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Abstract
We review Unruh–DeWitt detectors and other models of detector–field
interaction in a relativistic quantum field theory setting as a tool for extracting
detector–detector, field–field and detector–field correlation functions of interest
in quantum information science, from entanglement dynamics to quantum
teleportation. In particular, we highlight the contrast between the results
obtained from linear perturbation theory which can be justified provided
switching effects are properly accounted for, and the nonperturbative effects
from available analytic expressions which incorporate the backreaction effects
of the quantum field on the detector behavior.

PACS numbers: 04.62.+v, 03.65.Ud, 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction and background

1.1. Some basic issues in relativistic quantum information

We assume that the readers are somewhat familiar with the Unruh effect [1] on the one
hand and the basic issues of quantum information on the other [2] and will only highlight
the relativistic aspects of both of these topics here. First, the quantum field acting as
an environment to the discrete (qubits) or continuous variables (oscillators) in quantum
information processing—we will refer to these point-like physical objects with internal degrees
of freedom as detectors (the Unruh–DeWitt (UD) detector being the familiar one [3])—will
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necessarily exert environmental influences on the system. Second, the motional states of the
detectors (e.g., inertial or accelerated, uniformly or otherwise) will affect both the quantum
decoherence and entanglement dynamics of these detectors.

1.1.1. Quantum field effects. The presence of a quantum field is unavoidable, as it acts as
a ubiquitous environment to the qubits or detectors in question. Two basic issues of quantum
information need to be included in one’s consideration are as follows.

Quantum decoherence. Coupling to a quantum field can induce decoherence of a single
qubit or oscillator, but their mutual influences mediated by a field can lessen the degree of
decoherence if the two qubits are placed in close range [4].

Entanglement dynamics. The entanglement between two qubits or oscillators changes in
time as their reduced state (after coarse-graining over the field) evolves; it also depends on
their spatial separation [4, 5].

1.1.2. Kinematical effects.

Unruh effect. A uniformly accelerated detector coupled with a quantum field in the
Minkowski vacuum would experience a thermal bath of the field quanta at the Unruh
temperature proportional to its proper acceleration. This was first discovered by Unruh using
time-dependent perturbation theory (TDPT) [1]. Generalized considerations follow in the
works of Higuchi et al [6] and Louko et al [7]. Exact solutions going beyond these test-field
descriptions were found by Lin and Hu [8, 9] with interesting new physics.

Non-uniform acceleration. The kinematical viewpoint has proven to be more malleable and
adaptable than the traditional geometrical (global concepts such as event horizon) viewpoint.
We will mention how newer models in the 1990s such as the RSG model [10], especially
those which incorporate open quantum system concepts such as the Raval–Hu–Anglin–Koks
(RHAK) models [11, 12], have aided in treating non-uniform acceleration, in work from the
1990s (e.g., [13]) to now [14].

Mutual influences. The influence of one detector on the field will propagate in space and
affect other detectors after some time. These causal mutual influences propagating back and
forth are a source of non-Markovianity in multi-detector theories. They act to augment the
quantum coherence between two detectors placed in close range. Another source of non-
Markovianity is the long-range autocorrelation of the quantum field.

1.1.3. Relativistic effects. Furthermore, objects in a relativistic system may behave differently
when observed in different reference frames, so we have the following.

Frame dependence. Quantum entanglement of two objects localized at different positions on
a spatial hypersurface is a kind of spacelike correlation; the time evolution of their entanglement
will depend on how the spacetime is foliated by spacelike hypersurfaces.
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Time dilation. For moving objects with worldlines parameterized by their proper times, their
time dilations observed in a reference frame will naturally enter the dynamics in that frame.

Projective measurement local in space. Quantum states make sense only in a given frame
where a Hamiltonian is well defined [15]. Two quantum states of the same system with
quantum fields in different frames are comparable only on those totally overlapping time-
slices associated with certain moments in each frame. By a measurement local in space, e.g.
on a point-like UD detector coupled with a quantum field, quantum states of the combined
system in different frames can be interpreted as if they collapsed on different time-slices
passing through the same measurement event. Nevertheless, the post-measurement states will
evolve to the same state up to a coordinate transformation when they are compared at some
time-slice in the future. In a two-detector system with the first detector being measured at
some moment, the reduced state of the second detector collapsed in different frames will
become consistent once it enters the future lightcone of the measurement event [4, 5, 16–18].

1.2. Unruh effect via perturbation theory and quantum information via exact solutions

TDPT was used by Unruh originally to show the detector response to uniform acceleration.
For a comprehensive description of Unruh effect, see, e.g., the recent review of [19]. With
the infusion of quantum open system ideas in the 1990s, these TDPT results were later found
to hold only in the Markovian regime, corresponding to the limits of ultrahigh acceleration
or ultraweak coupling. Discovery of exact solutions in the 2000s showed that the transition
probability calculated from the infinite-time TDPT is valid only in transient under restricted
conditions. We will develop the perturbative theory further in section 2 and comment on these
developments in the last two sections. In section 3, we will introduce two other more general
models for moving detector–quantum field interaction, namely the RSG and the RHAK models,
treating the detectors as harmonic oscillators (HOs) rather than the two-level system as in the
original Unruh derivation. We will also bring in the broader scope provided by the theory of
open quantum systems exemplified by the quantum Brownian model, where the use of reduced
density matrix and influence functionals opens the way to exploring the full parameter range
of detector–field interaction including self-consistent backreaction. This opens the door for
quantum information inquires. In section 4, we describe the detector–field dynamics from the
exact solutions of one such model, and identify the limitations of TDPT. In section 5, we
give an important example of relativistic quantum information, that of quantum teleportation
which uses pretty much all of the relativistic and quantum information elements developed,
such as frame dependence and entanglement dynamics. We end with some suggestions on
further developments.

2. Nonstationary detector within first-order perturbation theory

In this section, we summarize recent results about the transition rate of a pointlike detector
within linear perturbation theory, in situations where neither the detector trajectory nor the
state of the quantum field is assumed stationary [7, 20–22]. The central issue is to isolate
switch-on and switch-off effects from phenomena that are genuinely due to the acceleration
and to the state of the field.
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2.1. Transition probability

We consider a pointlike two-level detector that moves in a spacetime of dimension d � 2
along the worldline z(τ ), where the parameter τ is the detector’s proper time. The motion is
driven by an external agent who is decoupled from the detector’s internal degrees of freedom
and from the quantum field to which the detector couples.

The detector’s internal Hilbert space here is two dimensional, spanned by the orthonormal
basis states |0〉d and |ω〉d whose respective energy eigenvalues are 0 and ω, with ω �= 0. For
ω > 0, |0〉d is the ground state and |ω〉d is the excited state; for ω < 0, the roles of the states are
reversed. A generalization to a countable number of nondegenerate energy eigenstates would
be straightforward.

The spacetime contains a free real scalar field φ, whose mass and curvature coupling
parameter may be arbitrary. The detector is coupled to φ linearly, by the interaction picture
Hamiltonian

Hint = λχ(τ )Q(τ )φ(z(τ )) , (1)

where λ is the coupling constant and Q is the detector’s monopole moment operator. The
switching function χ specifies how the interaction is turned on and off. We assume χ to be
smooth, nonnegative and of compact support. We also assume the trajectory z(τ ) to be smooth.

We denote the initial state of the field by |ψ0〉, and we assume |ψ0〉 to be regular in the
sense of the Hadamard property [23, 24]. The detector is initially prepared in the state |0〉d .

We work within first-order perturbation theory in λ. After the interaction has ceased, the
probability for the detector to be found in the state |ω〉d , regardless of the final state of the
field, is [25, 26]

P(ω) = λ2|d〈0|Q(0)|ω〉d |2F (ω) , (2)

where the response function F (ω) is given by

F (ω) = 2Re
∫ ∞

−∞
du χ(u)

∫ ∞

0
ds χ(u − s) e−iωs W (u, u − s) , (3)

and the correlation function W (τ ′, τ ′′) := 〈ψ0|φ(z(τ ′))φ(z(τ ′′))|ψ0〉 is the pull-back of the
Wightman function to the detector’s worldline. The prefactor λ2|d〈0|Q(0)|ω〉d |2 in (2) depends
only on the detector’s internal structure, while F (ω) (3) encodes the dependence on |ψ0〉, the
trajectory and the switching. With minor abuse of terminology, we refer to F (ω) as the
transition probability.

2.2. Transition probability without distributional integrals

While formula (3) for the transition probability is as such well defined, it is not well suited
for discussing how the probability depends on the switching function, especially when
the switching becomes sharp. The correlation function W is not a genuine function but a
distribution. When W is represented by a family Wε of functions that converge to W as
ε → 0+, the sense of convergence entails that the limit ε → 0+ is taken in (3) only after
the integrals are evaluated [27–30]. The sharp switching limit may hence not necessarily be
brought under the integrals and the ε → 0+ limit in (3) [31–33].

What is needed is to re-express (3) in terms of the genuine function W0 := limε→0+ Wε ,
where the limit is understood pointwise. The results for d = 2, d = 3 and d = 4 are [7, 20–22]

Fd=2(ω) = 2Re
∫ ∞

−∞
du χ(u)

∫ ∞

0
ds χ(u − s) e−iωs W0(u, u − s) , (4)
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Fd=3(ω) = 1

4

∫ ∞

−∞
du [χ(u)]2 + 2

∫ ∞

−∞
du χ(u)

∫ ∞

0
ds χ(u − s)Re[e−iωsW0(u, u − s)] ,

(5)

Fd=4(ω) = − ω

4π

∫ ∞

−∞
du [χ(u)]2 + 1

2π2

∫ ∞

0

ds

s2

∫ ∞

−∞
du χ(u)[χ(u) − χ(u − s)]

+ 2
∫ ∞

−∞
du χ(u)

∫ ∞

0
ds χ(u − s)Re

(
e−iωs W0(u, u − s) + 1

4π2s2

)
, (6)

and those for d = 5 and d = 6 can be found in [22] in the special case of a Minkowski space
massless field in the Minkowski vacuum. The crucial point is that in addition to an expected
integral term that involves W0, there are also additional terms that depend on the switching.
These additional terms are remnants of the distributional singularity of W , and they are absent
only for d = 2, where the singularity of W is merely logarithmic.

The Hadamard property of the Wightman function guarantees that the integrals in (4)–(6)
are convergent at s = 0. We assume that any singularities of W0 at s > 0 are integrable. Such
singularities can occur for example when the spacetime has spatial periodicity so that points
on the detector’s trajectory can be joined by null geodesics that circumnavigate the space [22].

2.3. Transition rate

When both the detector trajectory and the quantum state of the field are stationary, in the
sense that they are invariant under a Killing vector that is timelike in a neighborhood of the
trajectory, a transition rate per unit time may be defined by making the switching function time
independent and formally factoring out the infinite total time of detection [1, 3, 19, 25, 26,
34–39]. In time-dependent situations, this procedure is however not available, and separating
the switching effects from the acceleration effects becomes delicate [6, 13, 37, 40–45].

To define a transition rate in the nonstationary setting, we consider the limit in which the
detector is switched on an off sharply. We let the switching function χ take the value unity
from the proper time τ0 to the proper time τ , where τ0 < τ , and we assume that the switch-on
takes place over an interval of duration δ before τ0 and the switch-off takes place over an
interval of duration δ after τ , in a manner discussed in [7, 20]. The limit of sharp switching is
δ → 0.

We regard the response function F as a function of the switch-off moment τ , and we
define Ḟτ := dF/dτ . Ḟτ may be regarded as the detector’s instantaneous transition rate per
unit proper time, observationally meaningful in terms of consequent measurements in identical
ensembles of detectors [7].

For d = 2 and d = 3, taking the δ → 0 limit in (4) and (5) is immediate and yields a finite
result for the transition probability. For d = 4, the δ → 0 limit in (6) contains a divergent
term proportional to ln δ [7, 20]. This divergent term depends on the details of the switching
but it is constant in time, and it is also independent of the trajectory and of the quantum state.
The divergent term does hence not contribute to the transition rate. Physically, the δ → 0
limit means that we take the switching to be rapid compared with the overall duration of the
interaction: focusing on the transition rate allows us to discard from the transition probability
the numerically dominant piece that depends only on the details of the switching. Collecting,
the δ → 0 transition rates for d = 2, and d = 3 and d = 4 are given by

d = 2 : Ḟτ (ω) = 2Re
∫ �τ

0
ds e−iωs W0(τ, τ − s) , (7)
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d = 3 : Ḟτ (ω) = 1

4
+ 2

∫ �τ

0
ds Re[e−iωsW0(τ, τ − s)] , (8)

d = 4 : Ḟτ (ω) = − ω

4π
+ 2

∫ �τ

0
ds Re

(
e−iωsW0(τ, τ − s) + 1

4π2s2

)
+ 1

2π2�τ
, (9)

where �τ := τ −τ0. Equations (7) and (8) are valid as δ → 0 at fixed λ, provided λ is so small
that the total transition probability remains within the validity domain of the perturbative
treatment. Equation (9) is valid as δ → 0 provided λ simultaneously approaches zero so
fast that it is bounded in absolute value by k/

√| ln δ|, where the positive constant k is so small
that the total transition probability remains within the validity domain of the perturbative
treatment.

For d = 5 and d = 6, we specialize to a massless field in Minkowski spacetime in the
Minkowski vacuum [21]. The transition probability contains again a term that diverges as
δ → 0. For d = 5, the divergent term is constant in time, and the transition rate has the finite
δ → 0 limit,

d = 5 : Ḟτ (ω) = 4ω2 + z̈2(τ )

64π
+ 1

4π2

∫ �τ

0
ds

(
sin (ωs)√
[−(�z)2]3

− ω

s2

)
− ω

4π2�τ
,

(10)

where �z := z(u) − z(u − s). For d = 6, by contrast, even the transition rate contains a term
that diverges for generic trajectories as δ → 0, proportionally to z̈· ...

z ln δ. This means that
the divergences due to the rapid switching cannot be isolated from the acceleration effects for
d = 6. The sole exception occurs for trajectories whose scalar proper acceleration

√
z̈2 is a

constant, including as a special case all stationary trajectories. For such trajectories, the d = 6
transition rate remains finite as δ → 0 and is given by

d = 6 : Ḟτ (ω) = −ω(ω2 + z̈2)

24π2
+ 1

2π3

∫ �τ

0
ds

(
cos (ωs)

[(�z)2]2
− 1

s4
+ 3ω2 + z̈2

6s2

)

+ 3ω2 + z̈2

12π3�τ
− 1

6π3�τ 3
. (11)

2.4. Applications

When both the detector trajectory and the quantum state of the field are stationary, the transition
rate formulas (7)–(11) reduce to the well-known formulas in which stationarity is assumed at
the outset [25, 26, 38]. We re-emphasize, however, that formulas (7)–(11) apply in genuinely
time-dependent situations.

A showcase example is a Minkowski spacetime trajectory that is asymptotically inertial at
early times and of asymptotically uniform linear acceleration at late times, with the field in the
Minkowski vacuum. Within the perturbative treatment, the transition rate is duly found [33] to
interpolate between that in inertial motion and that in uniform linear acceleration, describing
thus the onset of the Unruh effect [1].

Other applications can be found in [7, 20, 22, 33, 46]. Slowly varying acceleration is
discussed in [47, 48].
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2.5. Other definitions of the transition rate

To conclude this section, we mention two alternative definitions of the transition rate.
First, the transition rate of a pointlike detector in flat spacetime can be defined by first

giving the detector a spatial size, specified covariantly in terms of the detector’s instantaneous
rest frame, and at the end taking the pointlike limit [31, 32, 38]. The results agree with those
obtained via smooth switching in the common domain of validity [21, 31–33, 49, 50]. A related
procedure that replaces spatial size by a pole prescription in proper time is discussed in [47].

Second, a spatially extended detector in flat spacetime can be reinterpreted as a pointlike
detector with an energy cutoff that is specified covariantly in the detector’s instantaneous rest
frame [49, 50]. Definition of the transition rate via this energy cutoff can be generalized to
curved spacetimes at least when the spacetime has a sufficient amount of symmetry [49, 50].

3. Detector–field interaction: UD, RSG, RHAK models

Quantum mechanics for the single particles in some nonlinear potentials such as anharmonic
oscillators, Morse potential, etc are exactly solvable. But in field theory, since a field
has infinitely many degrees of freedom, a small nonlinearity can create huge difficulty in
calculations. One can at most perform perturbation theory or self-consistent approximations
around some non-trivial background field configuration, where the calculation involves
essentially Gaussian integrals. However, if the potential of the detector is that of a HO and the
quantum state is in a Gaussian form, it is possible to solve the full dynamics of the combined
system of the detectors and the field non-perturbatively.

3.1. Raine–Sciama–Grove model

A notable non-perturbative model is that of Raine, Sciama and Grove (RSG) [10], where they
found the late-time expectation values for the stress tensor of a massless scalar field in (1+1)D
Minkowski space. The method is generalized to the case with a point-like UD detector in
a massless scalar field in (3+1)D Minkowski space, and the whole history of the combined
system is solved in [8].

3.2. Proxy to quantum Brownian motion models

Suppose the internal degrees of freedom of the UD detector are HOs. Then the combined
system of N UD detectors and a quantum field is an (N + ∞)-HO system, which is linear
and exactly solvable. Unruh and Zurek [51] have studied a model where a HO interacts with
a massless scalar field in 2D. They derived the exact master equation for the reduced density
matrix of the system (oscillator) at a temperature determined by the initial state of the field, and
observed some general features different from the conventional Markovian results valid for an
ohmic bath at ultrahigh temperature made known earlier in the famous paper of Caldeira and
Leggett [52]. One feature is the dependence of the ultraviolet cut-off on the master equation
and the reduced density matrix, and thus also on the von Neumann entropy of the system.

More general non-Markovian behavior was explored by Hu, Paz and Zhang [53] who
derived an exact master equation with nonlocal dissipation and colored noise for the system
of one HO (detector) interacting with a thermal bath of n-HOs. For quantum decoherence,
they identified the low-temperature, supra-ohmic regime as a noticeable departure from the
Markovian behavior (see followup in [54]). Using this model as a theoretical tool with the
help of quantum open system ideas, many of the basic issues we listed in the beginning can
be addressed effectively.
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A bath of n-HOs of time-dependent frequencies to a quantum field was subsequently
generalized by Hu and Matacz [55] for moving detectors–quantum field interactions. Because
the treatment is given in quantum optics language—the quantum states described by the
squeeze, rotation and displacement operators and the dynamics in terms of parametric
amplification—their results are immediately applicable to ‘atomic-mirror’–optical systems
[56]. It also served the intended purpose of bringing open system methods and concepts
to quantum field theory. The influence functional treatment they used incorporates the
backreaction of the environment on the system (which could be either the quantum field or the
HO depending on what one is after) in a self-consistent way. In particular, they showed how
the Unruh and Hawking temperatures can be identified from the noise kernel using this method.

Viewing the Unruh effect from this perspective, since in the QBM model there are
nontrivial activities at zero temperature [51, 53, 55], we note that even for the zero acceleration
a = 0 case, the detector is not just laying idle but has interesting physical features due to its
interaction with the vacuum fluctuations in the quantum field.

3.3. RHAK models

A model of N detectors in arbitrary relativistic motion interacting with a common quantum
field (but not with each other) was proposed by Raval, Hu, Anglin [11]. They calculated the
influence of quantum fields on the detectors in motion, and the mutual influence of detectors
by the action of fields via the Langevin equations derived from the influence functional.
They introduced the notion of self- and mutual impedance, advanced and retarded noise,
and the new relations between noise correlations and dissipation–propagation. They show
the existence of general fluctuation–dissipation relations, and for trajectories without event
horizons, correlation–propagation relations. Raval, Hu and Koks [12] used this model to
explore different trajectories of the moving detectors in a quantum field and showed that this is
a more feasible way (over the traditional global geometric view which relies on the existence
of event horizons) to address situations where the spacetime possesses an event horizon only
asymptotically, or none at all. Examples studied there include detectors moving at uniform
acceleration only asymptotically or for a finite time, a moving mirror and a two-dimensional
collapsing mass. They show that in such systems, radiance indeed is observed, albeit not in a
precise Planckian spectrum. The setups in this model have been adopted in the study of charge
particle motion by Johnson et al [57] in an electromagnetic field and by Galley et al [58] for
the self-force of masses moving in a gravitational field.

3.4. Moving detectors–quantum field interaction

Consider a model with N identical point-like UD detectors with the internal degrees of freedom
represented by HOs with mass m0 and natural frequency �, moving in a quantum field in
(3+1)D Minkowski space. Here we follow the treatment in [16]. The action of the combined
system is given by

S = −
∫

d4x
√−g

1

2
∂σ�(x)∂σ�(x) +

∑
d

∫
dτd

{
m0

2

[
(∂dQd)2 − �2

0Q2
d

]

+ λ

∫
d4xQd(τd)�(x)δ4(x − zd(τd))

}
, (12)

where σ = 0, 1, 2, 3, gσσ ′ = diag(−1, 1, 1, 1), d = A, B,C, . . . denotes the names of the
detectors, ∂d ≡ ∂/∂τd, τd is the proper time for the detector Qd and zd(τd) is the trajectory of
the detector d. The scalar field � is assumed to be massless and λ is the coupling constant.

8
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We consider a massless scalar field here because it is simpler and a good representation of the
electromagnetic field. In fact all kinds of fields, massless or massive, bosonic or fermionic, can
be considered, depending on the physics one aims at. The detectors do not have to be uniformly
accelerated (e.g., [12]) or at rest. However, the motion of the detector here is assumed to be
controlled by external agents, in other words, the trajectories or worldlines of the detectors are
prescribed and not dynamical. If the motion of the detector becomes dynamical, it is extremely
hard to obtain analytical results even in classical theory (for example, a relativistic charge in a
field in classical [59] and quantum field theory [60]), since including backreaction of the field
on the detector will alter its (test-field) prescribed trajectory. Trajectories of charged particles
[57] and even extended objects [61] determined by their interplay with the quantum field have
also been studied before using the influence functional method which is particularly suited to
treating consistent backreaction effects.

The first noticeable attractive feature of (12) is that this model is linear and thus easy
to treat. It is arguably the simplest model for an ‘atom’–field interacting system but complex
enough to give nontrivial results and insights. By ‘atom’ here, we refer to a spatially localized
physical object with internal degrees of freedom. By field, we categorically refer to dynamical
variables which can be non-local in space6. In some simple setups, analytic results can be
obtained in the whole parameter range, and backreaction to both the atom and the field can be
fully studied with the help of quantum open system techniques.

Moreover, in a relativistic setting, such as for uniformly accelerated detectors or black
holes, event horizons for the detectors can be sharply defined since the detectors are always
localized. Also since the detectors are pointlike, they are allowed to be parametrized by
their own proper times, which are invariants under coordinate transformations. This greatly
simplifies the calculations in different reference frames when the related physics corresponds
only to the two-point correlators of the detectors parametrized by two proper times. Note that
this is even plausible for extended objects in the spirit of effective field theory [61, 62].

For a uniformly accelerated UD detector in (3+1)D with proper acceleration a, the Unruh
effect [1, 3, 19, 25] attests that it should behave the same way as an inertial UD detector in
contact with a thermal bath at the Unruh temperature TU , or more precisely, as an inertial
HO in contact with an Ohmic bath at TU [63]. However, examining this from the vantage
point of the exact solutions we obtained, we see that the above statements are accurate only
at the initial moment. After the coupling is switched on, the quantum state of the field will be
changed by the detector, so the field is no longer in the Minkowski vacuum and it does not
make exact sense to say that the detector is immersed in a thermal state (or any state defined
in the test-field description, i.e. where the field is assumed not to be modified by the presence
of the detector).

A theorem by Bisognano and Wichmann (BW) [64] states that the Minkowski vacuum,
which is uniquely characterized by its invariance under all Poincaré translations, is a Kubo–
Martin–Schwinger (KMS) state with respect to all observables confined to a Rindler wedge.
It does not apply here because the BW theorem refers to the vacuum state of a quantum field
alone, not the combined detector–field system. Even when the combined system is in a steady
state, the quantum state of the interacting field is not invariant under spatial translations in
Minkowski space, hence does not subscribe to the assumption of the BW theorem pertaining
to Poincaré invariance. Actually the Planck factor in, for example (equation (60) in [8]),

〈Q(η)Q(η′)〉v ∼ λ2
�

(2π)2m2
0

∫
κdκ

1 − e−2πκ/a
[· · ·] (13)

6 ‘Nonlocal’ is in the sense used by the atomic-optical quantum information community. Of course, quantum field
theory is local.
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is a consequence of the BW theorem. Nevertheless, it is derived from only the free-field-
solution part of the complete interacting field. Here the factor is not distorted by the interaction
simply because the field is linear and the coupling is bilinear. For nonlinear fields or couplings,
it would have a non-Planckian spectrum and the departure from the conventional picture would
be more pronounced.

4. Nonperturbative detector–field dynamics

Nonperturbatively solvable models such as (12) are particularly useful for examining the full
features of a system which perturbative theories miss or misrepresent. They are essential
for understanding new physics such as that associated with quantum entanglement whose
dynamical behavior we do not really have a complete or accurate knowledge about. We now
continue to develop model (12).

A quantum state of the combined detector–field system can be described by the density
matrix ρ̄[(Q,�x), (Q′,�′

x); x0] or equivalently, the Wigner function [51, 53],7

W [P,�; x0] =
∫

D
(

�

2π

)
e

i
�

P·�ρ̄

[
� − �

2
,� + �

2
; x0

]
. (14)

If we start with a Gaussian state, by virtue of the linearity of the combined system (12), the
quantum state will always evolve in a Gaussian form in its entire history. Thus, solving the
dynamical equations for the Wigner function boils down to solving the time-dependent factors
in the Wigner function.

Since the field variables at some moment x0 are defined on the whole time-slice associated
with x0, the density matrix or Wigner functions at x0 are also defined on that time-slice. In
the Schrödinger picture, the evolution of a density matrix (Wigner function) is governed by
the master equation (Fokker– Planck equation). It is possible to solve these equations for
Gaussian states directly in simple cases (e.g. [65, 66]). However, when the degrees of freedom
of the density matrix are large or even infinite, it becomes very difficult to solve the coupled
equations, as the dynamics is often non-Markovian (the master equations for the reduced
state) or nonlinear in appearance (the dynamical equations for the time-dependent factors
in the Wigner functions). Moreover, even the solutions are obtained and can be expressed
formally, the factors in the Wigner function are inverse matrices with infinite dimension,
which are computationally challenging.

To get rid of these difficulties, it is convenient to apply the (K,�)-representation [51]
(or called the Wigner characteristic function [67]), which is a double-Fourier-transformed
function of (thus equivalent to) the usual Wigner function,

ρ[K,�; x0] =
∫

D� e
i
�

K·� ρ̄

[
� − �

2
,� + �

2
; x0

]
= exp

[
i

�
(〈�̂μ〉Kμ

−〈�̂μ〉�μ) − 1

2�2

(
KμQμνKν − 2�μRμνKν + �μPμν�

ν
)]

, (15)

where we denote Q̂d and P̂d by �̂d and �̂d, respectively (P̂d and �̂x are conjugate momenta to
Q̂d and �̂x), μ, ν = {d}∪{x} run over all the detector and field degrees of freedom defined on the
whole time-slice and the time-dependent factors Qμν (x0), Pμν (x0) and Rμν (x0) are exactly
the symmetrized two-point correlators 〈A, B〉 ≡ 〈AB + BA〉/2 of the dynamical variables
evaluated on the x0-slice, for they are obtained by, e.g.,

〈δ�̂μ(x0), δ�̂ν (x
0)〉 = i�δ

δ�μ

�δ

iδKν
ρ[K,�; x0]

∣∣∣∣
�=K=0

= Rμν, (16)

7 Here we write (Q, �x) = � − (�/2) and (Q′, �′
x) = � + (�/2) with the boldface letters � and � denoting the

vectors in the configuration space.
∫
D� and

∫
D� are the functional integrals.

10
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where δ�̂μ ≡ �̂μ −〈�̂μ〉 and δ�̂μ ≡ �̂μ −〈�̂μ〉. Note that in (15), Qμν and Pμν are defined
as symmetric matrices, but Rμν �= Rνμ in general.

The reduced states of the system with the environment integrated out are simple for
Gaussian states in the (K,�)-representation since a Gaussian integral gives another Gaussian
function. For example, the reduced state of the detector A with the field and other detectors
integrated out reads

ρR[KA,�A; x0] = exp

[
i

�
(〈Q̂A〉KA − 〈P̂A〉�A)

− 1

2�2
(KAQAAKA − 2�ARAAKA + �APAA�A)

]
. (17)

Thus, looking at the evolution of the Gaussian state (15) or (17) is equivalent to looking
at the dynamics of those symmetrized two-point correlators, which would be obtained more
easily in the Heisenberg picture.

4.1. Correlator dynamics for factorizable initial states

For mathematical convenience (and to a large extent reflective of not uncommon physical
situations), one often assumes that the initial state at x0

0 = t0 in the Minkowski frame is a
product state of the Minkowski vacuum of the field (which is Gaussian) and the Gaussian
state of the detectors A, B, . . .. The detector part can be a product of the ground states and/or
single-mode squeezed states, a multi-mode squeezed state, or any mixed state in the Gaussian
form. The field part can be easily generated to a thermal state, which is Gaussian, too.

By virtue of linearity in (12), the operators of the detectors and the field in the Heisenberg
picture will evolve to a linear combination of all the detector operators Q̂d, P̂d and the field
operators �̂k, �̂k defined at the initial moment t0. Then each symmetrized two-point correlator
of the detectors for the factorizable initial state ρ�x

⊗ ρd will split into a sum of the a-part
and the v-part [8]. The a-part corresponds to the initial state of the detectors, while the v-part
corresponds to the response to the field vacuum |0M〉.

4.2. Divergences

There are two sources of the divergences for the correlators in this detector–field model.

(1) In this linear system, the mode functions satisfy the classical equations of motion (the only
difference is the initial conditions). Thus, they suffer the same divergences as the classical
ones: in the UD detector theory in (3+1)D, the retarded field sourced by a pointlike
detector diverges right at the position of the detector. One needs to introduce a cutoff � to
regularize the δ-function in the interaction Hamiltonian between the detector and the field,
expand the relevant mode functions of the detectors in series of �, absorb the divergent
terms by some parameter of the model (in our model, it is the natural frequency of the
detectors � [8]; in other model, it could be the mass of the detector m or the coupling
constant λ), and then take the � → ∞ limit to eliminate the O(�−1) terms. The O(�0)

terms will survive after taking the limit; it gives the radiation reaction the dissipation term
(∼ γ Q̇) such as those in our model or the higher derivative term such as the one in the
Abraham–Lorentz–Dirac equation [59].8

8 Note that there is no such divergence in the RSG model in (1+1)D [10], where the retarded field is regular
everywhere and simply offers the radiation reaction in the equation of motion of the detector.

11



Class. Quantum Grav. 29 (2012) 224005 B L Hu et al

(2) The second kind of divergence is the UV or IR divergences arisen in the mode sum, or
equivalently, the divergences arisen in the coincidence limit of Green’s functions (UV),
or in the integration over the whole position space (IR). The regularization of the UV
divergences should be consistent with those for the first kind. These kinds of divergences
are also a common feature for quantum Brownian motion.

4.3. Range of validity of perturbative results

For a single UD detector moving in (3+1)-dimensional Minkowski space, the total action is
given by (12) with d = A. Let us denote Q ≡ QA. Suppose the initial state of the system
at τ0 is a direct product of the ground state for Q and the Minkowski vacuum for �. It is
straightforward to write down the reduced state of the detector in the (K,�)-representation.
However, to compare with the perturbative results, we look at the reduced density matrix
ρR(Q, Q′; τ ) directly. Transformed to the representation in the basis of energy eigenstates for
the free HO Q, the transition probability from the initial ground state to the first excited state
then reads

ρR
1,1 = �[〈P2〉〈Q2〉 − 〈P, Q〉2 − (�2/4)]

{[〈P2〉 + (�m0�r/2)][〈Q2〉 + (�/2m0�r)] − 〈P, Q〉2}3/2
, (18)

where �r is the renormalized frequency [8]. Expanding the symmetrized two-point correlators
of the detector in terms of the coupling strength γ ≡ λ2/(8πm0), the approximate value up to
the first order of γ becomes

ρR
1,1|γ η→0

η
a−1

−→ λ2

4πm0

[
η

e2π�r/a − 1
+ �1 + �0 − 2 ln(a/�r)

2π�r

]
(19)

when η ≡ τ − τ0 
 a−1. Here �0 and �1 are large constants introduced by regularization
(the second kind in section 4.2). We see that the first term of (19) gives the conventional
transition probability from TDPT over infinite time. Only when �rη 
 �1,�0, or a is
extremely large, can the second term in (19) be neglected. Hence, the conventional transition
probability or transition rate is valid only in the limits of (a) ultrahigh acceleration (a 
 �r and
�1 � aη � aγ −1) or (b) ultraweak coupling (a−1,�−1

r �1 � η � γ −1). Only in these limits,
the effective temperature obtained by diagonalizing ρR

m,n is very close to the Unruh temperature
TU = �a/2πkB [9], and the thermal bath is only slightly affected by the backreaction from the
detector to the field, namely the detector acts essentially as a test particle in the field.

Note that, in obtaining (19), we have assumed a−1 � η � γ −1, when the system
is still in transient. Indeed, in figure 1 TDPT works well only in the middle plot (with
O(10−1) < η < O(10−2/γ ) for γ = 10−6 and a = 6). If a < γ , the conventional transition
probability has no chance to dominate at all. In particular, the a = 0 case is beyond the reach
of TDPT over infinite time, and the conventional wisdom from perturbation theory that no
transition occurs in an inertial detector is untenable. In contrast, the evolution of ρR

1,1 with
a = 0 behaves qualitatively similar to those cases with nonzero acceleration [8]. This agrees
with the expectation from the observation that the UD detector theory is a special case of
quantum Brownian motion [51, 53, 55].

�0 corresponds to the time scale of switching on the interaction, namely the ‘ln δ’ in
d = 4 case in section 2.3, so it could be finite in real processes. This implies that the �0 terms
in all two-point functions will be damped out so that �0 will not be present in the late-time
results. Actually (19) is formally identical to the first-order transition probability from TDPT
for a UAD with finite duration of interaction and �0 and �1 are formally the same as the
divergences found in [13]. In [6], it has been shown that these divergences can be tamed if one
switches on and off the interaction smoothly, so can �0. Nevertheless, here we are looking at
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Figure 1. Comparison of the exact ρR
1,1 (solid curve, equation (18)) and the perturbative result

(dashed line, the first term in (19)) in different time scales of η ≡ τ −τ0 for a uniformly accelerated
detector initially in its ground state and coupled to the Minkowski vacuum of the massless scalar
field after τ0. The parameters in these plots are γ = 10−6, a = 6, � = √

�2
r − γ 2 = 2.3,

�0 = �1 = 20, m0 = 1 and � = c = 1.

the real-time causal evolution problem (‘in–in’ formulation) rather than a scattering transition
amplitude (‘in–out’ formulation) problem, and we never turn off the coupling, so �1 is a
non-zero constant of time.

�1 should not be absorbed by any parameter or subtracted from any physical quantity
of this theory for more reasons: (a) the UD detector theory is not a fundamental theory to
meet the renormalizability requirement, and the presence of cut-offs as physical parameters
is an expected feature which characterizes the range of validity of this effective theory, just
like the Compton wavelength of the electron serving as a cut-off in quantum optics; (b) �1

is not present in the renormalized stress–energy tensor of the field induced by the detector
[8], so that �1 is not observable outside of the detector; (c) if �1 was subtracted naively, the
uncertainty principle will be violated at late times for a is small enough [9].

5. Applications to RQI: quantum teleportation

Quantum teleportation is not only of practical value but also of theoretical interest because it
contains many illuminating manifestations of quantum physics, clarifying fundamental issues
such as quantum information and classical information, quantum nonlocality and relativistic
locality, spacelike correlations and causality, etc [2, 68, 69].

The first protocol of quantum teleportation is given by Bennett et al in [70], where an
unknown state of a qubit C is teleported from one spatially localized agent Alice to another
agent Bob using an entangled pair of qubits A and B prepared in one of the Bell states and
shared by Alice and Rob, respectively. This idea is then adapted to the systems with continuous
variables by Vaidman [71], who introduces an EPR state [72] for the shared entangled pair to
teleport an unknown coherent state. Braunstein and Kimble (BK) [73] generalized Vaidman’s
scheme from EPR states with exact correlations to squeezed coherent states. In doing so, the
uncertainty of the measurable quantities reduces the degree of entanglement of the AB-pair as
well as the fidelity of teleportation.

To explore how the Unruh effect affects teleportation, Alsing and Milburn made the first
attempt of calculating the fidelity of quantum teleportation between two moving cavities in
relativistic motions [74]—one is at rest (Alice), the other is uniformly accelerated (Rob) in
the Minkowski frame—though their result is not quite reliable [75–77]. Then Landulfo and
Matsas [78] considered quantum teleportation in the future asymptotic region in a two-level
detector qubit model where Rob’s detector is uniformly accelerated and interacting with the
quantum field only in a finite duration. Alternatively, Shiokawa [79] has considered quantum
teleportation in the UD detector theory with the agents in similar motions but based on the BK
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scheme in the interaction region. More recently, the relativistic effects of quantum information
associated with the quantum field have been taken into account carefully in [18], as summarized
below.

Consider a setup with the detectors A and C held by Alice, who is at rest in space with
the worldline zA = zC = (t, 1/b, 0, 0) in the Minkowski frame, and the detector B held by
Rob, who is uniformly accelerated along the worldline zB = (a−1 sinh aτ, a−1 cosh aτ, 0, 0),
0 < a < b, where τ is Rob’s proper time, namely τA = τC = t and τB = τ . Suppose the initial
state of the combined system at t = τ = 0 is a product state ρ�x

⊗ρAB ⊗ρ
(α)
C of the Minkowski

vacuum of the field ρ̂�x
= |0M〉〈0M|, a two-mode squeezed state ρAB of the detectors A and B,

and a coherent state of the detector C, denoted ρ̂
(α)
C = |α〉C〈α|, which is the quantum state to

be teleported. To concentrate on the best fidelity of quantum teleportation that the entangled
AB-pair can offer, however, we assume that the dynamics of ρ

(α)
C is frozen. Also we design

ρAB so that it goes to an EPR state with the correlations while QA + QB and PA − PB are totally
uncertain as its squeezed parameter r1 → ∞.

In the Minkowski frame, at t = 0, the detectors A and B start to couple with the field, while
the detector C is isolated from others. At t = t1 when the reduced state of the three detectors
continuously evolves to ρABC(K,�; t1), a joint Gaussian measurement by Alice is performed
locally in space on A and C so that the post-measurement state right after t1 collapses to
ρ̃ABC(K,�; t1) = ρ̃

(β)

AC (KA, KC,�A,�C)ρ̃B(KB,�B), where ρ̃
(β)

AC (KA, KC,�A,�C) is a two-
mode squeezed state of the detectors A and C with displacement β = βR + iβI , which is the
outcome Alice obtains.

5.1. Entanglement and pseudo-fidelities in different frames

Quantum entanglement of the detector pair A and B in a Gaussian state is fully determined
by the symmetrized two-point correlators Qi j, Pi j and Ri j, i, j = A, B, in the quantum state
(15) [16, 80, 81]. Since the worldlines of the two detectors do not intersect, the entanglement
between the detectors at some moment will be a kind of spacelike correlation and depend
on the spatial hypersurface on which the entanglement is defined. The time evolution of the
entanglement will hence depend on how the spacetime is foliated by spacelike hypersurfaces.
In general, entanglement of the detectors is incommensurable with the physical fidelity of
quantum teleportation, which is a kind of timelike correlation.

To compare these two correlations, let us first imagine that Rob receives the outcome β

of Alice’s joint measurement and make the proper operation on the detector B instantaneously
at τ1(t1) when the worldline of B intersects the t1-slice (see figure 2). According to the
outcome β obtained by Alice, the operation that Rob should perform on the detector B is a
displacement by β in the phase space of B from ρ̃B to ρout, which is defined on a time-slice
right after the one where the post-measurement state ρ̃ABC is defined. The ‘pseudo-fidelity’ of
quantum teleportation from |α〉C to |α〉B is defined as F(β) ≡ B〈α |ρ̂out| α〉B/TrBρ̂out, where
TrBρ̂out = P(β) has been normalized to be the probability of finding the outcome β. Then the
averaged pseudo-fidelity is defined by

Fav ≡
∫

d2βP(β)F(β) =
∫

dβRdβI B〈α|ρ̂out|α〉B. (20)

Fav = 1/2 is known as the best fidelity of ‘classical’ teleportation using coherent states [73],
without considering the coupling of the UD detectors with the environment.
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Figure 2. Left: setup for quantum teleportation from Alice (thick dotted line) to Rob (thick dashed
for section 5.1 and thick solid for section 5.2). The gray solid curve and the horizontal line represent
a τ ′

1-slice in the quasi-Rindler frame and a t1-slice in the Minkowski frame, respectively. The shaded
region is in the future lightcone of the measurement event by Alice, and the hypersurface t = x1

is the event horizon of Rob for τ2 → ∞. Middle: a comparison of the averaged pseudo-fidelity
Fav (solid) in the Minkowski frame, the correlator 〈Q2−〉/20 (dotted), Q− ≡ QA − QB and the
logarithmic negativity EN /3.5 (dot-dashed) at early times in the ultraweak coupling limit. Right:
Fav in the quasi-Rindler frame with the same parameters (solid) and with different a (dotted, gray).
The upper and middle dashed lines represent F+

av and 1/2.

Two results in the ultraweak coupling limit, one in the Minkowski frame and the other in
the ‘quasi-Rindler frame’9, are shown in figure 2 (middle, right). One can see that the degree
of entanglement (logarithmic negativity EN ) evolves smoothly while the averaged pseudo-
fidelity evaluated in whatever reference frame oscillates in t1 or τ1. Even at very early times,
Fav drops below 1/2 frequently when EN is still large. Clearly the oscillation of Fav here is
mainly due to the distortion of the quantum state of AB-pair from their initial state (caused by
the alternating squeeze–antisqueeze natural oscillations of their quantum state) rather than the
disentanglement between them.

In our setup, when t1 gets larger, the time dilation of the detector B becomes more
significant and so the detector B appears to change extremely slowly in the Minkowski frame,
while in the quasi-Rindler frame, the time dilation of the detector A becomes obvious and so
the detector A looks frozen for the Rindler observer when τ1 gets larger. In both cases, it makes
the frequency of the oscillation of Fav approach � for larger times.

The peak values of Fav, denoted by F+
av , fall below the fidelity of classical teleportation

1/2 (at the moment denoted by t1/2 or τ1/2) always earlier than the dis-entanglement time tdE

or τdE when EN become zero in both frames. Indeed, in appendix A of [18], it is shown that
entanglement between the detectors A and B is necessary to provide the advantage of quantum
teleportation, at least in the ultraweak coupling limit.

In the Minkowski frame, both F+
av and EN are insensitive to a in the ultraweak coupling

limit. In contrast, the dependence on the proper acceleration a is obvious in the quasi-Rindler
frame, where the larger the a, the earlier the τ1/2 and the disentanglement time τdE. Here we
see the frame dependence of entanglement dynamics.

Beyond the ultraweak coupling limit, both Fav and EN are strongly affected by the
environment. In most cases, quantum entanglement disappears quickly both in the Minkowski
frame and the quasi-Rindler frame due to strong interplays with the environment, and the
averaged pseudo-fidelity Fav drops below 1/2 even quicker.

9 By a quasi-Rindler frame, we refer to the coordinate system in which each time-slice almost overlaps a Rindler
time-slice in the R-wedge but the part in the L-wedge has been bent to the region with positive t to make the whole
time-slice located after the initial time-slice for the Minkowski observer, as illustrated in figure 2.
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Figure 3. F+
av − 1/2 (solid) and EN /10 (dashed) in section 5.2 as a function of the moment of

the joint measurement t1. The black curves represent those physical fidelities and the degrees of
entanglement evaluated ‘on the lightcone’, while the gray curves represent those pseudo-fidelities
and the degrees of entanglement evaluated on the t1-slice in the Minkowski frame.

5.2. Physical fidelity and ‘entanglement on the lightcone’

Suppose Rob stops accelerating at his proper time τ2; after this moment Rob moves with
constant velocity, while Alice stays at rest and performs the joint measurement on A and C at
t1 (see figure 2). In this setup, the classical information from Alice traveling at the speed of
light can always reach Rob, though the acceleration of the detector B is not uniform—for the
dynamics of the correlator similar situations, we refer to [14], and more results can be found
in [82].

Suppose Rob performs the local operation on B at some moment τP > τ adv
1 when

he received the information traveling at light speed from Alice (see figure 2 for the
definition of τ adv

1 ). Then, similar to (20), the averaged physical fidelity should be given by
Fav = ∫

d2β B〈α|ρ̂out(τP)|α〉B, where ρout(τP) is obtained by performing a displacement on
ρ̃B(τP) which started with the post-measurement state ρ̃B(τ1) with τ1 = a−1 sinh−1 at1 (when
the quantum state collapses in the Minkowski frame) and evolves from τ1 to τP. Nevertheless,
an analysis similar to [17] shows that the correlators in the reduced state of the detector B
observed in all reference frames will become the same collapsed ones at the moment when
the detector B enters the future lightcone of the measurement event by Alice (τB = τ adv

1 ). So
we are allowed to collapse the wave functional on a time-slice intersecting Alice’s worldline
at τA = t1 and Rob’s at τB = τ adv

1 − ε, ε → 0+.
If we further assume that mutual influences are small and Rob performs the local operation

at τP = τ adv
1 +ε right after the classical information from Alice is received, then the continuous

evolution of the reduced state of the detector B from τM to τP is negligible, and so we can
directly compare the physical fidelity at τ adv

1 + ε with entanglement between the detectors A
at t1 and B at τ adv

1 − ε. Again from appendix A of [18] with the proper time of the detector B
substituted by τ adv

1 (actually τ adv
1 ± ε, ε → 0+), quantum entanglement of AB-pair evaluated

almost on the future lightcone of the measurement event by Alice is still a necessary condition
of the best averaged physical fidelity of quantum teleportation beating the classical one in the
ultraweak coupling limit.

The number of peaks of the physical Fav in the same duration of t1 in this more realistic
case is much more than the one for the averaged pseudo-fidelity, because it takes a long time
from τ1(t1) to the moment τ adv

1 when the classical signal from Alice reaches Rob, during which
the detector B has oscillated for many times. In figure 3, we see that the moment t1 = t1/2 when
the best averaged physical fidelity of quantum teleportation F+

av drops to 1/2 is earlier than
any F+

av of pseudo-fidelity has. The larger the aτ2, the later the τ adv
1 Rob has, and so the lower

value of the physical F+
av at that time due to the longer time of coupling with environment.

When aτ2 is large enough, τ adv
1 is so large that t1/2 is almost the moment when Alice enters

the event horizon of Rob for τ2 → ∞.
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6. Outlook

Detector–field interaction is a very useful and versatile system to expound and explore
many known and unknown effects of relativistic quantum information. Continuing the vein
of quantum teleportation as an example, it is not difficult to generalize the systematics to
curved spacetimes, from weak gravitational field as in the Earth’s environment to black hole
spacetimes.

In another vein, learning from the new techniques and ideas in the study of detector–field
interaction as was done for the Unruh effect [8, 9], and using the well-known correspondence
between the Rindler and the Schwarzschild spacetimes, one may go beyond the test-field
description of black hole physics and study how backreaction from the field impacts on the
evolution of the black hole and the ‘information loss’ issues.
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