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Abstract: We construct explicit string theory models realizing the recently proposed

“Stückelberg Portal” scenario, a framework for building Z ′ mediation models without the

need to introduce unwanted exotic matter charged under the Standard Model. This sce-

nario can be viewed purely field-theoretically, although it is particularly well motivated

from string theory. By analyzing carefully the Stückelberg couplings between the Abelian

gauge bosons and the RR axions, we construct the first global intersecting brane models

which extend the Standard Model with a genuine hidden sector, to which it is nonetheless

connected via U(1) mass mixings. Utilizing the explicit models we construct, we discuss

some broad phenomenological properties and experimental implications of this scenario

such as Z − Z ′ mixings, dark matter stability and relic density, and supersymmetry me-

diation. With an appropriate confining hidden sector, our setup also provides a minimal

realization of the hidden valley scenario. We further explore the possibility of obtaining

small Z ′ masses from a large ensemble of U(1) bosons. Related to the Stückelberg portal

are two mechanisms that connect the visible and the hidden sectors, namely mediation by

non-perturbative operators and the hidden photon scenario, on which we briefly comment.
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1 Introduction

Besides supersymmetry, additional U(1) gauge symmetries (see e.g. [1, 2] for reviews) and

axion-like particles (ALPs) [3, 4] are among the most common features in extensions of

the Standard Model (SM). An extended Abelian gauge sector often arises in top-down con-

structions, either as a result of the breaking of a higher non-Abelian symmetry (as in Grand

Unified Theories) or simply because what completes the SM at high energies is likely to be

rich enough to accommodate additional U(1) factors. Indeed, the large rank gauge group

typically found in string constructions makes such Abelian extensions inevitable [5–9]. Sim-

ilarly, ALPs are abundant in string compactifications with the number of them determined
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by the topology of the internal space. Their shift symmetries may be approximate (per-

turbative) symmetries of the low energy theory, in which case the ALPs are the associated

pseudo-Nambu-Goldstone bosons; or they may be a part of U(1) gauge symmetries, in

which case the axions are absorbed by gauge bosons through Stückelberg couplings.

In this regard, the Stückelberg mechanism is particularly interesting as it naturally

combines these two recurrent themes in beyond the SM physics. Our aim here is to suggest

phenomenological scenarios involving Stückelberg U(1)’s, motivated by lessons learnt from

concrete string constructions. At a formal level, the couplings between Abelian gauge

fields and their associated ALPs are essential for cancelling the apparent anomalies in the

low energy spectrum. Nevertheless, the U(1)’s that pick up a Stückelberg mass are not

limited to those that are anomalous, and the Stückelberg coupling has wider applicability

in particle physics which we shall explore in the present work.

From a phenomenological viewpoint, these Stückelberg U(1)’s are also special in that

they can provide an intriguing portal into dark sectors. General symmetry principles

restrict the allowed interactions of the SM. One might argue that the Higgs boson H is

unique because, with the exception of the Higgs mass term µ2H†H, the couplings in the SM

are all strictly renormalizable. Given such a term, it is easy to construct a renormalizable

operator between H and a hidden sector scalar field φh, namely φ†hφhH
†H, which can

serve as an efficient portal [10]. Thus, the Higgs boson may be the only SM field that has

renormalizable couplings with hidden sector fields.

This Higgs portal, as well as other proposals such as the vector, axion and neutrino

portals, have been the object of recent intense investigation [4]. Here, we point out that

the generic appearance of extra U(1) gauge fields Av and Ah in both the visible and

the hidden sectors, may provide yet another efficient gateway into dark sectors. In the

presence of such bosons, in addition to the Higgs portal, there are two other renormalizable

couplings allowed by the symmetries that connect the visible and the hidden sectors, namely

m2
vhAvAh (mass mixing) and gvhFvFh (kinetic mixing). Any U(1) under which the SM is

charged (e.g. baryon or lepton number, Peccei-Quinn symmetries, etc) can mix with the

hidden U(1)’s through these operators. Kinetic mixing between the visible and hidden

sectors is typically small as such effect is loop generated. As we shall argue, there exist well-

motivated tree-level mass mixing effects between U(1)v and U(1)h. After diagonalization,

the physical Z ′ gauge bosons (in the sense that they have diagonal kinetic and mass terms)

will be linear combinations of Av and Ah and can couple with significant strength to both

visible and hidden matter fields simultaneously. The mass mixing between visible and

hidden sector U(1)’s may therefore be the dominant channel for communication between

the separated sectors.

Furthermore, as the U(1) anomalies can be canceled by the Green-Schwarz (GS) mech-

anism, no exotic matter fields are needed to add in for consistency. Thus, the “Stückelberg

portal” proposed here is perhaps one of the minimal extensions of the SM to SM⊕Dark

Sector. As we will show, this minimal scenario is also naturally realized in string theory.

As already mentioned, among the generic features of string (and in particular, D-brane)

constructions of particle physics models is the unavoidable presence of multiple Stückelberg

U(1)’s under which the SM particles are charged. Mass mixing of these visible U(1)’s with
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those of the hidden sector may be implemented through simple topological conditions, and

provides a concrete realization of our Stückelberg portal scenario.

Our scenario has certain similarities with some previous proposals in the literature but

there are also important differences. Mass mixing of hidden sector U(1)’s with the SM hy-

percharge has been considered before [11–13]. However, after such a mixing, charged mat-

ter in the hidden sector (if present) would generically acquire a sizeable fractional electric

charge [14] which is extremely hard to reconcile with observational exclusion bounds [15].

Even if such matter is not present in the hidden sector, the mixing of extra U(1)’s with

hypercharge would be highly constrained by electro-weak precision measurements.

Our proposal is perhaps closest in spirit to Z ′ mediation [16] and to hidden valley

scenarios [17], in which a Z ′ boson is often suggested as a possible mediator between

the visible and hidden sectors. When one attempts to construct explicit realizations of

these setups, a strong mixing between the hidden and visible sectors (which allows the

Z ′ bosons to couple with sizeable strength to both sectors) often comes with unnecessary

exotic matter fields. One may view our scenario as a way to generate the desired mixings

in a simple manner without introducing the unwanted exotic matter.

As an illustration of our scenario, we present the first explicit global D-brane con-

structions which extend the Standard Model sector with a genuine hidden sector (i.e., with

no exotic matter charged under the hidden sector that simultaneously carry SM charges)

but nonetheless admit strong mixings between them. We expect the ingredients we devel-

oped in our explicit string constructions with the aforementioned features to have useful

applications to other hidden sector physics as well.

This paper is organized as follows. In section 2 we review basic features of SM-like con-

structions with intersecting branes, paying special attention to the Stückelberg couplings

between Abelian gauge bosons and Ramond-Ramond (RR) axions. Using the ingredients

presented there, we describe in section 3 our generic framework and the mechanism by

which the Stückelberg portal (i.e. Z ′ mediation into a hidden sector) can be implemented

in type IIA compactifications. We also present there an explicit toroidal construction that

shows most of the generic features we are interested in. In section 4 we study some of

the phenomenological properties and experimental implications of the stringy Stückelberg

portal scenario, and perform explicit computations for the mentioned toroidal model. In

section 5 we discuss the relation between the Z ′ boson masses and the string scale. We

briefly review known mechanisms to obtain Z ′ masses in a phenomenologically interest-

ing range, and study the possibility of obtaining small masses from a large ensemble of

U(1) bosons. In section 6 we comment on two mechanisms, different but related to the

Stückelberg portal, that connect visible and hidden sectors, namely non-perturbative effects

and kinetic mixings among axions. In section 7 we present our conclusions.

The main ideas of this paper have been outlined in the short note [18], which takes

a field theoretical approach. In this paper we present a more detailed analysis of the

Stückelberg portal scenario, and focus specially on its natural implementation in string

theory setups.
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2 U(1)’s in string constructions

In this section we review the construction of particle physics models from type II string

theories, paying special attention to the properties and roles played by U(1) gauge sym-

metries. For an overview of string theoretical constructions of particle physics, see [5, 7–9]

and references therein. We will focus here for simplicity on type IIA models of intersecting

D6-branes, although most of our discussion can be applied to other type II setups such

as branes at singularities or magnetized branes, as expected from string dualities, with an

appropriate reinterpretation of the ingredients involved.

2.1 Models of intersecting D6-branes

Some of the simplest and most intuitive, yet most successful, constructions of chiral effective

gauge theories in string theory are obtained by considering stacks of D6-branes intersecting

at angles in type IIA orientifold compactifications. We briefly review here these construc-

tions and introduce some of the notation we will be using throughout this work.

Given a four dimensional type IIA compactification, gauge theories arise from stacks of

D6-branes that wrap three-cycles of the internal manifold X6, usually taken to be Calabi-

Yau (C.Y.), and span the four non-compact Minkowskian directions.

In compact models, tadpoles introduced by the D6-branes are cancelled by Orientifold

6-planes (O6-planes) which carry −4 units of D6-brane charge. Correspondingly one must

include image D6-branes so that the system is invariant under the orientifold projection.

Tadpole cancellation requires the homologies of the three-cycles wrapped by the branes

and the O6-plane to satisfy∑
a

Na[Πa] +
∑
a

Na[Πa]
′ − 4 [ΠO6] = 0 , (2.1)

where Na is the number of coincident D6-branes in the stack a which wraps a three-cycle

in the integer homology class [Πa] ∈ H3(X6,Z), whose orientifold image we denote [Πa]
′.

Notice that, since both branes and image-branes contribute to the tadpoles, only homology

classes that are even under the orientifold projection enter this relation.

The 4d effective theory of open strings living on a stack of N coincident D6-branes is

given by a gauge theory with gauge group U(N). Crucially for our purposes, such a group

is (locally) U(N) ∼= SU(N)×U(1), and contains an abelian U(1) factor with which we will

be mostly concerned.1 If a stack of N branes coincides with its own image (i.e. Πa = ±Π′a),

the associated gauge group is not U(N) but rather SO(N) or USp(N). Since such groups

do not contain abelian factors, which are our main object of study in this work, they will

not play a role in our discussion.

In the simplest cases, we can introduce a basis of three-cycles {[αi], [βi]}i=0,...,h2,1 of

X6, with [αi] even and [βi] odd under the the orientifold projection, whose topological

intersection numbers read

[αi] · [βj ] = −[βj ] · [αi] = δij . (2.2)

1Globally U(N) ∼= [SU(N)× U(1)]/ZN , where ZN ⊂ U(1) is identified with the center of SU(N). Such

a subtlety will not play a role in our discussion.
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One can then express the cycles wrapped by a given stack of branes in terms of this basis as

[Πa] = sai[α
i] + r ja [βj ] [Πa]

′ = sai[α
i]− r ja [βj ] , (2.3)

where the coefficients sai and r ja are integer wrapping numbers.

A slightly more general situation, which we will use in section 2.4 and is sometimes

referred to as ‘tilted orientifold’ (in analogy to tilted tori), occurs when some of the cycles

of the basis do not have a definite parity under the orientifold, but rather transform as, e.g.

[αi]→ [αi]− [βj ] , [βj ]→ −[βj ] , for some i, j . (2.4)

In that case, one can still define new cycles [α̃i] ≡ [αi] − 1/2[βj ] and [β̃j ] ≡ [βj ], that

are even and odd under the orientifold, respectively, and that still satisfy (2.2). The only

subtlety when expressing general cycles in terms of the new basis {[α̃i], [β̃i]}, is that some

of the coefficients in the expansion might be half-integers:

[Πa] = sai[α
i] + r ja [βj ] = sai[α̃

i] +

(
rja +

1

2
sai

)
︸ ︷︷ ︸

∈Z/2

[β̃j ] (2.5)

and one has to be careful in keeping track of possible factors of 2 in computations.

At the intersection of two brane stacks a and b there are massless chiral fermions

that transform under the bifundamental representation ( a , b )(+1,−1) of the gauge group

SU(Na) × SU(Nb) × U(1)a × U(1)b, and come from open strings that stretch from stack

a to stack b. The number of replicas of such chiral fermions is given by the topological

intersection number [Πa] · [Πb] which reads

[Πa] · [Πb] = sai r
i
b − r ia sbi . (2.6)

At the intersection of a stack of branes with its own image, matter charged under more

general representations of U(N), such as the symmetric or antisymmetric, may also arise.

2.2 Stückelberg U(1) masses

Besides these fermions, the open string U(1) gauge bosons also couple to closed string RR

axions φi that pair up with the geometric complex structure moduli ui of the compactifi-

cation. These fields arise from the reduction of the holomorphic three form Ω3 of the C.Y.

and the RR three-form C3 along internal three-cycles as

U i ≡ ui + iφi =

∫
[αi]

Re(CΩ3) + i

∫
[αi]

C3 i = 0, . . . , h2,1 (2.7)

where C is a normalization factor proportional to C ∝ e−φ = 1/gs. We have included in

this definition the complex dilaton as U0 = S. The RR axions φi are periodic, and in the

appropriate normalization one can identify φi ∼ φi + 1.

It turns out that these axions undergo non-trivial shift transformation under the U(1)a
gauge symmetries introduced above:

Aa → Aa + dΛa φi → φi +Na r
i
aΛ

a . (2.8)
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Accordingly, the kinetic terms of the complex structure moduli U i must include derivatives

that are covariant under these shifts

Lkin = −1

2
Gij(DµU

i)†(DµU j)

= −1

2
Gij

(
∂µu

i∂µuj
)
− 1

2
Gij

(
∂µφ

i −Na r
i
aA

a
µ

) (
∂µφ j −Nb r

j
b A

bµ
)
, (2.9)

where Gij is the (positive definite) metric on the complex structure moduli space. We see

that this Lagrangian encodes a Stückelberg mechanism by which the U(1) gauge bosons

gain masses through the absorption of the RR-axions φi.2

Let us note that the structure of the gauge boson-axion couplings of (2.9) plays a

crucial role in the GS mechanism that cancels the triangle anomalies of anomalous U(1)’s.

The tadpole cancellation condition (2.1) guarantees that the full system is indeed anomaly-

free. However, the Stückelberg mechanism is not restricted to the anomalous U(1)’s, and

even gauge bosons of non-anomalous factors may acquire a mass.

The mass matrix of U(1) bosons can be read straightforwardly from (2.9):

M2
ab = Na r

i
aGij r

j
bNb ≡

(
K T ·G ·K

)
ab

(2.10)

where we have defined the rectangular matrix with integer entries (K)ia = Nar
i
a, which

basically encodes the linear combinations of odd cycles [βi] wrapped by the branes [Πa].

Alternatively, it can be interpreted as the matrix of U(1)a charges of the composite fields

eU
i

that transform linearly under the U(1) symmetries.3 We will often refer to the entries

of K as ‘axion charges’.

It is clear from eq. (2.9) that the gauge bosons which remain massless are those that

do not couple to any RR axions. This will be the case for linear combinations A~v = vaAa
such that

Na r
i
a v

a = 0 equiv. K · ~v = 0 . (2.11)

~v is a vector in the space of U(1)’s which, given the fact that K is integral, can always

be chosen to have integer entries. Hence, the number of gauge bosons that acquire a

mass is equal to the rank of K, or equivalently, to the number of fields eU
i

with lin-

early independent charge vectors. Notice also that the masslessness condition (2.11) has a

nice interpretation in terms of the odd-homology H−3 (X6,Z): massless gauge fields corre-

spond to linear combinations of branes that wrap trivial cycles in this odd homology, i.e.

vaNa([Πa]− [Πa]
′) = 0.

2.3 The Higgs mechanism

We can also consider giving a mass to certain U(1)’s through the usual Higgs mechanism,

i.e. by giving a vacuum expectation value to open string scalar fields Hj = hjeiφ
j

charged

2The couplings between the axions and the gauge bosons can be seen to arise from the D6-brane Chern-

Simons action SCS ∼ Na
∫
D6a

C5 ∧ trFa → Na r
i
a

∫
4d
Bi ∧ trFa, where Bi ≡

∫
[βi]

C5 = ∗4dφi is the Hodge

dual of the complex structure axions φi.
3Incidentally, vacuum expectation values (vev’s) of these composite fields 〈eU

i

〉 are responsible for the

breaking of the massive U(1)’s (cf. section 6.1), so they indeed behave similarly to Higgs fields.
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under them. This process has an interpretation in terms of the recombination of the

corresponding branes as explained in [19]. The effective Lagrangian takes the form

LHiggs = −1

2
δij(DµH

i)†(DµHj)

= − 1

2
δij ∂µh

i∂µhj − 1

2
δij(h

i)2
(
∂µφ

i − q iaAaµ
) (
∂µφj − q jb A

bµ
)
, (2.12)

which is the same as (2.9) under the identifications K i
a ∼ q ia and Gij ∼ (hi)2δij (for

simplicity we have considered the canonical metric in the space of Higgs fields). The U(1)

charges of the Higgs fields are encoded in the matrix (q) ia which also has integer entries.

If the Higgs fields have also non-abelian charges, we can still write the same Lagrangian

by including among the U(1) gauge fields Aa the components of the non-abelian groups

that mix with the abelian factors (the Cartan components), e.g. the third component of

SU(2)L in the usual EWSB of the SM. We will still refer to these components as U(1)

gauge bosons despite coming from non-abelian groups.

Summarizing, we can encode the U(1) mass matrix coming from both the Higgs and

the Stückelberg mechanism as in (2.10):

M2 = K T ·G ·K (2.13)

where K is an integer matrix that encodes the U(1) charges of the RR axions and the Higgs

fields, while G is a positive definite matrix that encodes the complex structure moduli space

metric and the vev’s of the Higgs fields. The eigenvalues of M2 are non-negative, and zero

eigenvectors ~v satisfy the condition K · ~v = 0.

2.4 A SM-like construction

Let us wrap up this section by reviewing one of the well known semi-realistic construction

of intersecting D6-branes [20], which will serve as a starting point for our explicit models

of section 3.2. Most of the discussion can be presented at a topological level, what is

sometimes referred to as proto-models, postponing the actual embedding into a particular

geometry to a later stage.

In order to reproduce the SM gauge group and chiral matter, one introduces four stacks

of branes (and their orientifold images) that lead to a gauge group U(3)a×U(2)b×U(1)c×
U(1)d with the following intersection numbers:

[Πa] · [Πb] = 1 , [Πa] · [Πb]
′ = 2 ; [Πa] · [Πc] = −3 , [Πa] · [Πc]

′ = −3 ;

[Πb] · [Πd] = 0 , [Πb] · [Πd]
′ = −3 ; [Πc] · [Πd] = −3 , [Πc] · [Πd]

′ = 3 ; (2.14)

other intersections being zero. These numbers yield a chiral spectrum described in table 1,

where hypercharge is given by the linear combination

QY =
1

6
(Qa − 3Qc + 3Qd) . (2.15)

Scalar fields with the quantum numbers of the Higgs boson arise from open strings

that stretch between the parallel stacks b and c, and/or their orientifold images, which

may be light if these branes are close enough to each other.
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Intersection Matter fields SU(3)× SU(2) Qa Qb Qc Qd QY

(ab) QL (3, 2) 1 -1 0 0 1/6

(ab’) qL 2(3, 2) 1 1 0 0 1/6

(ac) UR 3(3̄, 1) -1 0 1 0 -2/3

(ac’) DR 3(3̄, 1) -1 0 -1 0 1/3

(bd’) L 3(1, 2) 0 -1 0 -1 -1/2

(cd) ER 3(1, 1) 0 0 -1 1 1

(cd’) NR 3(1, 1) 0 0 1 1 0

Table 1. Standard Model spectrum and U(1) charges corresponding to the intersection numbers

in (2.14), reproducing the models in [20].

The intersection numbers (2.14) (in particular [Πa] · [Πb] and [Πa] · [Πb]
′) require con-

sidering the ‘tilted orientifolds’ described in section 2.1. We will always work in the basis

{[α̃i], [β̃j ]} whose elements have definite parities under the orientifold, and from now on,

will drop their tildes. As mentioned before, in this basis there might arise half-integer

wrapping numbers.

Given an appropriately tilted orientifold with h2,1 ≥ 3, and assuming the O6-planes

wrap around [α0], the following wrapping numbers reproduce the intersections (2.14), and

hence, the SM spectrum of table 1:4

[Πa] = na[α
0] +

1

2
[α1] + [β2] +

na
2

[β3],

[Πb] = nb[α
0]− 3

2
[α2]− [β1] +

3nb
2

[β3],

[Πc] = 3[α2] + nc[β3],

[Πd] = nd[α
0]− 3

2
[α1]− [β2] +

3nd
2

[β3], (2.16)

where na, nb, nc, nd ∈ Z. Hypercharge (2.15) will be massless as long as

na − 2nc + 3nd = 0 . (2.17)

Finally, if the number of O6-planes along [α0] is NO6, tadpole cancellation requires

3na + 2nb + nd = 2NO6 . (2.18)

Already from (2.16) one can read the matrixK involved in the matrix of U(1) masses (2.10):

K =


0 0 0 0

0 −2 0 0

3 0 0 −1
3na

2 3nb nc
3nd

2

 (2.19)

4This is just a subclass of the models constructed in [20], obtained by setting ε = ρ = β1 = β2 = 1.
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Figure 1. Factorizeble six-torus T 2
1 × T 2

2 × T 2
3 with T 2

3 tilted. Notice that [a3] does not represent

a closed one-cycle on T 2
3 , only linear combinations such as 2[a3] or [a3] + 1

2 [b3] do. This leads to

the half-integer wrapping numbers in (2.16). The antiholomorphic involution (xi, yi) → (xi,−yi)
introduces four O6-planes along 2[α0] = [a1]× [a2]× 2[a3].

In order to reconstruct the full mass matrix, however, one needs the explicit form of the

complex structure moduli space metric G, which depends on the particular geometry of the

internal space in which this proto-model is implemented. It can be already seen from (2.19),

however, that for generic G (in particular for a diagonal metric), the mass matrix will be

highly non-diagonal, and physical Z ′ eigenvectors will be linear combinations of all the

U(1)’s of the system. We will discuss this diagonalization in detail in the following sections.

This proto-model can be explicitly implemented in terms of factorizable cycles of a six

torus T 2
1 × T 2

2 × T 2
3 , where the third one is tilted, see figure 1. Given coordinates (xi, yi)

for each torus (i = 1, 2, 3), let the orientifold act as (xi, yi)→ (xi,−yi), and let [ai] and [bi]

be the even and odd 1-cycles on (T 2)i. The basis {[αi, βj ]} can then be expressed as

[α0] = [a1][a2][a3], [β0] = [b1][b2][b3],

[α1] = [a1][b2][b3], [β1] = [b1][a2][a3],

[α2] = [b1][a2][b3], [β2] = [a1][b2][a3],

[α3] = [b1][b2][a3], [β3] = [a1][a2][b3], (2.20)

In this case, there are eight O6-planes along [α0] (equivalently four O6-planes along

2[α0]), so the tadpole cancellation condition reads

3na + 2nb + nd = 16 . (2.21)

These models have been extensively studied in the literature. For the toroidal imple-

mentation, the complex structure moduli space metric G is diagonal (at tree level), and

the mass matrix of U(1) can be fully determined. In particular, a thorough study of the

U(1) gauge bosons and their masses was carried out in [21]. In the following, we will gen-

eralize this analysis to include a hidden gauge sector whose U(1)’s mix with those from the

visible one.

3 U(1) mass mixing and Z′ mediation

Our goal in this work is to study the role played by U(1) gauge bosons and their mixings as

portals into hidden sectors. We consider a generic setup, schematically depicted in figure 2,
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Figure 2. Schematic representation of a hidden sector scenario (3.1) with intersecting D-branes.

The green and red stacks do not intersect each other and host different gauge and matter sectors.

in which the visible sector consists of a SM-like construction, such as the one just described,

and a hidden sector, whose branes do not intersect with the visible ones. The scenario we

consider can be schematically written as

SU(3)c × SU(2)L ×U(1)nv × U(1)mh × G̃h , (3.1)︸ ︷︷ ︸
Ψv

︸ ︷︷ ︸
Ψh

where G̃h represent the semi-simple part of the hidden gauge group.

We can arrange the U(1) gauge bosons in a vector ~A = (A
(v)
1 . . . A

(v)
n ; A

(h)
n+1 . . . A

(h)
n+m).

The part of the effective Lagrangian that involves them can be written as

L = −1

4
~F T · f · ~F − 1

2
~AT ·M2 · ~A+

∑
r

~q Tr · ~AJ r. (3.2)

At tree-level, f = diag(g−2
1 . . . g−2

n+m) is diagonal and encodes the U(1) coupling constants,

while non-diagonal terms can arise at loop-level by integrating out massive states charged

under different U(1)’s [22].

As explained in section 2.2, the mass matrix reads M2 = K T · G · K, where G is a

positive definite metric, and K is a matrix of integer entries (perhaps half-integers if the

orientifold is tilted). Currents J r of matter fields couple to the U(1) bosons with integer

charges ~qr, encoded in the Chan-Paton indices of the open strings from which they arise.5

Mixing of U(1)’s from separated sectors have remarkably different qualitative features

depending on whether it is induced by kinetic (f) or mass (M2) terms, and on whether

the gauge bosons involved are massive or massless.

Kinetic mixing of massless hypercharge U(1)Y ⊂ U(1)nv with a hidden U(1)h has been

thoroughly studied in the context of string theory [24–32]. If the hidden gauge boson is

5The fact that one can always find a normalization of gauge fields in which K and all the charges of

the system are integral is not a feature specific to string theories, it is rather a simple consequence of the

compactness of the gauge group. Theories with non-compact gauge groups, or equivalent with non-quantized

charges, are incompatible with general folk theorems of quantum gravity [23].
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Figure 3. Mass mixing of U(1)’s as a portal into hidden sectors.

massless, the mixing leads to the remarkable appearance of non-quantized small hyper-

charges in the hidden sector [22, 33] (equivalently electric mini-charges after EWSB). On

the other hand, if the hidden boson has a mass, kinetic mixing with hypercharge will induce

a small coupling between the SM particles and the hidden U(1)h. This coupling leads to

very interesting phenomenological consequences for cosmology, astrophysics and particle

physics, in setups in which the hidden photon is light enough (cf. section 6.2).

Off-diagonal kinetic terms are loop-suppressed effects and are expected to be quite

small. We will rather focus in this work on mass mixing terms, which can appear already

at tree level. Unless stated explicitly, we will neglect subleading kinetic mixing effects and

assume that f is diagonal.

3.1 Mass mixing of U(1) bosons

Mass mixing of hypercharge with hidden U(1)’s has been considered in [11–13, 34, 35] as a

means to communicate separated sectors.6 However, it was shown in [14] that in such sce-

narios, charged matter in the hidden sector acquires an electric charge which is necessarily

fractional. Given the stringent constraint on the existence of fractionally charged parti-

cles [15], mass mixing between hypercharge and hidden U(1)’s does not seem an appropriate

mechanism to generate interactions between visible and dark matter (DM).7

We will therefore focus in the following on the role played by massive U(1)’s and their

mixings as portals into hidden sectors.

The crucial point is that M2 can have non diagonal terms that mix U(1)’s from different

sectors, even when these do not intersect with each other. This can induce a tree-level inter-

action between visible and hidden matter. The origin of this interaction can be traced back

to the Stückelberg Lagrangian (2.9) and is depicted in figure 3. Notice that Stückelberg

axions involved in the process belong to the closed string sector, and are hence (together

with the graviton) natural candidates to connect separated sectors of branes.

The mixing diagrams can be generated either by axions φi that couple both to visible

and hidden U(1)’s, i.e. for which some kiv and some kih are non-zero, or by a non-diagonal

metric Gij that mixes an axion φi that couples to the visible sector, with an axion φj that

couples to the hidden one. Both situations lead to a mass matrix for which off-diagonal

terms M2
vh 6= 0.

6Mixings of hypercharge with closed string RR U(1)’s have been discussed in [36]. There is no light

fields charged under such groups, so we focus in this work exclusively on open string U(1)’s.
7It is nevertheless an interesting mechanism to mediate supersymmetry breaking to the SM from a

hidden sector, as in [12], as long as the latter does not contain light fields charged under the hidden U(1).
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Given the poor control one usually has over the complex structure moduli space metric

G of general CY compactifications, we will focus for the moment on mixings induced by

the matrix of axionic charges K. Some comments about mixings induced by non-diagonal

metrics G will be given in section 6.2.

As mentioned, a tree-level interaction between matter charged under a U(1)a ⊂ U(1)nv
from the visible gauge group, and matter charged under a U(1)b ⊂ U(1)mh from the hidden

one, will be induced whenever there exists an axion φi for which kia and kib are both non-

zero. In effect, these generate non-diagonal terms in the matrix of U(1) masses. Since

these numbers are (half-)integers one expects the induced mixing effect to be large.

Recall from (2.10) that the axionic charges kia are given by the topological numbers

kia = Na r
i
a = Na [αi] · [Πa] , (3.3)

where Na is the rank of the gauge group U(Na) ⊃ U(1)a, and ria is the number of times the

stack wraps around the odd cycle [βi]. On the other hand, recall from (2.6) that matter

charged simultaneously under U(1)a and U(1)b arises from the intersections

[Πa] · [Πb] = sai r
i
b − r ia sbi , [Πa] · [Πb]

′ = −sai rib − r ia sbi . (3.4)

Given the fact that both wrapping numbers around even (sai) and around odd (r ia) cycles

enter these intersections, it is easy to construct models in which two branes do not intersect

at all (i.e. [Πa] · [Πb] = [Πa] · [Πb]
′ = 0), but there is nevertheless an axion with non-zero

charges under both U(1)a and U(1)b.

A toy model. As a simple example, consider two U(1) branes ‘v’ and ‘h’ that wrap the

following cycles:

[Πv] = [α0] + n[β2] , [Πh] = [α1] + [β1] +m[β2] (3.5)

It is straightforward to see that [Πv] · [Πh] = [Πv] · [Πh]′ = 0, so the branes do not intersect

and can belong to separated sectors. Nevertheless, there is a RR axion φ2 =
∫
α2 C3 that

has charges k2
v = n and k2

h = m. One can hence construct the following diagram that

connects both sectors

At the level of the effective Lagrangian, the effect is a non-diagonal mass matrix for

the U(1) gauge bosons. As mentioned above, we neglect loop-suppressed kinetic mixing

terms, so we can write the Lagrangian as

L = −1

4
(Fv Fh)

(
g−2

v 0

0 g−2
h

)(
Fv

Fh

)
− 1

2
M2
s (Av Ah)

(
0 n

1 m

)
·G ·

(
0 1

n m

)(
Av

Ah

)
(3.6)

We can set the canonical kinetic term by rescaling Aa → gaAa. By diagonalizing the

resulting mass matrix, we can read off the physical Z ′ eigenstates, which will be linear
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combinations of Av and Ah. In order to simplify the results for this toy model, and to

illustrate clearly the mixing induced by the non-diagonal K matrix, we will set G = 1,

gv = gh ≡ g and n = m = 1. In this case, the physical Z ′ bosons (those with canonical

kinetic term and diagonal mass matrix) read

Z ′ ∝ (1 +
√

5)Av − 2Ah ; M2
Z′ =

1

2
(3−

√
5) g2M2

s (3.7)

Z ′′ ∝ (1−
√

5)Av − 2Ah ; M2
Z′′ =

1

2
(3 +

√
5) g2M2

s . (3.8)

The crucial point is that matter currents J (v), and J (h), that originally coupled to

U(1)v, and U(1)h, respectively; will both couple after diagonalization to both Z ′ and Z ′′:

Lint = qvAv J
(v) + qhAhJ

(h)

= g′ Z ′
(

(1 +
√

5) qv J
(v) − 2 qh J

(h
)

+ g′′ Z ′′
(

(1−
√

5) qv J
(v) − 2 qh J

(h
)
, (3.9)

where we have defined the couplings (g′)2 ≡ g2

2(5+
√

5)
and (g′′)2 ≡ g2

2(5−
√

5)
. Clearly, these

Z ′ and Z ′′ bosons connect both sectors.

3.2 Semi-realistic models

Let us now implement this mechanism in a more realistic setup, in which the visible sector

is just the one we described in section 2.4, whose wrapping numbers we rewrite here for

completeness:

[Π(v)
a ] = na[α

0] +
1

2
[α1] + [β2] +

na
2

[β3],

[Π
(v)
b ] = nb[α

0]− 3

2
[α2]− [β1] +

3nb
2

[β3],

[Π(v)
c ] = 3[α2] + nc[β3],

[Π
(v)
d ] = nd[α

0]− 3

2
[α1]− [β2] +

3nd
2

[β3], (3.10)

where a label ‘(v)’ has been added to stress that these belong to the visible sector. We

want to add a hidden sector to this scenario whose branes do not intersect with the SM

ones, but whose U(1) bosons have mixed mass terms with the visible ones.

Models with large h2,1. This can be easily done in setups in which the compactification

space has enough independent cycles, i.e. where the Hodge number h2,1 is large enough.

For example, consider the case h2,1 = 5, and modify the wrapping numbers (3.10) as8

[Π(v)
a ]→ [Π(v)

a ] + p [β4] , [Π(v)
c ]→ [Π(v)

c ]− p[β4] . (3.11)

One can then introduce a brane sector composed of two stacks of Ne and Nf branes along

[Π(h)
e ] = Nf [α5] + [β4] , [Π

(h)
f ] = −Ne[α

5] + [β5] (3.12)

8Notice that, with this choice, the condition for hypercharge Y = 1/6(Qa − 3Qb + 3Qd) to be massless,

eq. (2.17) is not modified.
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The hidden sector contains a gauge group U(Ne)×U(Nf ), and charged chiral matter arising

from the intersections [Π
(h)
e ] · [Π(h)

f ] = −[Π
(h)
e ] · [Π(h)

f ]′ = Nf and [Π
(h)
f ] · [Π(h)

f ]′ = 2Ne.

One can easily check that there are no intersections between branes from the hidden

and visible sectors. However, the axion φ4 =
∫
α4 C3 will couple both to the visible A

(v)
a and

A
(v)
c gauge bosons, and to the hidden A

(h)
e , and hence generate a mass mixing between them.

Although the induced mixing is generic and controlled by the topological numbers Ki
a,

in order to write the full mass matrix for the gauge bosons we would need to know the

metric G of the complex structure moduli space of the compactification. Details of the

internal geometry would be also needed to analyse other aspects such as supersymmetry

conditions or stability of the configuration. That is, we would need to pass from the

proto-model discussion we have presented, to an explicit compactification setup.

Unfortunately, these details are under poor control for generic CY compactifications.

Nevertheless, since the mass mixing mixing mechanism relies only on the topology of the

internal space, it is expected that these proto-models find implementations in concrete

setups. Furthermore, it is clear that for topologies with larger Hodge numbers, one can

generalize our models and include more hidden branes with massive U(1) bosons that mix

with the visible ones.

An explicit toroidal model. Even though detailed computations cannot be carried

out for generic compactifications, it is possible to implement the Stückelberg mechanism

even in the simplest toroidal setups discussed in section 2.4, where one can find explicit

expressions for the moduli space metric G and other geometric quantities.

The relevant Hodge number of the torus is h2,1(T6) = 3, so there are four axions

φi (i = 0, 1, 2, 3) that can be swallowed by U(1) bosons via the Stückelberg coupling.

The visible sector (3.10) already contains four visible U(1)’s, out of which three gain a

Stückelberg mass (all but hypercharge). Hence, in T6 there is only space for one more

massive U(1), which we will try to locate in a hidden sector.

Let us consider an additional brane stack that does not intersect those in eqs. (3.10)

(nor their images), and whose world-volume gauge theory contains a U(1) factor that

gains a mass by the Stückelberg mechanism. One can check that such a brane cannot be

added for a generic choice of the parameters (na, nb, nc, nd) in (3.10). In fact, the choices

that are compatible with condition (2.17) for a massless hypercharge, and with tadpole

cancellation conditions are quite restrictive, but not inexistent. One such choice is given

by (na, nb, nc, nd) = (1, 0,−4,−3), for which eqs. (3.10) reads

[Π(v)
a ] = [α0] +

1

2
[α1] + [β2] +

1

2
[β3],

[Π
(v)
b ] = −3

2
[α2]− [β1],

[Π(v)
c ] = 3[α2]− 4[β3],

[Π
(v)
d ] = −3[α0]− 3

2
[α1]− [β2]− 9

2
[β3],

[Π(h)] = nh[α0]− ph[β0] + 2ph[β1] +mh[β3] . (3.13)
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In this scheme we have already added an extra stack of Nh branes along [Π(h)] giving rise

to a gauge group SU(Nh)×U(1)h. Its wrapping numbers are determined by three discrete

parameters nh, ph and mh. It can be seen that the corresponding cycle does not intersect

those wrapped by branes from the visible sector, so there is no chiral matter charged

simultaneously under both the hidden and the SM gauge group.

Nevertheless, there is chiral matter charged under the hidden gauge group arising from

the intersection of [Π(h)] with its orientifold image [Π(h)] · [Π(h)]′ = 2nhph, that gives rise to

chiral fermions charged under SU(Nh) × U(1)h. In particular, there are ph(nh − 4) chiral

fermions in the symmetric a,+2 and ph(nh+4) in the antisymmetric a,+2 representation.

For the wrapping numbers (3.13), tadpole cancellation imposes Nhnh = 16, so we

can choose the rank of the hidden group to be Nh = 1, 2, 4, 8, 16, and correspondingly

nh = 16, 8, 4, 2, 1. On the other hand ph is an unconstrained integer number, while mh is

a discrete parameter that, because of the tilting of the third torus, must be an integer if

nh is even, and a half-integer if nh is odd.

It is worth noting here that, unlike the visible cycles, [Π(h)] is not factorizable, i.e. its

homology cannot be written in terms of wrapping numbers (ni,mi) along each T2. Never-

theless, these non-factorizable cycles can always be expressed as the linear combination of

two factorizable ones, and can be thought of as the result of their recombination [37].

Let us now discuss the masses and mixings of the U(1) gauge bosons of the setup. It

is clear already from (3.13) that the axions φ1 =
∫
α1 C3 and φ3 =

∫
α3 C3 couple both to

the visible and the hidden sector. In fact, the matrix K of axionic charges reads

K =


0 0 0 0 −Nhph
0 −2 0 0 2Nhph
3 0 0 −1 0

3/2 0 −4 −9/2 Nhmh

 (3.14)

This generically generates a highly non-diagonal mass matrix M2 = K T ·G ·K. Indeed, for

the case of the torus, the complex structure moduli space metric is known to be diagonal

at tree-level. It takes the form (see e.g. [5, 38])

Gij =
δij

4κ2
4(Re U i)2

(3.15)

where the complex structure moduli U i defined in (2.7) can be related to the radii of the

T6, and

κ2
4 =

4πα′√
(U0 + U∗0 )(U1 + U∗1 )(U2 + U∗2 )(U3 + U∗3 )

(3.16)

Finally, the gauge couplings of the U(1) bosons are encoded in their kinetic matrix f ,

which at tree level is diagonal and reads fab = δabg
−2
a . For a brane wrapping the cycle

[Πa] = ai[α
i] + bj [βj ], the couplings are

faa =
1

g2
a

=
1

(2π)4

{[
a0Re(U0)− aiRe(U i)

]2
+ (4πα′)2

[
b0G00Re(U0)− biGiiRe(U i)

]2}1/2

(3.17)
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which basically correspond to the volumes of the branes in the internal space. With these

ingredients, we can compute the mass matrix of U(1) gauge bosons, and by finding it’s

eigenvalues, read off the ‘physical’ Z ′ bosons (those with canonical kinetic term and di-

agonal mass matrix), and their couplings to matter. We will perform this analysis ex-

plicitly in the following sections in order to exemplify the generic Stückelberg portal we

have described.

3.3 Supersymmetry and stability

Let us first, however, address the important question of whether the configurations we dis-

cuss are supersymmetric, and whether they are stable or not. Some MSSM-like setups have

been constructed in the literature (see [39–43] for early toroidal constructions and [44, 45]

for their implementation in more general CY), but the simple examples we have considered

in sections 2.4 and 3.2 are non-supersymmetric. In such cases, scalar fields arising at the

brane intersections may be massive, massless, or tachyonic, depending on geometrical de-

tails of the compactification, and in particular on the values at which the complex structure

moduli are stabilized.

Given the lack of control on the geometrical details of generic CY compactifications,

it is hard to address such issues of stability in full generality. For the toroidal models

introduced in section 2.4, however, it was shown in [20] that there are regions in the

complex structure parameter space for which all the scalars of the system are massive and

the configuration is stable. This was a crucial check for the validity of the models.

When studying the generalized setups showing the Stückelberg portal of section 3.2,

one would need to analyze whether the branes of the hidden sector are stable or not, i.e.

whether the scalar fields that appear at their intersections are tachyonic or not. A tachyon

in the hidden sector, however, would not invalidate the model, but would rather indicate

that the hidden branes tend to recombine with each other. This recombination has a low

energy interpretation in terms of a Higgs mechanism by which chiral matter living in the

hidden sector intersections (which are good DM candidates) would acquire a mass. Hence,

the possible appearance of open string tachyons in the hidden sector could be an advantage

rather than a problem. In the particular toroidal models of eq. (3.13), the tachyons could

appear at the intersections of [Π(h)] with its orientifold image [Π(h)]′, and would trigger a

recombination of branes into a stack of branes aligned with the orientifold plane.

Since we are concerned in this paper with the general mechanism of the Stückelberg

portal into the hidden sector, and not so much on the particular dynamics of the hidden

sector, we will not address the issue of stability further and proceed directly to the study

of the Z ′ bosons in our constructions.

4 Phenomenology of the Stückelberg portal

Let us now study some of the phenomenological properties of the Stückelberg portal sce-

nario presented in the previous section. From a low energy perspective, these models

amount to an extension of the SM by a number of massive Z ′ bosons that mediate in-
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teractions of visible matter fields with a hidden sector that has its own gauge group and

matter content.

The ‘physical’ Z ′ eigenstates, i.e. those that propagate without mixing, are obtained

by diagonalizing simultaneously the kinetic and mass matrix of the U(1) bosons. After

doing so, one can read off their masses and couplings to matter fields, and these determine

the main phenomenological features of the scenario. In particular, the lightest Z ′ boson

may lead to very interesting astrophysical and particle collider signatures if its mass is

light enough.

In this section, we study the role played by this lightest Z ′ eigenstate in the commu-

nication of the visible and the hidden sectors. We will often rely on the toroidal models

described in section 3.2 in order to illustrate generic features of this Stückelberg portal

scenario with explicit computations that depend on a small number of parameters.

4.1 Mass eigenstates

At tree level, the kinetic and mass matrices of the U(1) bosons are fab = δabg
−2
a and

M2 = K T · G · K, where K, G and ga were given for our particular toroidal model in

equations (3.14), (3.15) and (3.17), respectively. The model depends only on a few discrete

parameters, namely Nh, nh, ph and mh (of which Nh and nh are related by the tadpole

cancellation condition Nhnh = 16); as well as on the particular values at which the four

complex structure moduli ui are stabilized.9

We will focus here on the case Nh = 1, nh = 16, for which the hidden sector group

is simply U(1) and there are 12 chiral hidden fermions with charge +2, and will take mh

as a free integer parameter.10 We also set ph = 1 for illustration. Other choices can be

analyzed in a similar way.

The continuous parameters ui = Re (U i) are related to the gauge coupling constants

ga by (3.17), and three of them can be fixed by requiring that the couplings of the SM

are reproduced. After normalizing as usual the quadratic Casimir in the fundamental

representation to be 1/2, we obtain the relations [21]

g2
a =

g2
QCD

6
, g2

b =
g2
L

4
; (4.1)

and from (2.15) we get
1

g2
Y

=
1

36g2
a

+
1

4g2
c

+
1

4g2
d

. (4.2)

Equations (4.1) fix the values of ga and gb, while (4.2) constrains gc and gd. Following the

analysis of [21] we will write our results in terms of gd/gc, which we take as a free parameter

that must lie in the range gc/gd ∈ [0.84, 2.19], in which the real complex structure moduli

ui are all positive (cf. equation (3.17)), and equations (4.1) and (4.2) can be satisfied.11

9We will not discuss here the particular mechanism by which the moduli are stabilized.
10For this case in which the hidden group is abelian, there is not such thing as an asymmetric represen-

tation, so the corresponding part of the spectrum is absent after the orientifold projection.
11The SM couplings should be evaluated at the string scale using the renormalization group equations.

For reference we use their values at 100 TeV for explicit computations. As we will momentarily see, it is
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In order to find the physical Z ′ eigenstates of the model we have to go first to a basis

in the space of U(1) gauge bosons in which their kinetic term is canonical. This is done

by rescaling the gauge bosons as Aa → gaAa, or in matrix notation ~A → ĝ · ~A, where

ĝ ≡ diag(ga, gb, . . . , gN ). After doing so, the physical Z ′ bosons will correspond to the

eigenvectors of the resulting mass matrix

M̃2 = ĝ ·K T ·G ·K · ĝ , (4.3)

with masses corresponding to its eigenvalues m2
i .

Given a set of normalized eigenvectors ~vi of the mass matrix M̃ , we can identify the

physical state Z ′i associated to each of them with the linear combinations of the original

U(1) gauge bosons given by

Z ′i =
∑
a

1

ga
(~vi)

a ~Aa . (4.4)

Hypercharge can be identified with the eigenvector Z ′0 ≡ AY = 1
6gY

(Aa − 3Ac + 3Ad) that

has zero eigenvalue.

Plugging transformation (4.4) back into the original lagrangian (3.2), one obtains

L = −1

4
~F T · f · ~F − 1

2
~AT ·M2 · ~A+

∑
r

~q Tr · ~AJ r

=
∑
i

(
−1

4
F ′

2
i −

1

2
m2
i Z
′2
i +

∑
r

(~q Tr · ĝ · ~vi)Z ′iJ r
)
, (4.5)

from which we can read the physical gauge boson masses mi and their couplings to the

matter currents J r, which we denote g′ir ≡ (~q Tr · ĝ · ~vi).
Both the mass eigenvalues mi and eigenvectors ~vi (and hence the couplings g′ir) can

be computed numerically. In figure 4 we show the mass of the lightest (non massless) Z ′

boson (corresponding to the smallest non-zero eigenvalue of M̃) in terms of the string scale

mass Ms = 1/
√
α′, as a function of the free parameters gc/gd and mh.

Analogously, we present in figure 5 the couplings of the lightest Z ′ boson to the matter

fields of the visible sector (the SM matter fields, whose charges were presented in table 1)

as well as the hidden ones for several values of the free parameters gc/gd and mh.

4.2 EWSB and Z − Z′ mixing

So far, we have discussed the mixing of U(1) bosons before Electro Weak Symmetry Break-

ing (EWSB). At energies lower than the EW scale, however, it is important to take into

account the Higgs vev v, which gives a mass to a certain linear combination of U(1) bosons

and the third component of SU(2)L. As discussed in section 2.3, this effect can be in-

corporated into our discussion, by simply including the neutral component AL3 of SU(2)L

around this scale that the phenomenology of the Z′ bosons becomes more interesting. Given the logarithmic

running of the coupling constants, we do not expect drastic deviations from our results for other string scales

not far from this reference value.
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Figure 4. Mass of the lightest Z ′ boson in terms of the string scale Ms, as a function of the

continuous parameter gc/gd and the discrete variable mh, for the toroidal model with wrapping

numbers (3.13).

Figure 5. A depiction of the coupling strength of the lightest Z ′ to visible and hidden sector fields,

for gc/gd = 1.68 (left), gc/gd = 1.06 (middle), and gc/gd = 0.89 (right). The parameter mh is

chosen to be ±1,±3,±5.

among the U(1) vector bosons ~A, and correspondingly extending the kinetic and mass ma-

trices of the gauge bosons to include the SU(2)L coupling gL, and the Higgs field’s vev and

charge vector:

~A→ ~AEW =

(
AL3
~A

)
(4.6)

f → fEW =

(
g−2
L 0

0 f

)
, K → KEW =

(
−1 ~q TH
~0 K

)
, G→ GEW =

(
v2 0

0 G

)
,

where ~qH denotes the vector of charges of the Higgs field under the U(1) gauge bosons ~A.

After EWSB, the photon will be the only massless gauge boson in the system and will

take the usual SM form

Aγ = e

(
AL3
gL

+
AY
gY

)
(4.7)
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where e = gLgY√
g2L+g2Y

is the usual electric coupling constant.12

The lightest massive eigenstate is identified with the SM Z boson. However, the

presence of other massive Z ′ bosons and the non-diagonal mass matrix MEW = K T
EW ·

GEW ·KEW results in a small Z−Z ′ mixing and hence in deviations from the SM predictions

for the EW parameters. For example, the Z mass receives corrections of the form [21]

MZ =
v

2

√
g2
L + g2

Y︸ ︷︷ ︸
≡MZ,0

+O
(
MZ,0

MZ′

)
, (4.8)

where MZ,0 is the value predicted by the SM. Ultimately, the Z − Z ′ mixing is due to

the fact that the Higgs boson couples not only to hypercharge, but also to the massive Z ′

bosons of the system.

It is worth noting that in many previous phenomenological models with extra U(1)’s,

Z − Z ′ mixing prevented strong couplings of the SM particles to the Z ′ boson. In our

setups, however, these couplings can be rather large while evading constraints from EW

precision measurements.

4.3 Experimental bounds and implications

From figure 5 we can see that the Z ′ bosons couple both to SM and hidden matter with

significant strength. Current experiments set strong constraints on the mass and couplings

of such bosons and on their mixing with the SM Z. We discuss briefly some of these

constraints and prospects for detection of such heavy Z ′ bosons. For more details on the

phenomenology of heavy Z ′ scenarios see [1, 2] and references therein.

LEP II and LHC both put stringent bounds on the properties of Z ′ bosons. At LHC,

such fields could appear as resonances at the Z ′ mass and be detected through Drell-Yan

processes pp → Z ′ → l+l− where l = e, µ [46, 47], or by examining their dijet reso-

nances [48]. Constraints from e+e− colliders come from precision measurements at the Z

pole, and from resonance productions at e+e− → l+l− processes [49, 50]. Although the

results depend on the particular models, i.e. on the couplings of the Z ′ under consideration,

one can generically take MZ′ & 2 TeV as a reasonable bound.13

Constraints on the coupling of the Z ′ boson to muons also come from contributions to

the muon anomalous magnetic moment, which reads

∆(gµ − 2) = −
m2
µ

6π2M2
Z′

(
gµ 2
L − 3gµLg

µ
R + gµ 2

R

)
, (4.9)

where gµL and gµR are the couplings of Z ′ to the left-handed and the right-handed muon,

respectively. The Z ′ contribution should not exceed the commonly adopted experimental

12The gauge coupling constants enter eq. (4.7) after the rescaling Aa → gaAa to set a canonical kinetic

term f → 1, see [14, 21] for more details.
13It should be noted that most analysis are performed assuming exclusive decays of Z′ into SM particles.

In our models, decays into hidden particles are also possible, resulting in an increase of the Z′ decay width.

This may weaken the bounds, as well as the sensitivity to discover these Z′ bosons in colliders.
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(4σ) deviation of ∆
(
(gµ− 2)/2

)
= (3.0± 0.8)× 10−9 [51]. A simple calculation shows that

if MZ′ & 2 TeV the constraint on the couplings gµL and gµR is very weak.

If the mass of the Z ′ is within the reach of LHC or future hadron colliders with higher

energies, Z ′ would show up in the resonant production in pp collision at the Z ′ mass peak.

As one can see from figure 5, the couplings between the Z ′ and the SM fermions, and in

particular the couplings of Z ′ to left- and right-handed components of the same fields are

generically different. One could use the branching ratios of the different Z ′ decay channels

into SM fermion pairs, and also the forward-backward asymmetry in observed channels as

distinguishing features of this type of scenario. Furthermore, massive gauge bosons from

anomalous U(1) symmetries may present trilinear couplings to SM gauge bosons and result

in exotic decay channels into ZZ, WW and Zγ [52–57] (astrophysical signatures arising

from such anomaly related couplings have been studied in [58–60]).

In order to test whether these Z ′ bosons do indeed couple to a hidden sector and

realize the Stückelberg portal, one would have to find evidence of their interactions with

hidden matter. At colliders, these would result in processes with missing energy from

decays Z ′ → ψhψh. On the other hand, if matter fields from the hidden sector realize DM

(see next subsection), they could also be directly observed via their elastic scattering with

nucleons through the t-channel exchange of the Z ′ boson at DM detectors. See [61, 62] for

a recent analysis of these experimental signatures.

The spin-independent DM-nucleon (target-independent) cross section, which receives

bounds from DM direct detection experiments, can be approximately written as

σSI ≈
4

π
µ2
nf

2
n , (4.10)

where µn ∼ 1 GeV is the reduced mass of the dark particle and the nucleon (assuming

mDM �GeV), and fn ∼ g2/M2
Z′ is their effective spin-independent coupling. For a Z ′

gauge boson with a 2 TeV mass and matter couplings of order g ≈ 0.1, one obtains σSI ∼
10−44 cm2, which is just on the edge of the recently released LUX data [63] for ∼ 1 TeV

DM masses.

4.4 Dark matter stability and relic density

In our models, matter fields in the hidden sector are natural DM candidates. Our main

goal in this work is to study the interactions of these fields with the visible sector through

exchange of Z ′ bosons, while we are not so much concerned with the particular features of

the hidden sector, which could take widely different forms in different D-brane construc-

tions. Nevertheless, there are a few rather generic features of Stückelberg portal models

that we would like to discuss here.

A simple consequence of the presence of U(1)h symmetries under which hidden fermions

are charged is that the lightest of these matter fields would be stable. Despite gaining a

mass through the Stückelberg mechanism, the U(1) symmetries remain unbroken at the

perturbative level in the low energy effective theory [64], and can easily guarantee stability

of DM in our scenarios. Nevertheless, there are D-brane instanton effects that break these

symmetries at the non-perturbative level (cf. section 6.1), which could trigger instabilities
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of DM. In cases in which such effects were too large to allow for a sufficient DM lifetime,

one could easily consider the implementation of exact discrete symmetries that forbid some

of such dangerous couplings.

The implementation of such discrete symmetries in intersecting brane models has been

studied in [65] (see also [36, 66–68] ), where the focus was put into discrete symmetries

(such as R-parity) that prevent proton decay. It is easy to apply a similar analysis to

our scenarios to obtain conditions under which discrete subgroups of the hidden sector

abelian symmetries remain exact. In the explicit toroidal models of equation (3.13), one

can see that a Zs ⊂ U(1)h subgroup is not broken by non-perturbative effects, where

s = g.c.d.(nh, ph). The key point is that such effects are induced by operators of the form

e−U
i

which behave as fields with U(1)h charge Nhr
i
h (cf. footnone 3 and section 6.1). All of

these charges are multiple of s, so indeed Zs ⊂ U(1)h would not be broken by such effects.

Besides stability, a major issue in the phenomenology of DM is the analysis of its

annihilation rate and relic density. These factors depend drastically on the particular

features of the hidden sector (field content, dynamics, etc) and a general analysis cannot

be performed at the level of our discussion. Nevertheless, it is worth mentioning here that

the annihilation of hidden matter into SM fields through the Z ′ pole

ψ̄h + ψh → Z ′ → ψ̄v + ψv . (4.11)

can be an efficient mechanism to reduce the hidden particle primordial density and to

achieve the current value of the DM relic density.

Let us study this process in some more detail. For the following computation, we will

assume that DM is composed of Nψh families of massive hidden fermions ψh, all with the

same mass mψ, which are totally stable and annihilate exclusively through the Z ′ pole. In

such a simplified model, one can estimate the resulting relic density as [69–71]

Ωψh
2
0 = Ωψ̄h

2
0 ≈ 2.2× 10−11 h(x0)√

h(xf )

1

J(xf )
. (4.12)

Here x = kBT/mψ, and h(xf ) and h(x0) are the entropy degrees of freedom at freeze out

and at the current temperature respectively. xf is typically of size ∼ 1/20. The function

J(xf ) is given by the integral

J(xf ) ≡
∫ xf

x0

〈σv〉 dx . (4.13)

of the total annihilation cross section σ =
∑

f σψ̄ψ→f̄f thermally averaged using the Boltz-

mann distribution:

〈σv〉 =

∫ ∞
0
dv (σv)v2 e−v

2/4x∫ ∞
0
dv v2 e−v

2/4x
. (4.14)

Using the Breit-Wigner form, the partial annihilation cross sections is

σψ̄ψ→f̄f = aψ
∣∣(s−M2

Z′ + iΓZ′MZ′
)∣∣−2

, (4.15)

aψ = Nψh

βf (gfgψ)2

64πsβψ

[
s2(1 +

1

3
β2
fβ

2
ψ) + 4m2

ψ(s− 2m2
f ) + 4m2

f (s+ 2M2
ψ)

]
,
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Figure 6. An exhibition of the mass of the Z ′ (upper surface) and the corresponding dark particle

mass (lower surface) in terms of gc/gd and mh. Again, mh can only be integer values, which are

presented as lines on the surfaces.

where Nψh denotes the multiplicity of the hidden matter fields ψ, and βf,ψ = (1 −
4m2

f,ψ/s)
1/2. ΓZ′ is the total decay width of Z ′, i.e., the sum of the Z ′ partial decay widths

in all the Z ′ decay channels, which are given in terms of the couplings and masses by

Γ(Z ′ → ψ̄ψ) = (g2
L + g2

R)
MZ′

24π

(
1 +

2m2
ψ

M2
Z′

)√
1−

4m2
ψ

M2
Z′

Θ (MZ′ − 2mψ) . (4.16)

Given these expressions, one can estimate the expected DM relic density, and compare

it with the Planck result ΩDMh
2
0 = 0.1199 ± 0.0027 [72]. For illustration, we have shown

in figure 6 the value of the DM masses that lead to the observed relic density exclusively

through the Z ′ annihilation channel, for the explicit toroidal models of section 3.2, assuming

that the 12 families of hidden matter fields have the same mass. As one can see, in this

case, the estimated mass of the hidden particles is close to half of the Z ′ mass. This is the

region where the Breit-Wigner enhancement is in force, i.e. the region around which the

averaged cross section (4.14) is peaked, leading to a very efficient DM annihilation [69–71].

4.5 Hidden valleys and SUSY mediation

Other than DM physics, one of the motivations for considering hidden sector(s) is super-

symmetry (SUSY) breaking. Models of dynamical SUSY breaking typically involve one or

more strongly coupled hidden sectors. The strong dynamics of the hidden sector(s) triggers

SUSY breaking which is then mediated to the visible sector. Depending on the scenario,

various types of messengers have been proposed.

The Stückelberg portal provides a concrete realization of Z ′ mediation [16], but with

key differences in several respects. The cancellation of U(1) anomalies by the GS mechanism

allows us to construct models where the mediation is purely through the U(1) bosons

without the need of introducing matter exotics. Furthermore, in our scenarios the extra

U(1) symmetries are not broken by a vev of a scalar field 〈S〉, but rather through non-

perturbative effects (cf. section 6.1). These U(1) symmetries can be used to protect certain
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operators like the µ-term (or the µB) or a Dirac neutrino mass, and the pattern of their

breaking will affect the resulting phenomenology.

For illustrative purpose, we have presented a class of simple toroidal orientifolds to

concretely realize the Stückelberg portal scenario. Although these simple models are non-

supersymmetric, there is no obstruction in constructing a supersymmetric embedding of

our scenario with intersecting D-branes in Calabi-Yau compactifications. One can then

employ the Stückelberg portal outlined here to mediate SUSY breaking from the hidden

sector to the visible sector.

As in Z ′ mediation [16], the sfermions from the visible sector couple directly to the

Z ′ messenger, while the gaugino masses are generated only at higher loop order, a typical

feature of split supersymmetry [73–75].

Our setup also provides a natural implementation of the hidden valley scenario [17]

(for the defining properties of hidden valley, see section A of [76]). If the hidden sector

contains (in addition to U(1)’s) a confining non-Abelian gauge group, a mass gap can come

e.g. from its strong dynamics. The barrier energy scale that separates the hidden sector

from the visible sector is set by the mass of the lightest Z ′. The existence of a hidden valley

can lead to distinct signatures such as displaced vertices and high multiplicities of jets and

leptons in the final state [17, 76, 77]. Here, we note that mass mixing of U(1)’s naturally

results in such models, and furthermore the choice of U(1)’s in such scenarios can be

significantly broadened. For example, the phenomenology of a particular simple case with

U(1)v taken as a (anomaly free) linear combination of B-L and hypercharge was explored

in detail in [77]. The Stückelberg mechanism provides a way to cancel the apparent field

theoretical U(1) anomalies without introducing chiral exotics.14 Hence, there are many

more choices of U(1)’s that one can employ as mediators between the hidden valley and

the visible sector. In this sense, the Stückelberg portal described here provides a minimal

realization of the hidden valley scenario.

5 A light Z′ from large hidden sectors

As we have seen, the phenomenology of the models we study depend crucially on the mass

of the Z ′ bosons that communicate the hidden and the visible sectors, specially on that of

the lightest one. In particular, a too massive Z ′ would not have a significant impact on

the low energy phenomena explored by current or near future experiments. On the other

hand, the mass of these Z ′ bosons seems to be tightly related to the string scale Ms. It

is important to address the conditions under which a Z ′ at a phenomenologically relevant

scale would arise in our setups. In this section we briefly review the known options to

achieve this, and propose a new mechanism to reduce the mass of the lightest Z ′ bosons

with respect to the string scale.

From equation (3.2), after reabsorbing the coupling constants from the kinetic matrix

f into the gauge bosons Aa → gaAa, the mass matrix from the Stückelberg mechanism

14In contrast, chiral exotics appeared in other approaches to hidden sectors in string theory [78, 79].
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reads:

M̃2
ab =

∑
ij

gagbK
i
aK

j
b Gij ∼ O(g2M2

s ) , (5.1)

where, g2
a ∼ gs/Vol(Πa) are gauge coupling constants inversely proportional to the volumes

wrapped by the branes (expressed in string units); K is a matrix of integer charges, and

G ∼M2
s is the positive definite metric of the complex structure moduli space.

The entries of the mass matrix M̃ are proportional to the string scale Ms, so a Z ′

boson with a TeV mass can be obtained in compactifications with a low string scale [21].

Because of the relation of the four dimensional Planck mass and the string scale, one must

consider a large internal space for such cases. One should notice, however, that in the

simple toroidal models of section 3.2 it is not possible to arbitrarily increase the volume of

the full compactification space. By doing so, one would unavoidably increase the volumes

of the cycles wrapped by the visible branes which should be kept fixed since they control

the gauge couplings of the SM. The problem comes from the fact that in the simple case

of the six-torus, there are no directions in the internal space which are simultaneously

perpendicular to all the branes from the visible sector. In order to overcome this caveat

one could imagine that the torus is only a small subspace of a large internal manifold, to

which it is connected through a throat [80–82].

Another way to lower the Z ′ masses is to consider extraweak couplings ga � 1, or

equivalently large three cycles [Πa], as can be seen straightforwardly from equation (5.1).

Again, the volumes of the visible branes are determined by the values of the SM gauge

coupling constants. One could consider anisotropic compactifications in which some of the

cycles are small (among them the ones wrapped by visible branes), while some other are

large. Wrapping hidden branes along the latter would result in some light Z ′ bosons in the

system [29]. Despite being an interesting and fruitful method to reduce the mass of some

Z ′ bosons, this mechanism has the unwanted feature of resulting in extraweak couplings to

the light Z ′ bosons (this can be an advantage for some scenarios such as those with ‘hidden

photons’ that we briefly discuss in section 6.2).

Here we would like to propose a third possibility, based on the presence of multiple

U(1) gauge bosons in the hidden sector, to generate a hierarchy between the Z ′ and the

string mass scales. We have extensively exploited throughout this work the non-diagonal

character of the squared mass matrix (5.1) to induce mixing among the U(1) bosons. Al-

though each of the entries of M̃2 is of order ∼ g2M2
s , if the matrix is large, its lowest

eigenvalues may be significantly smaller than that. This well known eigenvalue repulsion

effect has been exploited in the context of vacuum stability in the (non-superymmetric)

string landscape [83, 84] (see also [85]). In this section we would like to perform a prelim-

inary exploration of this effect as a mechanism to lower the mass of the lightest Z ′ bosons

in D-brane models with a large number of U(1)’s.

Obviously, if one wants to consider a large number of massive bosons, one must make

sure that there are also enough RR axions φi to give a mass to them through the Stückelberg

mechanism. Since the number of such axions in type IIA string theory is given by the

hodge number h2,1 + 1 of the internal CY space, we need to consider for this proposal a
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compactification in spaces with large h2,1. In particular the simple toroidal models we have

discussed more explicitly have h2,1 = 3 so they are not suitable for this mechanism.

We study here whether the eigenvalue repulsion effect for the mass matrix can lead to

a suppression of the mass of the lightest Z ′ boson with respect to the string scale Ms. We

take a statistical random matrix approach to the problem (see e.g. [86] for a review)15 in

which we consider a number n of U(1)a bosons (i.e. a number n of brane stacks) coupling to

n axions φi with random integer charges Ki
a homogeneously distributed within the range

[−10, 10] (i.e. with random wrapping numbers along the odd cycles [βi]). We also take

random values of the coupling constants ga in the range [0.001, 1] also distributed homo-

geneously. Given the poor control of generic compact CY geometries, there is not much

we can say about the complex structure moduli space metric, and so we take for simplicity

G = M2
s × 1n×n. In this way, we construct an ensemble of random mass matrices M̃2.

Since we are interested here in the properties of massive gauge bosons, we only consider

linearly independent charge vectors, i.e. matrices K of rank n, so that all the eigenvalues

of M̃2 are positive. As a first step we have considered a sample of one million 10 × 10

random mass matrices. In the following table and in figure 7 we show the distribution of

their lightest eigenvalues in terms of the string mass M2
s .

M2
Z′/M2

s 10−1 − 100 10−2 − 10−1 10−3 − 10−2 10−4 − 10−3 10−5 − 10−4

Frequency 26.42% 33.11% 20.88% 9.87% 3.88%

M2
Z′/M2

s 10−6 − 10−5 10−7 − 10−6 10−8 − 10−7 10−9 − 10−8 10−10 − 10−9

Frequency 1.29% 0.41% 0.13% 0.04% 0.01%

M2
Z′/M2

s 10−11 − 10−10 10−12 − 10−11 10−13 − 10−12 10−14 − 10−13 0− 10−14

Frequency 47× 10−6 11× 10−6 4× 10−6 2× 10−6 0

Unfortunately, we see from these results that the eigenvalue repulsion effect is not too

large. The majority of events yield a ratio for M2
Z′/M2

s in the range (10−6, 1), which can

be easily explained by the range of gauge couplings (0.001, 1) chosen. Nevertheless, events

below the 10−6 threshold can only be attributed to the eigenvalue repulsion, and we see

that there is a non-zero chance to obtain a Z ′ mass as low as 10−6Ms.

It is also interesting to study how these results depend on the size n of the mass

matrix, i.e. on the number of Z ′ bosons in the system. To this end, we randomize matrices

K of different sizes n = 10, 20, . . . , 100, as well as the gauge coupling constants ga in the

range [−0.001, 1], and compute the lightest eigenvalue of the mass-squared matrix M̃2.

The results of a run with one million events are summarized in the following table (where

15Similar statistical studies of intersecting brane models have also been considered in [87–89].
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Figure 7. A histogram showing the distribution of the smallest eigenvalue of one million random

mass-squared matrices for n = 10.

M2
Z′ = cM2

s ) and in figure 8.

n 10 20 30 40 50

c50% 3.7× 10−4 1.2× 10−4 6.5× 10−5 4.3× 10−5 3.2× 10−5

c10% 9.2× 10−6 3.3× 10−6 2.0× 10−6 1.3× 10−6 1.0× 10−6

c1% 9.1× 10−8 3.3× 10−8 1.9× 10−8 1.2× 10−8 1.0× 10−8

n 60 70 80 90 100

c50% 2.5× 10−5 2.1× 10−5 1.8× 10−5 1.6× 10−5 1.3× 10−5

c10% 8.1× 10−7 6.8× 10−7 6.0× 10−7 5.0× 10−7 4.5× 10−7

c1% 7.1× 10−9 7.0× 10−9 5.5× 10−9 5.1× 10−9 4.7× 10−9

Here c50% is the median number of the set, which means that 50% of the events in this set

have a smaller value than c50%. The numbers c10% and c1% are defined in a similar way.

We can see that the masses of the lightest Z ′ do indeed decrease as the number of U(1)

bosons increase. This behavior is due exclusively to the eigenvalue repulsion. Although the

dependence on n and the mass suppression are relatively mild, we believe that the statistical

large n effect is an interesting mechanism which can be added to the suppressions by

relatively small gauge coupling constants and fundamental string scale to explore scenarios

with Z ′ bosons in a mass range relevant for current phenomenological studies.

Our rough discussion serves to illustrate the effect that a large number of branes has

on the mass of the lightest Z ′ bosons, but it is evident that it should be supplemented

by further analysis in several aspects. In particular, one would like to implement these

models in explicit geometries and study the effect of the complex structure metric G in

the resulting mass eigenvalues. Also, we have not implemented in this section the tadpole

cancellation conditions (2.1) which must be satisfied in any complete model.
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Figure 8. An exhibition of c10% as a function of n. The best fitting function reads c10% =

2.33× 10−6 n−1.41.

Finally, in a realistic compactification one would need to include a visible sector with

branes that lead to the SM gauge group and field content, e.g. by realising the intersection

numbers (2.14). Such a sector could be connected through the Stückelberg portal to a

hidden sector with numerous brane stacks where the large n effect we have discussed takes

place. One would have to make sure that there is no exotic chiral matter charged under the

SM, i.e. that the visible branes do not intersect any hidden ones. Since we are describing

setups with a large hodge number h2,1, these conditions can generically be implemented as

in the simple example presented in section 3.2. The conditions can be easily considered case

by case, although a systematic implementation in the random matrix approach requires

more involved algorithms that we leave for future work.

In any case, the effects of the tadpole cancellation condition as well as the inclusion of

a visible sector are expected to be statistically irrelevant in the large n limit.

6 Related portals

In this last section we would like to comment on two other mechanisms, both related to

the Stückelberg portal, which also connect the visible and the hidden sectors.

6.1 Non-perturbative effects

In the type of constructions we have discussed in this work, there is another type of

interaction between the hidden and the visible sectors, besides those mediated by gravity

and the studied Z ′ bosons. In fact, it is also induced by the RR-axions φi involved in the

Stückelberg portal we have discussed, but it manifests itself as a non-perturbative coupling

that effectively breaks the massive U(1) symmetries (for a review on non-perturbative

effects in type II theories see [90]). Similar effects have been discussed in the context of

SUSY mediation in [91].
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Recall from eq.(2.8) that the operators e−U
i

= e−u
i−iφi transform linearly under U(1)a

gauge transformations, with a vector of charges given by (K)ia = Nar
i
a. As we have

discussed, the Stückelberg portal arises when, for some φi, this vector contains non-zero

charges for both visible and hidden U(1) symmetries.

In this case, one can construct U(1)-invariant operators that mix visible and hidden

charged fields, i.e. an operator of the form e−U
i
ΨvΨh, where Ψv and Ψh are operators from

the visible and hidden sectors whose U(1) charges cancel those of e−U
i
.

Indeed, such type of operators are generated by instantonic D2-branes that wrap

around the cycle [αi] and have a classical action given by U i, and whose non-perturbative

contribution to the effective action is weighted precisely by e−U
i
. The fact that these in-

stantons generate interactions between charged operators is related to the appearance of

charged fermionic zero-modes on the worldvolume of the instanton, that arise from the

intersections of [αi] with the gauge branes of the system. As is well known, upon gauge

fixing and stabilization of the complex structure moduli, such effects are responsible for

the non-perturbative breaking of the U(1) symmetries that become massive through the

Stückelberg mechanism [92–94].

The particular operators generated this way depend on all the zero-modes on the

worldvolume of the instanton brane, and must be analyzed case by case for different com-

pactifications. Since the effects of such interactions are non-perturbatively suppressed and

expected to be small in comparison with those mediated by Z ′ bosons, we will not study

them further. Nevertheless, it is worth noting that both type of interactions between

separated sectors, Stückelberg and non-perturbative, are tightly connected.

6.2 ‘Hidden photon’ scenarios

So far, we have considered in this work scenarios where a Z ′ boson couples with significant

strengths both to the visible and the visible sectors. As we have seen, this setup can be

achieved by non-diagonal terms in the mass matrix M2 = (K T ·G ·K) induced by mixed

axionic charges encoded in the matrix of integers K.

It is also interesting to consider a different possibility, in which light gauge bosons have

a significant coupling to the hidden sector while they have extremely weak interactions with

the visible sector. Because of this small coupling, the severe restrictions on the mass of

the Z ′ bosons from direct searches (cf. section 4.3) do not apply, and one can consider so

called ‘hidden photon’ scenarios, where the mass of such bosons can be extremely light.

The usual way to introduce such a setup is to consider a hidden U(1) boson Ah with

a mass mh that has a small kinetic mixing δ � 1 with hypercharge AY (or equivalently

with the photon):

L = − 1

4g2
Y

F 2
Y −

1

4g2
h

F 2
h −

δ

2
FY Fh −

1

2
m2
hA

2
h +AY JY +AhJh (6.1)

One can get rid of the mixing and set a diagonal kinetic matrix (while keeping the mass

matrix diagonal) by redefining AY → AY − δg2
yAh. In this way, the hidden boson Ah,

that originally coupled to the hidden current Jh acquires a small coupling to the visible

hypercharge coupling JY . Visible matter fields interact with the hidden photon with a
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strength proportional to δ and their hypercharge. Such scenarios arise naturally in string

constructions [24–29]. Their phenomenology has been thoroughly studied for various ranges

of the parameters δ and mh (see [3, 4] and references therein).

In this section, we want to point out that a similar scenario can be obtained through

small non-diagonal terms in the mass (rather than kinetic) matrix in the presence of mul-

tiple U(1) factors. While mixings induced by the integer matrix K are generically large, a

small mixing can be induced by small non-diagonal elements in the matrix G, i.e. by small

kinetic mixings between the axions absorbed by the U(1) bosons.

In order to avoid large mixings that would induce large couplings of gauge bosons

to separated sectors, we assume that there are no axions charged simultaneously under

both. In the language of section 3.1, for every axion φi the vector of U(1) charges kia has

non-zero entries for a either in the visible sector or the hidden sector, but not for both

simultaneously (that is, K takes a block diagonal form).

A small mixing between axions that couple to different sectors can be induced by non

diagonal terms in the moduli space metric G (i.e. the kinetic matrix of the axions), see

figure 3. We can construct a toy model, with two massive gauge bosons (different from

hypercharge), one in the visible sector Av and one in the hidden one Ah. They couple via a

Stückelberg term to two axions φv and φh respectively with a matrix of charges K = 12×2.

The mixing is induced by a non-diagonal small term in the axionic kinetic matrix that we

take of the form

G =

(
m2
v ε

ε m2
h

)
, (6.2)

with ε� m2
h < m2

v. The effective Lagrangian involving the gauge bosons would read

L = − 1

4g2
v

F 2
v −

1

4g2
h

F 2
h −

1

2
m2
vA

2
v −

1

2
m2
hA

2
h − εAvAh +AvJv +AhJh , (6.3)

where we have neglected kinetic mixing effects.16 Again, we can get rid of the mixing by

a field redefinition which, to first order in ε reads

Av → Av − ε̃Ah , Ah → Ah + ε̃Av , (6.4)

where we have defined

ε̃ ≡ gvghε

g2
vm

2
v − g2

hm
2
h

. (6.5)

After this redefinition, the Lagrangian in terms of the physical bosons reads

L ≈ − 1

4g2
v

F 2
v −

1

4g2
h

F 2
h −

1

2
m2
vA

2
v −

1

2
m2
hA

2
h +Av(Jv + ε̃Jh) +Ah(Jh − ε̃Jv) . (6.6)

From this, we see that the hidden current Jh couples to the visible gauge boson Av, and at

the same time the visible current Jv couples to the hidden photon Ah, both with a small

coupling controlled by ε̃.

16Since we are considering small effects in this section, kinetic mixings would be important and should

be included in a complete discussion. For our purpose of illustrating the mass mixing effect it is sufficient

to consider the simplified Lagrangian (6.3).
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Since the visible boson Av couples to the visible sector with significant strength, its

mass must satisfy the bounds described in section 4.3, i.e. we should consider mh at the

multi TeV scale. On the contrary, Ah couples very weakly to the visible sector, and

is a perfect candidate for a hidden photon, whose mass may be extremely small. Such

small masses could be achieved in principle by applying to the hidden sector some of the

mechanisms described in section 5.

The phenomenology of this scenario is very similar to that of the models considered

in the literature in which a hidden photon mixes kinetically with hypercharge. An impor-

tant difference is that, in our case, the coupling of matter fields to the hidden photon is

not proportional to its hypercharge, but depends on its charges under U(1)v. Since we

are dealing with a Stückelberg U(1), this symmetry may be anomalous, with anomalies

cancelled through the generalized GS mechanism. This leads to a richer class of hidden

photon scenarios.

It would be interesting to implement this class of scenarios in an explicit string com-

pactification. In principle, a moduli space metric such as (6.2) could arise from quantum

corrections to a metric which is diagonal at tree level, such as that of a torus (cf. equa-

tion (3.15)). Unfortunately, corrections to the complex structure moduli space are very

hard to compute and at the present stage it is not possible to realize our proposal in

generic compactifications.

7 Conclusions

In this paper, we have presented a natural framework for the visible sector to interact with

the hidden sector(s). We have shown how Stueckelberg U(1)’s can provide an interesting

portal into hidden sector(s). Our scenario can be viewed purely field-theoretically, though

it is particularly well motivated from string theory. We have explicitly constructed a class

of intersecting brane models to illustrate how this Stueckelberg portal scenario can be

embedded into string theory. These intersecting brane models are global constructions

(i.e., tadpole free) which extend the Madrid quiver (where the Standard Model reside)

with a genuine hidden sector, i.e., there are no chiral exotics with charges under the

Standard Model. We have carried out some preliminary phenomenological studies of this

scenario, pointing out some model-independent features as well as presenting results for

some concrete D-brane models to illustrate our approach. The phenomenological features

of interest include Z−Z ′ mixings, DM stability and relic density, hidden valleys and SUSY

mediation, etc. We have also discussed related portals, emphasizing the differences from

previous works. We pointed out that in addition to kinetic mixing assumed in previous

literature, mass mixing can also have significant effects in the ‘hidden photon’ scenario.

This leads to a broader class of ‘hidden photon’ models, where the coupling of the hidden

photon with the visible sector is distinct from what was previously studied in this context.

The Stueckelberg portal proposed here bears some similarities with other Z ′ media-

tion scenarios. However there are some notable differences. In particular, the Stueckelberg

portal has several added appealing features that are advantageous from both phenomeno-

logical and model building standpoints. Among these new features are (i) a broader choice
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of U(1)’s can be made without the need of introducing unwanted exotics, and (ii) a more

sizable interaction between the visible and hidden sector can arise as the mixings are gen-

erated at tree-level rather than loop suppressed.

As a phenomenological scenario, the mass of the lightest Stueckelberg Z ′ is a free

parameter. However, in string constructions, the Z ′ mass matrix depends on the string scale

Ms (the only fundamental energy scale in the problem), the associated gauge couplings,

and the axion charges under the U(1)’s. We pointed out that in addition to lowering the

string scale or considering ultra-weak hidden sector couplings, eigenvalue repulsion in the

mass matrix provides yet another way to lower the mass of the Z ′s. Given an ensemble of

large rank matrices, one can ask what is the likelihood of finding a significantly reduced

Z ′ mass. Our preliminary study indicated that increasing the number of branes (i.e.,

U(1)’s) can help lower the mass of the lightest Z ′ but clearly further analysis is needed.

For example, it would be interesting to implement the data for explicit geometries and

study the effect of the complex structure metric G in the resulting mass eigenvalues. It

is also important to see if the inclusion of a visible sector with the SM gauge group and

field content affect the statistical statements we made here. A systematic implementation

of these additional features and the corresponding constraints (e.g., tadpole cancellation,

absence of exotics) in this statistical approach requires more involved algorithms that we

leave for future work.
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