscaæt and ÆPextæt are given by

hPscait~
1
2

Re½Es|H�s �, hPextit~
1
2

Re½Ei|H�s zEs|H�i �:

For an incident wave from a single azimuthal channel mi, the partial wave
expansion coefficients satisfy pml~pmldmmi and qml~qmldmmi , where dmm9 is the
Kronecker delta. So Eqs. (23) and (24), together with Wext 5 Wsca for lossless scat-
terer, imply that

Cz~
2pe0jE0j2

k3

X
l,m

mi amlj j2zjbmlj2
� �

{
X
l,m

m amlj j2zjbml j2
� �" #

ð25aÞ

~
2pe0jE0j2

k3

X
l, m

(mi{m)(jaml j2zjbml j2) ð25bÞ

~{
ms

v

X?
n~{?

n
X?

l~maxfjmj,1g
Wml , ð25cÞ

where Wml~
2pe0c E0j j2

k2
amlj j2z bmlj j2
� �

w0 with Wsca~
X
l,m

Wml , and m 5 mi 1

nms for a scatterer with ms-fold rotational symmetry, see, Eq.(10). The first sum-
mation in Eq. (25a) corresponds to the extinction torque, which has the same sign as
mi, leading definitely to a POT, while the second summation in (25a) corresponds to
recoil toque that can be positive or negative, since m(5mi 1 nms) and mi may be of
the same or opposite signs. Equation (25c) indicates that in order to exert an optical
torque on a lossless object, the latter must scatter the incident wave into azimuthal
channel m that differs from the incoming one mi (such that n ? 0). Based on Eq. (25c),
one can separate the optical torque Cz into partial torque tm that is due to each
individual azimuthal channel m of the scattered field

Cz~
X

m

tm~
X

n

tmiznms , tmiznms ~{
msn
v

Xlmax

l~maxfjmiznms j,1g
W(miznms)l, ð26Þ

where lmax is the truncation order for the angular momentum index in the infinite
series. Equation(26) implies that all partial torques associated with positive (negative)
n contribute to NOT (POT). The partial torques tm for some different allowed ms

(with n 5 61, 62, 63) are shown in Fig. 4 for the case where a left circularly plane
wave (with mi 5 1) impinges on scatterers with ms 5 3 and 6. From Fig. 4, it is found
that the absolute values of partial torque due to the same jnj are quite close, since they
contain roughly the same number of terms according to Eq.(26). In particular, all
terms show oscillatory behavior versus kR due to field retardation. It is this retarda-
tion-induced oscillatory behavior that gives rise to the competition between partial
torque with positive and negative n, resulting in NOT in some intervals of values in
kR.
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