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We study the possibility that particle production during inflation could source observable gravity waves

on scales relevant for cosmic microwave background experiments. A crucial constraint on such scenarios

arises because particle production can also source inflaton perturbations and might ruin the usual

predictions for a nearly scale-invariant spectrum of nearly Gaussian curvature fluctuations. To minimize

this effect, we consider two models of particle production in a sector that is only gravitationally coupled to

the inflaton. For a single instantaneous burst of massive particle production, we find that localized features

in the scalar spectrum and bispectrum might be observable, but gravitational wave signatures are unlikely

to be detectable (due to the suppressed quadrupole moment of nonrelativistic quanta) without invoking

some additional effects. We also consider a model with a rolling pseudoscalar that leads to a continuous

production of relativistic gauge field fluctuations during inflation. Here we find that gravitational waves

from particle production can actually exceed the usual inflationary vacuum fluctuations in a regime where

non-Gaussianity is consistent with observational limits. In this model observable B-mode polarization can

be obtained for any choice of inflaton potential, and the amplitude of the signal is not necessarily

correlated with the scale of inflation.

DOI: 10.1103/PhysRevD.86.103508 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflation is currently the standard paradigm for solving the
flatness, horizon, and unwanted topological relic problems in
standard big bang cosmology. In addition, the quantum
fluctuation of the inflaton field provides the seeds of inho-
mogeneity that seem to fit very well with the current obser-
vation on the cosmic microwave background (CMB) and
large scale structure. A particularly important probe of the
physics of inflation is provided by primordial gravitational
waves (tensor fluctuations). A number of observational
searches for gravitational wave perturbations are proposed
or are currently underway; these may be probed through the
B-mode polarization of the CMB [1–3] or, on smaller scales,
through interferometers, such as LIGO [4], VIRGO [5],
DECIGO [6], Einstein Telescope [7], or LISA [8].

During inflation, gravitational wave fluctuations are in-
evitably generated by quantum fluctuations of the tensor
part of the metric. These have an amplitude controlled

by H2

M2
p
, where H is the Hubble scale and Mp � 2:4�

1018 GeV. For generic inflationary models, the gravita-
tional wave signal from vacuum fluctuations is detectable
only when the inflaton field range is trans-Planckian [9],
which might be challenging to realize in a controlled
effective field theory (inflationary potentials can be con-
structed where the inflationary range is smaller, but still of
OðMpÞ [10,11]).

Additional sources of gravitational waves (GW),
which are uncorrelated with the usual quantum vacuum

fluctuations, may be present in the early universe (see for
instance, Ref. [12] for a recent review). Two broad
categories of mechanisms are:
(1) Models involving phase transitions: For example, in

first-order phase transitions, vacuum bubble colli-
sions [13,14] and the subsequent turbulence [15]
could source GW. The generation and decay of
cosmic strings can also give rise to large GW [16].
Along similar lines, the self-ordering of a scalar
field after a second-order phase transition has also
been considered [17].

(2) Models involving particle production: Generically
the inflaton should be expected to couple to some
additional degrees of freedom, as would seem to be
necessary for successful reheating [18–22]. In this
case, there is a natural possibility that the time-
dependence of the inflaton condensate during infla-
tion leads to the production of some other degrees of
freedom which may, in turn, provide an important
new source of GW [23–25]. A variety of different
models have been proposed; see below for more
discussion.1

Given the importance of gravitational waves as a probe of
inflation, it is important to understand if such mechanisms

1For gravitational waves from particle production at the end of
inflation, see Refs. [26–30]; effects on the scalar fluctuations
were discussed in Refs. [31–36].
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could be competitive with the usual spectrum of GW from
vacuum fluctuations.2

Any mechanism which is being invoked to source gravi-
tational waves might also source scalar metric perturba-
tions. Therefore, one must take care not to spoil the usual
prediction of a nearly scale invariant spectrum of Gaussian
scalar curvature perturbations. Sometimes this concern is
evaded by restricting attention to effects that take place on
the small scales relevant for interferometers where the
scalar fluctuations are not strongly constrained. In this
work we will mostly be interested in models of particle
production during inflation, where gravitational waves are
sourced on CMB scales. To test the feasibility of such
scenarios, it is crucial to study also the spectrum and
bispectrum of the scalar fluctuations, to ensure that these
are consistent with observations.

Models of particle production during inflation have re-
ceived considerable attention in the literature; see for ex-
ample Refs. [23–25,38–52]. One class of models involves
instantaneous bursts of particle production, leading to local-
ized features in the cosmological perturbations. Early studies
focused on the production of fermion [40] or scalar [41]
particles, neglecting the feed-back of the produced quanta
on the perturbations of the inflaton. In Ref. [42] it was
however shown that this feed-back effect actually dominates
observables for the case of scalar particle production.
Reference [42] considered a simple model where scalar �
particles are produced through a coupling g2’2�2 to the
inflaton, ’, using both lattice field theory simulations and
also analytical methods. Models of this same type were
subsequently analyzed in the context of trapped inflation
[50]. More recently, models of instantaneous vector particle
production have been studied in connection with GW at
interferometer scales [23]. Several scenarios of GW from
scalar and string productionwere instead studied inRef. [24].

Another possibility is that particle production occurs
continuously during inflation. This is quite natural in the
context of axion inflation [47]. Even in the simplest models
of inflation driven by a single axion in slow roll on a smooth
flat potential, pseudoscalar couplings ’F ~F to gauge fields
are ubiquitous. This interaction leads to a continuous ta-
chyonic production of gauge field fluctuations during
inflation. There are a host of interesting phenomeno-
logical signatures: observable equilateral non-Gaussianity
[47,48,52], GWat interferometer scales [23,25], and excess
power at small scales [53,54]. Additionally, backreaction
effects in such models can assist inflation by dissipating the
kinetic energy of the inflaton [46,55], analogously to warm
inflation [38] and trapped inflation [50].3 In Refs. [57–59] a

model of gauge field production through the scalar coupling
I2ð’ÞF2 was considered, in connection with primordial
non-Gaussianity and, perhaps, magnetogenesis (this last
application is problematic [59,60]).
Above we discussed some simple models of particle

production during inflation where quanta are produced by
a direct coupling between the inflaton and some additional
degrees of freedom. In such a scenario the produced par-
ticles interact with the inflaton through couplings that are
typically much stronger than gravitational. Hence, these
produced particles will tend to source scalar curvature
fluctuations much more efficiently than GW. It is not
surprising, therefore, that the most stringent CMB con-
straints on such models often come from features and
non-Gaussianity in the scalar fluctuations, rather than
from GW.
In this work, we investigate the possibility to source a

significant GW signal on CMB scales without ruining the
spectrum of curvature fluctuations. To minimize the impact
on the inflaton fluctuations, we assume that particle produc-
tion takes place in a ‘‘hidden’’ sector that is only gravita-
tionally coupled to the inflaton.4 We compute for the first
time the scalar perturbations induced by the gravitational
coupling, and we compare their phenomenological impact
with that of the produced GW. Since gravitational interac-
tions are unavoidable, the case we investigate can be
thought of as a kind of ‘‘best case’’ scenario for the produc-
tion of GW while minimizing the effect on the scalar
fluctuations. Concretely, we will focus on two models in-
volving the production of spin-1 particles:
(1) Model I: Particle production takes place in a hidden

sector where a local Uð1Þ invariance is spontane-
ously broken by the expectation value of some
complex scalar c . Here gauge fields are produced
at an isolated moment - namely, when the mass of
the gauge field crosses zero during the evolution of
c -and we have localized features in the scalar spec-
trum and bispectrum, in addition to a localized
feature in the tensor spectrum. For a single isolated
burst of production, we find that observational con-
straints on the scalar perturbations exclude any in-
teresting effect in GW. However, in a concrete
model there may be many bursts of particle produc-
tion and their resonance could enhance the effect.
We note that this model could lead to interesting
phenomenological signatures in the scalar fluctua-
tions; localized features in the spectrum and bispec-
trum are discussed.

2A GW signal may also be left at the largest scales as an
imprint of a pre-inflationary era if inflation had only a minimal
duration [37].

3The pseudoscalar interaction is also used to Ref. [56] to
dissipate the inflaton kinetic energy from its classical interaction
to a non-Abelian vector field.

4Our scenario differs from the curvaton model [61], in which
the inflaton provide the energy density to support inflation while
a light curvaton field provides the seed of scalar perturbation.
The GW spectrum in the curvaton model has been considered at
tree-level [62,63] and at 1-loop level [64], with possible detect-
ability at future interferometer experiments [64]. See Ref. [65]
for examples of vector curvaton.
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(2) Model II: Particle production takes place in a hidden
sector where a rolling pseudoscalar sources gauge
field fluctuations continuously. Here we find that
GW from particle production can be competitive
with the vacuum fluctuations, or even larger than
the vacuum fluctuations, without violating observa-
tional bounds on non-Gaussianity. In this model the
primordial tensor spectrum can be detectable for any
choice of inflaton potential (that is, also for small
field inflation). In this model, GW from particle
production are chiral. We show that parity violation
in the tensor sector can be almost maximal, which
provides a distinctive observable signature of this
scenario; see also Refs. [49,55].

In summary, we find that the possibility to source inter-
esting GW from particle production is rather model depen-
dent. Even if particle production occurs in a hidden sector,
coupled only gravitationally to the inflationary one, this is
not a sufficient condition to ensure that observable GW can
be sourced without ruining the scalar spectrum. On the
other hand, we find that in some models GW from particle
production can actually exceed the usual vacuum fluctua-
tions. The reason for the smaller GW production inModel I
with respect to Model II is that in Model I the gauge quanta
are highly nonrelativistic after their production, which
suppresses their quadrupole moment. We verified that the
same suppression takes place if, instead of gauge fields, the
particles produced in this mechanism have spins 0 or 12 .

5 As

we mentioned, a greater GW effect may be obtained for
multiple instances of particle production, or for a more
complicated evolution of the gauge field mass, or if the
massive particles decay into massless ones short after they
are produced [24].

Therefore, due to the possibility of GW from particle
production, a measurement of primordial B-modes does
not necessarily constitute a measurement of the scale of
inflation. Nor does a detectable B-mode signal necessarily
require super-Planckian excursions in field space.
Fortunately, as we discuss below, the produced GW may
be distinguished from the vacuum signal, either by their
localization at some given wavelength (assuming that
Model I can be modified so to enhance the GW signal),
or by their violation of parity.

In terms of observational prospects of gravitational
waves on CMB scales, Model II is certainly more promis-
ing, as the gauge quanta are automatically relativistic and
their quadrupole moment is not suppressed. While the
focus of the present work is to examine the signatures
and constraints of gravitational waves produced during
inflation as a result of hidden sector particle production,

the UV sensitivity of inflation motivates us to ask whether
such models can be realized in string theory. Indeed, the
four-dimensional low-energy spectrum of string theory
contains a myriad of axionlike fields, e.g., those arise
from the reduction of antisymmetric form fields on cycles
of the internal space. These closed string axions couple to
Uð1Þ gauge fields on the world volume of D-branes via
’F ~F couplings. The axion decay constant f one typically
finds in string theory constructions is of the order of the
grand unified theory scale MGUT � 1016 GeV (see e.g.,
Refs. [66,67]) which sits comfortably within the allowed
window for consistency of our model [see Eqs. (115) and
(116)]. It is not difficult to arrange the inflaton to have no
direct coupling to the axion and the gauge field. We outline
some ideas to realize Model II in string theory in the
concluding section. We leave, however, a detailed study
of these and other string theory embeddings for futurework.
This paper is organized as follows. In Sec. II we develop a

very general formalism which can be used to compute the
effects of particle production on the scalar and tensor cos-
mological perturbation in a variety of models. In Sec. III we
apply this formalism toModel I, discussed above. In Sec. IV
we instead apply our formalism to Model II, discussed
above. In Sec. V, we conclude. In Appendix A, we discuss
the production of the longitudinal mode in Model I. This is
the first time the longitudinal mode has been accounted for
in a model of production of massive vector fields during
inflation. In Appendix B, we discuss some details of the
computation of the scalar perturbations for Model I. In
Appendix C, we perform an analogous computation for
Model II. In Appendix D, we discuss the production of
massive fermion fields during inflation, and the amount of
GW that they generate.

II. FORMAL EXPRESSIONS FOR
OBSERVABLE CORRELATORS

We assume that quanta of a vector field are produced
(either at some discrete moment t�, or throughout inflation)
in a sector only gravitationally coupled to the inflaton. We
are interested in computing scalar and tensor cosmological
perturbations sourced by the vector quanta. The vector field
can be decomposed as

A0 ¼ 0; Ai ¼
Z d3k

ð2�Þ3=2 ei
~k� ~x ~Aið�; ~kÞ;

~Aið�; ~kÞ ¼
X
�¼�

�ð�Þi ðk̂Þ½a�ð ~kÞA�ðkÞ þ ay�ð� ~kÞA�
�ðkÞ�;

(1)

where we have included only the transverse vector
polarization (in Sec. III we actually study also the longi-
tudinal polarization, as it is present, and may be relevant,
in that model). Here ~�� are circular polarization vec-

tors satisfying ~k � ~�ð�Þð ~kÞ ¼ 0, ~k� ~�ð�Þð ~kÞ¼	ik ~�ð�Þð ~kÞ,
~�ð�Þð� ~kÞ¼ ~�ð�Þð ~kÞ�, and normalized according to ~�ð�Þð ~kÞ� �
~�ð�0Þð ~kÞ ¼ ���0 .

5We find that the results agree in all three cases, with only
order unity differences coming from counting the number of
degrees of freedom and also from spin statistics. These order
unity effects can be encoded in a very simple formula, which we
present.
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In this section, we introduce the formalism for the
correlators of the scalar and tensor perturbations sourced
by this vector, under the assumption that the latter is only
gravitationally coupled to the inflationary sector, and that it
enters quadratically in the energy-momentum tensor. The
discussion is divided in three parts; in subsection II A
we present the structure of the equations for the scalar
and tensor perturbations in presence of the source; in
subsection II B we present the formal solutions, and the
structures of the correlators; in subsection II C we show
how these expressions enter in observable quantities.

A. Decompositions, and sourced equations for � , h�

We compute scalar cosmological perturbations in the
spatially flat gauge �gij;scalar ¼ 0. In this gauge, the curva-

ture perturbation � is (up to negligible corrections, as we

will see in the next two sections) � ¼ � H
_’ð0Þ �’, where ’

ð0Þ

and �’ are the unperturbed and perturbed part of the
inflaton, respectively.6 We decompose

�’ ¼
Z d3k

ð2�Þ3=2 ei
~k� ~x Q’

a
: (2)

As we show in the next sections, the effect of the vector
fields on the inflaton modes can be encoded in the approxi-
mate equation�

@2� þ
�
k2 � a00

a

��
Q’ð�; ~kÞ ’ J’ð�; ~kÞ; (3)

where the source is formally of the type

J’ð�; ~kÞ

Z d3p

ð2�Þ3=2 Ô’;ijð�; ~k; ~pÞ ~Aið�; ~pÞ ~Ajð�; ~k� ~pÞ; (4)

where Ô is a model-dependent operator.
In the tensor sector, the gravity waves are encoded in

gij ¼ a2ð�ij þ hijÞ, where the modes hij are transverse and

traceless. We introduce the canonical modes

Mpa

2
hij ¼

Z d3k

ð2�Þ3=2 ei
~k� ~x X

�¼�
�ij;�ðk̂ÞQ�ð ~kÞ;

�ij;�ðk̂Þ ¼ �ð�Þi ðk̂Þ�ð�Þj ðk̂Þ;
(5)

which obey the equation�
@2� þ

�
k2 � a00

a

��
Q�ð�; ~kÞ ¼ J�ð�; ~kÞ: (6)

The source is obtained by starting from the transverse
and traceless spatial part of the energy momentum tensor
and projecting along the � polarization with �ij;�. One

finds

J�ð�; ~kÞ ¼ ��
ij;�ðk̂Þ

Z d3x

ð2�Þ3=2 e�i ~k� ~x a

Mp

Tijð�; ~xÞ: (7)

We note that the multiplication by ��
ij;� automatically

projects on the transverse and traceless part of Tij. If (as

in the cases that we will consider) the energy-momentum
tensor is quadratic in the gauge fields, we recover an
expression formally identical to (4), with a different (and

model-dependent) operator Ô�;ijð�; ~k; ~pÞ.
In summary, we have formally identical equations for

the scalar and tensor canonical modes�
@2� þ

�
k2 � a00

a

��
QXð�; ~kÞ ’ JXð�; ~kÞ

JXð�; ~kÞ 

Z d3p

ð2�Þ3=2 ÔX;ijð�; ~k; ~pÞ

� ~Aið�; ~pÞ ~Ajð�; ~k� ~pÞ;
X ¼ f’; � ¼ þ; � ¼ �g: (8)

The operators ÔX depend on what X is and also on the
model. In all cases, they are invariant under the simulta-

neous i $ j and ~p ! ~k� ~p operations.

B. Formal solutions and correlators

Equation (8) is formally solved by

QXð�; ~kÞ ¼ QX;vð�; ~kÞ þQX;sð�; ~kÞ; (9)

where QX;v is the standard vacuum solution, obtained in

absence of the vector source; the sourced term is instead

QX;sð�; ~kÞ ¼
Z �

d�0Gkð�; �0ÞJXð�0; ~kÞ

Gkð�; �0Þ ’ 1

k3��0
½k�0 cosðk�0Þ � sinðk�0Þ�;

� k� � 1; (10)

where the Green function is only given in the super-horizon
regime �k� � 1. The two terms in (9) are uncorrelated.
We are interested in the two- and three-point correlators

of the sourced solutions. For the two-point correlator, we
find

hQX;sð�; ~k1ÞQY;sð�; ~k2Þi¼
Z �

d�1Gk1ð�;�1Þ
Z �

d�2Gk2ð�;�2Þ

�hJXð�1; ~k1ÞJYð�2; ~k2Þi; (11)

where

6Throughout this work we denote physical time by t and
conformal time by �. Derivative with respect to physical (con-
formal) time are denoted by a dot (prime). We denote the scale
factor and the Hubble rate by a and H, respectively. We denote
by Mp the reduced Planck mass. We use the mostly positive �,
þ,þ,þ signature everywhere in the paper apart from the model
of fermionic production (subsection III D and Appendix D)
where we switch to the opposite signature.

BARNABY et al. PHYSICAL REVIEW D 86, 103508 (2012)

103508-4



hJXð�1; ~k1ÞJYð�2; ~k2Þi¼2
Z d3p1d

3p2

ð2�Þ3 ÔX;ijð�1; ~k1; ~p1ÞÔY;lmð�2; ~k2; ~p2Þh ~Aið�1; ~p1Þ ~Amð�2; ~k2� ~p2Þih ~Ajð�1; ~k1� ~p1Þ ~Alð�2; ~p2Þi:
(12)

In writing this expression, we Wick decomposed the hA4i correlator coming from hJ2i and then used the symmetry of the
ÔY;lm operator.

From (1) we then see that the two-point correlator of the gauge field is formally of the type

h ~Aið�1; ~q1Þ ~Ajð�2; ~q2Þi ¼
X
�

P ð�Þ
ij ðq̂1ÞDð�Þ

ð0;0Þ½�1; �2; q1��ð3Þð ~q1 þ ~q2Þ; (13)

where

P ð�Þ
ij ðp̂Þ 
 �ð�Þ

i ð ~pÞ�ð�Þ�
j ð ~pÞ ¼ 1

2
ð�ij � p̂ip̂jÞ 	 i

2
�ijkp̂k: (14)

The index (0, 0) onD indicates that no time derivative is acting on the modes ~A on the lhs of (13), and it is introduced for
later convenience. Using the hermiticity of A	ðxÞ, one can show that Dð�Þ

ð0;0Þ½�1; �2;q� ¼ Dð�Þ�
ð0;0Þ½�2; �1; q�. We show in the

following sections that, in both models we study,Dð�Þ
ð0;0Þ becomes real and symmetric under �1 $ �2 for all times after the

particle production.
Inserting (13) into (12) we obtain

hJXð�1; ~k1ÞJYð�2; ~k2Þi ¼ 2�ð3Þð ~k1 þ ~k2Þ
Z d3p

ð2�Þ3
X
�;�0

P ð�Þ
im ðp̂ÞP ð�0Þ

lj ð dp� k1ÞÔX;ijð�1; ~k1; ~pÞÔY;lmð�2;� ~k1; ~p� ~k1Þ

�Dð�Þ
ð0;0Þ½�1; �2;p�Dð�0Þ

ð0;0Þ½�1; �2; j ~p� ~k1j�: (15)

Finally, we only need to compute the connected three-point correlator of Q’. Proceeding as for the two-point function

we obtain �Y3
i¼1

Q’;sð�; ~kiÞ
�
¼
Z �

d�1Gk1ð�; �1Þ
Z �

d�2Gk2ð�; �2Þ
Z �

d�3Gk3ð�; �3Þ
�Y3
i¼1

J’ð�i; ~kiÞ
�

(16)

with �Y3
i¼1

J’ð�i; ~kiÞ
�
¼ 8�ð3Þð ~k1 þ ~k2 þ ~k3Þ

Z d3p

ð2�Þ9=2
X

�;�0;�00
P ð�Þ

im ðp̂ÞP ð�0Þ
nj ð dp� k1ÞP ð�00Þ

lo ð dpþ k2Þ

� Ô’;ijð�1; ~k1; ~pÞÔ’;lmð�2; ~k2; ~pþ ~k2ÞÔ’;noð�3; ~k3; ~p� ~k1Þ
�Dð�Þ

ð0;0Þ½�1; �2;p�Dð�0Þ
ð0;0Þ½�1; �3; j ~p� ~k1j�Dð�00Þ

ð0;0Þ½�2; �3; j ~pþ ~k2j�: (17)

C. Phenomenology

From the two-point scalar correlator we obtain the power spectrum

k31
2�2

h�ð ~k1Þ�ð ~k2Þi ¼ P��
ð3Þð ~k1 þ ~k2Þ: (18)

The two solutions (9) are incoherent and therefore their power spectra add up. Recalling the standard slow roll result for the
vacuum mode, and using the two expressions (11) and (15), we obtain

P� ¼ P�;v þ P�;s

P�;v ¼ H4

4�2 _’ð0Þ2

P�;s ¼ k31
�2

H2

a2 _’ð0Þ2
Z �

d�1Gk1ð�; �1Þ
Z �

d�2Gk1ð�; �2Þ
Z d3p

ð2�Þ3
X
�;�0

P ð�Þ
im ðp̂ÞP ð�0Þ

lj ð dp� k1Þ

� Ô’;ijð�1; ~k1; ~pÞÔ’;lmð�2;� ~k1; ~p� ~k1ÞDð�Þ
ð0;0Þ½�1; �2;p�Dð�0Þ

ð0;0Þ½�1; �2; j ~p� ~k1j�: (19)

For the tensor mode, we show below that modes of different polarizations are uncorrelated. Starting from the
decomposition (5), the power in each polarization is
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k31
2�2

4

a2M2
p

hQ�ð ~k1ÞQ�ð ~k2Þi ¼ P��
ð3Þð ~k1 þ ~k2Þ: (20)

Also in this case, the power of the vacuum and the sourced modes add up

P� ¼ P�;v þ P�;s

P�;v ¼ H2

�2M2
p

P�;s ¼ k31
�2

4

a2M2
p

Z �
d�1Gk1ð�; �1Þ

Z �
d�2Gk1ð�; �2Þ

Z d3p

ð2�Þ3
X
�;�0

P ð�Þ
im ðp̂ÞP ð�0Þ

lj ð dp� k1ÞÔ�;ijð�1; ~k1; ~pÞ

� Ô�;lmð�2;� ~k1; ~p� ~k1ÞDð�Þ
ð0;0Þ½�1; �2;p�Dð�0Þ

ð0;0Þ½�1; �2; j ~p� ~k1j�: (21)

The tensor-to-scalar ratio r is defined as

r ¼
P

� P�

P�

: (22)

If the sourced term is absent, one recovers the standard vacuum slow roll result rv ¼ 8 _’ð0Þ2
H2M2

p
¼ 16�. However, we see that the

sourced contribution can modify this result.
Finally, we are interested in the bispectum of the scalar modes, defined as

h�ð ~k1Þ�ð ~k2Þ�ð ~k3Þi ¼ B� ð ~kiÞ�ð3Þð ~k1 þ ~k2 þ ~k3Þ: (23)

We disregard the contribution from thevacuummodes, as it is unobservable for standard slow roll inflation. Using (16) and (17)
we obtain

B� ð ~kiÞ ¼ 8
Z �

d�1Gk1ð�; �1Þ
Z �

d�2Gk2ð�; �2Þ
Z �

d�3Gk3ð�; �3Þ
Z d3p

ð2�Þ9=2
X

�;�0;�00
P ð�Þ

im ðp̂ÞP ð�0Þ
nj ð dp� k1Þ

� P ð�00Þ
lo ð dpþ k2ÞÔ’;ijð�1; ~k1; ~pÞÔ’;lmð�2; ~k2; ~pþ ~k2ÞÔ’;noð�3; ~k3; ~p� ~k1ÞDð�Þ

ð0;0Þ½�1; �2;p�
�Dð�0Þ

ð0;0Þ½�1; �3; j ~p� ~k1j�Dð�00Þ
ð0;0Þ½�2; �3; j ~pþ ~k2j�: (24)

In the following sections, we compute the bispectrum for equilateral configurations (which is where it is peaked in the
models that we consider) and use it to define an equilateral nonlinear parameter [48]

fNL;equil effðkÞ ¼ 10

9ð2�Þ5=2
k6

P2
� ðkÞ

B� jk1¼k2¼k3¼k: (25)

III. MODEL I: VECTOR PRODUCED BY NONADIABATIC CHANGE OF ITS MASS

We consider a model where the sector in which particle production takes place has a localUð1Þ invariance spontaneously
broken by the expectation value of a complex scalar �:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� 1

2
ð@’Þ2 � Vð’Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
inflaton sector

� jð@	 � ieA	Þ�j2 �Uðj�jÞ � 1

4
F2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hidden sector

�
: (26)

The field ’ is the inflaton field, which is assumed to be
only gravitationally coupled to the �� A	 sector. We
work in the unitary gauge � ¼ cffiffi

2
p , where c is real. We

assume that the background value c ð0ÞðtÞ crosses zero at
the time t� during inflation. Close to this time, the gauge
field mass can be approximated by

m ¼ ec ð0Þ ’ e _c ð0Þ
� ðt� t�Þ 
 _m�ðt� t�Þ: (27)

For definiteness, we take _m� > 0. The (comoving)

frequency of a gauge mode, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

p
varies

nonadiabatically (!0 >!2) when the mass vanishes. As
we will show later, the gauge field modes that dominate the

observational signatures have k� ffiffiffiffiffiffi
_m�

p
. For such modes,

the frequency changes nonadiabatically in the time interval

�t� � 1ffiffiffiffiffi
_m�

p , provided that the expansion of the universe can

be disregarded in this time interval. This is the case for
1ffiffiffiffiffi
_m�

p � 1
H . In the remainder of this subsectionwe concentrate

on the production during this interval, and disregard the
expansion of the universe (we use physical and
conformal time interchangeably). We can eliminate any
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reference to the scale factor by normalizing aðt�Þ ¼ 1. In the
following subsections, the expansion is taken into account.

The nonadiabatic change of the frequency causes non-
perturbative production of the gauge modes. To compute
this, we decompose the vector field as in (1). We further
decompose the mode functions in positive and negative
frequency modes

A�ðkÞ ¼ 
kð�Þfkð�Þ þ �kð�Þf�kð�Þ;

fk 
 e�i
R

�
d�0!ð�0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2!ð�Þp
A0
�ðkÞ ¼ �i!½
kð�Þfkð�Þ � �kð�Þf�kð�Þ� (28)

(the second line is the decomposition of the modes of
the conjugate momentum to Ai). The decomposition (1)
disregards the longitudinal vector mode; we compute this
mode in Appendix A, and we discuss its effects below
in this section. We have suppressed the index � in this
decomposition, since the Bogolyubov coefficients are
the same for both helicities. For t � t�, the mode is in
the adiabatic vacuum 
 ¼ 1 (up to an arbitrary phase); the
quantity j�j2 is the occupation number of the gauge modes.

The gauge field modes satisfy A00 þ!2A ¼ 0. With the
approximated expression (27), this equation can be analyti-
cally solved in terms of two parabolic cylinder functions.
The linear combination satisfying the proper initial condi-
tion 
 ¼ 1 gives (up to an arbitrary phase) [19,23],


kðt� t�Þ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe�

�k2

_m�

q
; �kðt� t�Þ’�e�

�k2

2 _m� : (29)

Namely, one finds a Oð1Þ occupation number for modes up
to k ’ ffiffiffiffiffiffi

_m�
p

, while the production is exponentially sup-
pressed at higher momenta. An analogous result is ob-
tained for scalar [19] and fermion [40] fields produced by
a mass varying as in (27). This result is valid provided that

H2 � _m� �
ffiffiffi
6

p
eMpH; (30)

where (as we mentioned previously) the first condition
ensures that the expansion of the universe can be disre-
garded during the interval of particle production, while the
second condition imposes that the kinetic energy of c is
negligible with respect to the inflaton energy density.

Having the mode functions, we can now compute the
correlators (13). The correlators need to be regularized.
The regularization can be performed by normal ordering
with respect to the time dependent annihilation creation
operators

�a�ð�; ~kÞ 
 
kð�Þa�ð ~kÞ þ ��
kð�Þay�ð� ~kÞ;

�ay�ð�;� ~kÞ 
 �kð�Þa�ð ~kÞ þ 
�
kð�Þay�ð� ~kÞ:

(31)

These are the ‘‘physical’’ operators of the system, as one
can show that they diagonalize the Hamiltonian at all
times. Using (1) and (28) it is immediate to show that, in
terms of these operators,

~Aið�; ~kÞ¼
X
�

�ð�Þi ðk̂Þ½fkð�Þ �a�ð�; ~kÞþf�kð�Þ �ay�ð�;� ~kÞ�: (32)

We then compute h: ~Aið�; ~kÞ ~Aið�0; ~k0Þ:i by normal ordering
with respect to the �a, and �ay, but by recalling that the
vacuum state is annihilated by the original time-
independent a (we are working in the Heisenberg picture,
in which the states are constant).7 Proceeding in this way,
and casting the result as in (13), we obtain

Dð�Þ
ð0;0Þ½�; �0; k� ¼ 
kð�Þ��

kð�0Þfkð�Þfkð�0Þ
þ �kð�Þ
�

kð�0Þf�kð�Þf�kð�0Þ
þ �kð�Þ��

kð�0Þf�kð�Þfkð�0Þ
þ ��

kð�Þ�kð�0Þfkð�Þf�kð�0Þ: (33)

Clearly, the result is � independent, since both helicities
are produced in the same amount. After the particle pro-
duction, this expression simplifies into

Dð�Þ
ð0;0Þ½�;�0;k�¼
k�

�
kfkð�Þfkð�0Þþ
�

k�kf
�
kð�Þf�kð�0Þ

þj�kj2½f�kð�Þfkð�0Þþfkð�Þf�kð�0Þ�; (34)

where 
 and � assume the asymptotic values (29). As we
anticipated, this expression is real and symmetric under
� $ �0.
The same result (34) is obtained if one computes

h ~Aið�; ~kÞ ~Aið�0; ~k0Þi without normal ordering and then sub-
tracts the term that one would have in absence of particle
production (
 ¼ 1, � ¼ 0), as done in Ref. [42].
Therefore, these two regularizations are equivalent after
the particle production has taken place.
For further convenience, we extend the definition (13) to�
:

�
@

@�1

�
a
~Aið�1; ~q1Þ

�
@

@�2

�
b
~Ajð�2; ~q2Þ:

�

 X

�

P ð�Þ
ij ðq̂1ÞDð�Þ

ða;bÞ½�1; �2; q1��ð3Þð ~q1 þ ~q2Þ: (35)

We compute these quantities by using (28). After 
 and
� have assumed the asymptotic values (29), the correlators
of our interest become

7This procedure is conventionally adopted in Bogolyubov
computations, although it is not always spelled out; indeed,
the initial Hamiltonian, without normal ordering, can be cast

in the form Ĥ ¼ R
d3k!kN̂, where the counting operator is

N̂ ¼ �a �ayþ �ay �a
2 . One then defines normal ordering with respect to

the barred operators, :N̂: ¼ �ay �a, and evaluates h:N̂:i using (31)
and recalling that the vacuum is annihilated by the original

time-independent a; only in this way one obtains h:N̂:i ¼ j�j2.
We employ the exact same procedure for evaluating the
correlators D.
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Dð�Þ
ð1;0Þ½�; �0; k� ¼ �i!kð�Þf
k�

�
kfkð�Þfkð�0Þ � 
�

k�kf
�
kð�Þf�kð�0Þ þ j�kj2½�f�kð�Þfkð�0Þ þ fkð�Þf�kð�0Þ�g

Dð�Þ
ð0;1Þ½�; �0; k� ¼ �i!kð�0Þf
k�

�
kfkð�Þfkð�0Þ � 
�

k�kf
�
kð�Þf�kð�0Þ þ j�kj2½f�kð�Þfkð�0Þ � fkð�Þf�kð�0Þ�g

Dð�Þ
ð1;1Þ½�; �0; k� ¼ �!kð�Þ!kð�0Þf
k�

�
kfkð�Þfkð�0Þ þ 
�

k�kf
�
kð�Þf�kð�0Þ � j�kj2½f�kð�Þfkð�0Þ þ fkð�Þf�kð�0Þ�g:

(36)

We note that in the regime in which (34) and (36) are valid,
@�D

ð�Þ
ð0;0Þ½�; �0; k� ¼ Dð�Þ

ð1;0Þ½�; �0; k� and analogously for the
other terms. Namely, in this regime, time derivatives can be
equivalently taken before or after evaluating the correlator.
One can verify that (for the regularized correlators) this is
not the case during the particle production, when 
 and �
are still functions of time.

A. Scalar perturbations sourced by the vector modes

We are interested in the phenomenological consequen-
ces of the vector field production in the model (26). As
mentioned in the Introduction, we work under the assump-
tion that the�� A	 sector has a negligible energy density

with respect to the inflationary sector, and that the two
sectors are coupled only gravitationally. Under these as-
sumptions, the main signature of the particle production is
encoded in how the gauge quanta enter in the gravitational
equations. In this subsection we study the effect on the
scalar metric and inflaton perturbations; the effect on the
tensor modes is computed in the next subsection.

We divide the computation into three parts; in the first
one, we present the master equation for the density pertur-
bation �; in the second and the third part we compute,
respectively, the power spectrum and the bispectrum of the
part of � sourced by the vector quanta.

1. Master equation for �

We perform computations in the spatially flat gauge
�gij;scalar ¼ 0. We then decompose the fields into

backgroundþ first-orderþ second-order perturbations;
for example, for the inflaton field we write

’ ¼ ’ð0Þ þ ’1 þ ’2 þ . . . (37)

(dots denote perturbations of higher order, that we ignore).
Under our working assumption that � gives a negligible
contribution both to the background energy density and to
the cosmological perturbations (which is certainly the case,
if �� is sufficiently small), the gauge curvature perturba-
tions � in this gauge is

� ¼ �H
_

ð’1 þ ’2Þ: (38)

We are interested in a master equation for � . We follow
the same steps outlined in Sec. 5 of Ref. [48]. We start from
the inflaton equation of motion

@	ð ffiffiffiffiffiffiffi�g
p

g	�@�’Þ � ffiffiffiffiffiffiffi�g
p dV

d’
¼ 0: (39)

Formally, only perturbations of the inflaton and of the
metric enter in this equation. However, one can use the
gravitational equations to express the modes �g00 and �g0i
in terms of the other perturbations,

�g00 ¼ �g00½’i; A	; hij�; �g0i ¼ �g0i½’i; A	; hij�;
(40)

and then insert these expressions back into (39). The ex-
plicit expressions for (40) can be most directly obtained
from the Einstein equations.8 The vector field modes enter
in these equations through their contribution to the energy
momentum tensor

T	�;gauge ¼F	
F�

þm2A	A�þg	�

�
�1

4
F2�m2

2
A2

�
;

(41)

where m2 ¼ e2c ð0Þ2ðtÞ.9
Equivalently, we can eliminate the �g00 and �g0i modes

from the action using the so called energy and momentum
constraints in the Arnowitt-Deser-Misner formalism.
Clearly, this is equivalent to using (40) at the level of the
equations. Both methods are presented in Ref. [48]. The
net result is that (39) can be put into a master equation in
terms of ’i, A	, and hij. The master equation, in absence

of gauge fields, was first derived in Ref. [68].
As one can readily employ the same exact steps outlined

in Ref. [48] to the current model, we do not repeat those
computations here. There are only two changes that need to
be taken into account when one repeats the computations
of Ref. [48] for the present model. Firstly, in the model of
Ref. [48] the vector field had a direct coupling to the
inflaton �L ¼ � 


4f ’F
~F; here the coupling is absent, so

we simply formally take 

f ¼ 0 in all the steps of Ref. [48].

Secondly, the vector field was taken to be massless in
Ref. [48], while it is massive here. This amounts in the
additional contributions proportional to the vector mass
given in (41), or equivalently, in the extra term in the cubic

8We note that only the tensor mode hij enters in the spatial
perturbations �gij, since �gij;scalar ¼ 0 in our gauge, and since
we can disregard vector metric perturbations as in the standard
case.

9We remind that we are working in the unitary gauge, (� real)
and disregarding perturbations of �. In principle, the gauge
quanta also source perturbations ��, which are then gravita-
tionally coupled to the inflationary sector. We do not expect that
this effect is more important than the direct gravitational cou-
pling of the gauge modes to the inflationary sector.
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action for the perturbations in the Arnowitt-Deser-Misner
formalism

�S ¼ � 1

2

Z
d4xNa2m2A2

i ; (42)

where N is the lapse factor.
As the energy-momentum tensor (41) is quadratic in the

gauge field modes, the first-order metric and inflaton
perturbations are not affected by the gauge field.
Therefore the master equation at first order reproduces
the standard first-order expression

ð@2� �r2Þ’1 þ 2H’0
1 ’ 0; (43)

wherer2 
 @i@i andH 
 a0
a . The approximation symbol

arises because on the left-hand side of this expression we
have disregarded a ‘‘mass term’’ for ’1 which is propor-
tional to the slow roll parameters [the same is true for
Eq. (45)]

� 
 M2
p

2

�
V;’

V

�
2 � 1; � 
 M2

p

V;’’

V
� 1: (44)

The reason for this is that we are not interested in slow roll
corrections to our results.

At next order in perturbations theory we find instead

ð@2� �r2Þ’2 þ 2H’0
2 ’ � ’ð0Þ0a2

2M2
pH

	
E2 þ B2

2

þ 1

a4
r�2@�½a4 ~r � ð ~E� ~BÞ�



� ’ð0Þ0

2M2
Pa

2H
a2m2

2
AiAi þ . . . :

(45)

Dots denote terms which are proportional to squares of the
first-order inflaton and tensor metric perturbations, namely
they are of Oð’2

1Þ and of Oðh21;ijÞ (we recall that �� can be

disregarded); these terms are explicitly given in Ref. [68].
The ‘‘electric’’ and ‘‘magnetic’’ fields are defined in anal-
ogy to the electromagnetic expressions, namely

Ei ¼ � 1

a2
A0
i; Bi ¼ 1

a2
�ijk@jAk: (46)

The expression (45) should be compared with Eq. (5.15)
of Ref. [48]. Also here we have disregarded the inflaton
‘‘mass term,’’ which is given instead in Ref. [48] at leading
order in slow roll approximation. The expression in
Ref. [48] had a term resulting from the direct inflaton-
vector field coupling that is absent in the present model.10

On the other hand, the final term in (45)—proportional to
the vector mass—is absent in Ref. [48]. Finally, we note the
presence of a typo (a missingH ) in Eq. (5.15) of Ref. [48].

2. Scalar source and power spectrum

Identifying the decompositions (2) and (37), the two
Eqs. (43) and (45) can then be combined into a unique linear
nonhomogeneous differential equation for Q’, which is

formally of the type (3), in terms of the two sources

J½A2
	� þ ~J½’2

1; h
2
1;ij�: (47)

Namely, the source J is obtained from the terms explicitly
written on right-hand side of (45), while ~J is obtained from
the terms denoted with dots. The two sources are uncorre-
lated, and therefore the two particular solutions sourced by
them can be obtained independently. The solution sourced
by ~J is the one emerging from cosmological second-order
perturbation theory in absence of gauge fields. For standard
scalar field slow roll inflation, this term provides a negli-
gible contribution to the power spectrum, and unobservable
non-Gaussianity. Therefore, we disregard this term in this
work. In Appendix B we show that

J ’
_


2M2
pHa

Z d3p

ð2�Þ3=2 ½k̂ik̂jðM
2 � @ð1Þ� @ð2Þ� Þ �M2�ij�

� ~Aið�; ~pÞ ~Ajð�; ~k� ~pÞ;
M 
 am ¼ aec ð0Þ; (48)

where we are using the notation

@ð1Þ� @ð2Þ� fg 
 @�f@�g: (49)

It is worth noting that the source does not diverge as k ! 0;
this is not immediate from (45), since one term contains an
inverse Laplacian. See Appendix B for details.
From (48) we see that, for this model, the source is

formally of the type (4), with

Ô’;ijð�; ~k; ~pÞ ¼
_


2M2
pHa

½k̂ik̂jðM2 � @ð1Þ� @ð2Þ� Þ �M2�ij�:

(50)

We insert this operator in (19); we also use the fact

that Dð�Þ
ð0;0Þ is actually helicity independent in this model,

so that the sum over the helicity � is limited toP
�P

ð�Þ
im ðp̂Þ ¼ �im � p̂ip̂m—see (14)—and analogously

for the sum over �0. Moreover, in the integrand we

approximate ~p� ~k ’ ~p.11 We obtain

10This provides the main difference between the scalar field
cosmological perturbations obtained in Ref. [48] and in the
present work; the computations of Ref. [48] were done under
the working assumption that the direct interaction is stronger
than the gravitational coupling, so that all the other terms were
disregarded. In this work we compute instead the more compli-
cated contribution of the gravitational interactions.

11The reason for this is that, as we shall see, the signal from
particle production is maximal at k�H (namely, for modes of
the size of the horizon when particle production occurs; recall
that the scale factor is normalized to one at the moment of
particle production). We shall also see that the source integrand
is peaked at p� ffiffiffiffiffiffi

_m�
p

. We therefore have k � p due to (30).

GRAVITY WAVES AND NON-GAUSSIAN FEATURES FROM . . . PHYSICAL REVIEW D 86, 103508 (2012)

103508-9



P�;sðkÞ ’ k3

4�2a2M4
p

Z �

��
d�1

Gkð�; �1Þ
að�1Þ

Z �

��
d�2

Gkð�; �2Þ
að�2Þ

�
Z d3p

ð2�Þ3 f½1þ ðk̂ � p̂Þ4�M2ð�1ÞM2ð�2Þ�a
0�

b
0

þ ðk̂ � p̂Þ2½1� ðk̂ � p̂Þ2�½M2ð�1Þ�a
0�

b
1

þM2ð�2Þ�a
1�

b
0� þ ½1� ðk̂ � p̂Þ2�2�a

1�
b
1g

�Dða;bÞ½�1; �2;p�2; (51)

where we have omitted the suffix (�) from the correlators
(since they are � independent in this model). By inserting
the expressions (34) and (36) for the correlators, and by
performing the angular integrals, we obtain

P�;sðkÞ ’ k3

4�2a2M4
p

Z �

��
d�1

Gkð�; �1Þ
að�1Þ

Z �

��
d�2

Gkð�; �2Þ
að�2Þ

�Mð�1ÞMð�2Þ
2�2

Z
dpp2

	
j�pj2½j
pj2 þ j�pj2�

þ 2j�pj2
3

Re½
�
p�pðei�ð�1Þ þ ei�ð�2ÞÞ�

þ 11

15
Re½
�2

p �2
p e

i½�ð�1Þþ�ð�2Þ�

þ j�pj4ei½�ð�1Þ��ð�2Þ��


; (52)

where �ð�Þ 
 2
R
�
�� d�

0Mð�0Þ, and where the Bogolyubov

coefficients are evaluated after the particle production, and
given in (29). To obtain this expression we have disre-
garded p with respect to M inside the mode functions fp
present inside the correlators. This is appropriate since, as
we shall see, the integrand is peaked at p� ffiffiffiffiffiffi

_m�
p � M.

The curly parenthesis in (52) contains several terms
proportional to the fast oscillating phase ei�. All these
terms give a negligible contribution to the final result. To
see this, we can separate the momentum and time integrals
in this expression, and obtain

P�;sðkÞ ’ k3

8�4a2M4
p

Z
dpp2

	
j�pj2½j
pj2 þ j�pj2�T 2

k

þ 4

3
j�pj2T k Reð
�

p�pEkÞ þ 11

15
j�pj4jEkj2

þ 11

15
Reð
�2

p �2
pE2

kÞ


; (53)

where

T k 

Z �

��
d�0Gkð�; �0Þmð�0Þ;

Ek 

Z �

��
d�0Gkð�; �0Þmð�0Þ e2i

R
�0
��

d�00Mð�00Þ
:

(54)

Using the expression (10) for the Green function, the
expression

mð�Þ ¼ _m�ðt� t�Þ ¼ _m�
H

ln

����
��

�
¼� _m�

H
lnð�H�Þ (55)

(in the last equality we have used the fact that að��Þ ¼ 1),
we find, in the super-horizon �k� � 1 limit (in practice,
we introduce the integration variable y0 ¼ �k�0, and we
integrate it from 0 to�k��, rather than from�k� to�k��),

T k ’ að�Þ _m�
27H3 2F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;
�k2

4H2

�
; (56)

where the generalized hypergeometric function evaluates

to�1 for k � H and to� 27�
2

H3

k3
ðln k

H � 0:423Þ for k � H.

The time integral in the exponent of E can be done
analytically, and, leads to

Ek ¼ að�Þ _m�
k3

Z 1

�H�

dy

y

�
k

H
y cos

�
k

H
y

�
� sin

�
k

H
y

��
� lnðyÞ

	
cos

�
_m�
H2

ln2y

�
þ i sin

�
_m�
H2

ln2y

�

: (57)

Since _m� � H, the term in curly parenthesis is rapidly

oscillating unless y 
 �0
��
’ 1. This however means that the

integrand is peaked at the moment in which the particle
production is taking place. In our computation we used the
asymptotic values (29) for 
, � (valid once particle pro-
duction has completed). Therefore we only provide an
upper bound on Ek. It is easy to verify that instead the
integrand of T k is dominated by times at which (29) hold.
Provided that k � ffiffiffiffiffiffi

_m�
p

(which is true in the range of
our interest, since the occupation number of the gauge field
is exponentially suppressed in the opposite regime), we can
keep in the integral only the fast oscillating term, and the
log term, and obtain the estimate

jEkj<
��������að�Þ _m�

k3

�
k

H
cos

�
k

H

�
� sin

�
k

H

��
�
Z 1

�H�
dy lnðyÞ

	
cos

�
_m�
H2

ln2y

�
þ i sin

�
_m�
H2

ln2y

�

�
��������’ að�ÞH2

2k3

�������� k

H
cos

k

H
� sin

k

H

�������� (58)

for the upper bound. We indeed see that jEkj
T k

< H2

_m�
� 1.

This confirms that the oscillatory terms in (52)-or
(53)-provide a negligible contribution to the final result.
Performing the momentum integral we finally obtain

P�;sðkÞ ’ 2þ ffiffiffi
2

p
46; 656�5

k3 _m7=2
�

H6M4
p

�
2F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;
�k2

4H2

��
2
;

k � ffiffiffiffiffiffi
_m�

p
; (59)

while the result is exponentially suppressed and uninter-
esting at larger momenta. The exponential suppression of
the spectrum is due to the fact that the occupation numbers
of the vector particles are exponentially suppressed at such
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large momenta, see Eq. (29). We discuss this result in
subsection III C.

3. Scalar bispectrum

We now evaluate the formal expression (24) for the
bispectrum in this model. This expression contains various
intermediate quantities that have been given above.
Explicitly, we write the green functions in Eq. (10), the
projection operators in Eq. (14), the operator O’ in

Eq. (50), and the correlators in Eqs. (34) and (36). The
computation follows the same steps presented in the pre-
vious subsection for P� . Also in this case we use the

approximation k � p � M, and we find that the terms
with a fast oscillating phase in the final time integral can be
disregarded. We obtain

Bðk1; k2; k3Þ ’ 1

2M6
pað�Þ3

T k1T k2T k3

�
Z d3p

ð2�Þ9=2 j�j
4ð3j
j2 þ j�j2Þ

’ 27þ 8
ffiffiffi
6

p

22; 674; 816�9=2

_m9=2
�

H9M6
p

� Y3
i¼12

2F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;
�k2i
4H2

�
;

ki �
ffiffiffiffiffiffi
_m�

p
: (60)

This corresponds to the effective equilateral nonlinear
parameter (25)

fNL;equil effðkÞ ’ 2:1� 107
k6 _m9=2

�
H9M6

p

�
�
2F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;
�k2

4H2

��
3
;

k � ffiffiffiffiffiffi
_m�

p
; (61)

where we have used the numerical value P� ’ 2:5� 10�9

for the power spectrum. Analogous to the sourced part of
the power spectrum (59), the bispectrum and the nonlinear
parameter are exponentially suppressed and uninteresting
at larger momenta.

B. Gravity waves sourced by the vector modes

We now compute the amount of gravity waves sourced
by the produced gauge fields. Inserting the energy momen-
tum tensor (41) for this model in the general expression (7),
we see that the source is formally of the type (8) with

Oij;� ¼ ��
mn;�ðk̂Þ
aMp

½�mi�njð�@ð1Þ� @ð2Þ� þM2Þ

þ �mai�nbjpaðk� pÞb�; (62)

where we recall our notation (49).

It is instructive to compare this expression with the
analogous operator in the source of the scalar perturba-
tions, given in (50). In writing (50) we disregarded terms

proportional to spatial momenta ~p and ~p� ~k ’ ~p with
respect to time derivatives and the mass M. The reason
for this is that k � p � M, as we explained after (52). As
a consequence, time derivatives acting on a mode also give
@�A�MA � pA, and should be retained in the operator,
when compared to spatial momenta. Disregarding the mo-
mentum terms is correct for the scalar source. However, we
see that in (62) the time derivatives enter with an opposite
sign to M2. As a consequence, the dominant contributions
from the first two terms in (62) cancel against each other,
and therefore we need to keep the complete structure. We
now show explicitly how the cancellation arises.
We insert the operator (62) in the formal expression (21)

for the power in the tensor modes. The other intermediate
quantities entering in (21) are the Green functions, given in
(10), the projection operators, given in (14), and the corre-
lators, given in (34) and (36). We obtain 12

P�;s ¼ 2k3

3�4a2M4
p

Z �

��
d�1

Gkð�; �1Þ
að�1Þ

Z �

��
d�2

Gkð�; �2Þ
að�2Þ

�
Z

dpp2

	
7

5
½Mð�1Þ2�a0 � �a1�½Mð�2Þ2�b0 � �b1�

þ p2�b0½Mð�1Þ2�a0 � �a1�
þ p2�a0½Mð�2Þ2�b0 � �b1� þ 7

5
p4�a0�b0



�Dða;bÞ½�1; �2;p�2; (63)

where we have disregarded k as compared to p.
This expression is analogous to Eq. (51) for P� , with the

difference that here we have already performed the trivial
angular integrals of d3p. Terms without p in the curly
parenthesis are obtained from the square of the first term

/ ð�@ð1Þ� @ð2Þ� þM2Þ in (62) (recall that twoO� enter inP�).

We note that the structure �@ð1Þ� @ð2Þ� þM2 is preserved in

(63) since the suffix 0 (1) on D indicates that ~A ( ~A0) is
present in the correlator. The term / p4 in the curly paren-
thesis is obtained from square of the other term in (62). The
terms / p2 are the mixed terms. The different coefficients
( 75 vs 1) follow from the angular integrals.

The result (63) is a sum of squares of correlators. In each
square, most terms present fast oscillating phases; as we
shall see, these terms give a negligible contribution to the
final result once the time integrals are performed. This is
analogous to jT j � jEj in Eq. (54). Squaring the expres-
sions (34) and (36) we obtain

12We remind that the tensor power is obtained from hh�h�i. We
have verified that hh�h0�i / ���0 .
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Dð0;0Þ½�1; �2;p�2 ¼
j�pj2ðj
pj2 þ j�pj2Þ

2!pð�1Þ!pð�2Þ þ oscillatory phases

Dð1;0Þ½�1; �2;p�2 ¼ !2
pð�1ÞDð0;0Þ½�1; �2;p�2 þ oscillatory phases

Dð0;1Þ½�1; �2;p�2 ¼ !2
pð�2ÞDð0;0Þ½�1; �2;p�2 þ oscillatory phases

Dð1;1Þ½�1; �2;p�2 ¼ !2
pð�1Þ!2

pð�2ÞDð0;0Þ½�1; �2;p�2 þ oscillatory phases:

(64)

We recall that !pð�iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð�iÞ2 þ p2

p
, and that momentum integrand has its support in the region p � Mð�iÞ. We see,

however, that the OðM4Þ and OðM2Þ parts of the curly parenthesis in (63) cancel for the nonoscillatory contributions (64).
Using the full expressions (34) and (36) for the correlators, we obtain

P�;s ¼ 2k3

3�4a2M4
p

Z �

��
d�1

Gkð�; �1Þ
að�1Þ

Z �

��
d�2

Gkð�; �2Þ
að�2Þ

Z
dpp2

	
2p4

5!pð�1Þ!pð�2Þ j�pj2ðj
pj2 þ j�pj2Þ

� 4

5
p2j�pj2

�
M2ð�1Þ

!pð�1Þ!pð�2Þ Reð

�
p�pe

i�ð�1ÞÞ þ �1 $ �2

�
þ 2

5

7M2ð�1ÞM2ð�2Þ þ 6p2½M2ð�1ÞM2ð�2Þ� þ 6p4

!pð�1Þ!pð�2Þ ½Reð
�2
p �2

p e
i½�ð�1Þþ�ð�2Þ�Þ þ j�pj4Reðei½�ð�1Þ��ð�2Þ�Þ�



; (65)

where �ð�iÞ are the oscillatory phases defined immediately after (52). The first term in the curly parenthesis is obtained
from the nonoscillatory parts (64), and we see that it is indeed of Oðp4Þ. As we shall see, this is the term that dominates the
final result.

Equation (65) is therefore characterized by a part without oscillatory phase plus a part with one oscillatory phase plus a
part with two oscillatory phases. For each part we only take the leading prefactor in the p � Mð�iÞ regime. This
expression then rewrites

P�;s ’ 2k3

3�4a2M4
p

Z
dpp2

	
2

5
p4j�pj2ðj
pj2 þ j�pj2Þ ~T 2

k � 8

5
p2j�pj2 ~T kReð
�

p�p
~EkÞ þ 14

5
Reð
�2

p �2
p
~E2
kÞ þ

14

5
j�pj4j~Ekj2



;

(66)

where

~T k 

Z �

�min

d�0
Gkð�; �0Þ

að�0Þ!pð�0Þ ;
~Ek 


Z �

�min

d�0
Gkð�; �0Þ

að�0Þ!pð�0ÞM
2ð�0Þ e2i

R
�0
��

d�00Mð�00Þ
: (67)

We evaluate the time integrals after the particle production (� > �min), so that 
p and �p can indeed be taken as

constant. Particle production is completed when !2
p > _!p, which, in the support region p &

ffiffiffiffiffiffi
_m�

p
of the momentum

integral, gives tmin ’ t� þ 1ffiffiffiffiffi
_m�

p . This corresponds to the conformal time �min ’ � 1
H expð� Hffiffiffiffiffi

_m�
p Þ. For � > �min, we can

approximate !p ’ M ’ am, with m given in (55). We then obtain the expression

~T k ’ H2að�Þ
_m�k3

Z expð� Hffiffiffiffi
_m�

p Þ

�H�
dy0

�
k

H
y0 cos

�
k

H
y0
�
� sin

�
k

H
y0
��

y0

lnðy0Þ ’
H2að�Þ
_m�k3

�
k

H
cos

�
k

H

�
� sin

�
k

H

��Z expð� Hffiffiffiffi
_m�

p Þ

0

dy0

lnðy0Þ ’
H2að�Þ
_m�k3

�
sin

�
k

H

�
� k

H
cos

�
k

H

��
ln

� ffiffiffiffiffiffi
_m�

p
H

�
; (68)

where the integration variable in the first expression is y0 ¼ �H�0. In going from the first to the second line, we have
used the fact that the integrand is peaked at the asymptotically early times, while in the final expression we have used
H � ffiffiffiffiffiffi

_m�
p

. We note that the result is only logarithmically sensitive to the difference between �min and ��.
Under the approximation ! ’ M, the integral ~Ek coincides with the integral Ek defined in (54) (we actually notice

that j~Ekj & jEkj). We obtained an upper bound for this quantity in (58). The relative contribution of the two time integrals
to (66) can therefore be estimated as ��������p2 ~T k

~Ek

��������p’ ffiffiffiffiffi
_m�

p > ln

� ffiffiffiffiffiffi
_m�

p
H

�
� 1: (69)

This shows that the oscillatory integral ~Ek can be disregarded in our estimate of P�;s,
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P�;sjfromAT
’ 4k3

15�4a2M4
p

~T
2
k

Z
dpp6j�pj2ðj
pj2 þ j�pj2Þ: (70)

Using the results (29), we finally obtain

P�;sjfromAT
’ ð8þ ffiffiffi

2
p ÞH4 _m3=2

�
32�7M4

pk
3

�
sin

�
k

H

�
� k

H
cos

�
k

H

��
2
ln2
� ffiffiffiffiffiffi

_m�
p
H

�
; k � ffiffiffiffiffiffi

_m�
p

; (71)

while the result is exponentially suppressed and uninteresting at larger momenta. We discuss this result in subsection III C.
In these last two expressions we have emphasized that in this computation we have considered only the gravity waves

sourced by the transverse modes of the gauge field. In Appendix A we present the full computation, including also the
longitudinal vector polarization. We find that the expression (70) is replaced by

P�;sjfrom AT and AL
’ 2k3

15�4a2M4
p

~T
2
k

Z
dpp6½2j�pj2ðj
pj2 þ j�pj2Þ þ j�L

pj2ðj
L
pj2 þ j�L

pj2Þ�; (72)

where 
L and �L are the Bogolyubov coefficients of the
longitudinal mode. Namely, we see that, if they are pro-
duced in the same amount, the longitudinal quanta con-
tribute to the gravity waves as one transverse polarization.
This results in a factor 3

2 multiplying the final result (71).

C. Phenomenology

The observable spectrum of curvature fluctuations in the
model (26) is given by the sum of the sourced contribution
and the usual nearly scale-invariant contribution from the
vacuum fluctuations; see Sec. II. The sourced part of the
spectrum in the model (26) leads to a localized ‘‘bump’’
feature in the primordial power spectrum for scales leaving
the horizon at the moment t ¼ t�, when the gauge fields are
produced. We have illustrated this feature in the left panel
of Fig. 1 for an arbitrary choice of parameters. The most
stringent observational constraints on the model (26) come
from nonobservation of such localized bump features.
These observational constraints are the subject of this
subsection.13

We can write the total observable power spectrum in the
following form:

P� ðkÞ ¼ P
�
k

kp

�
ns�1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼P�;vðkÞ

þ AbSb

�
k

kb

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼P�;sðkÞ

: (73)

The spectrum of the vacuum fluctuations are characterized
as usual: kp is the pivot scale (taken to be 0:002 Mpc�1,

consistent with Ref. [69]), while the amplitude and tilt are
given by

P 
 H2

8�2�M2
p

; ns ¼ 1þ 2�� 6�: (74)

Here all quantities are understood to be evaluated at the
moment when the pivot scale left the horizon. The sourced
contribution in (73) describes a localized bump-like feature
that we characterize by an amplitude Ab, a location kb, and
a ‘‘shape function’’ Sb. The shape and amplitude are given
by:

Ab 
 3:2� 10�2P 2�2
_m7=2
�
H7

;

Sb½x� ¼ 4:7x3
�
2F3

�
3

2
;
3

2
;
5

2
;
5

2
;
5

2
;�5:5x2

��
2
:

(75)

The shape function has been constructed so that the global
maximum is Sbðx ¼ 1Þ ¼ 1, meaning that the feature in
(73) reaches its maximum value, Ab, when k ¼ kb. For this
work we assume that particle production could have taken
place at any moment during inflation, so the location of the
feature is treated as arbitrary.14

The bumplike feature (75) is very similar to the one that
would be generated due to instantaneous production during
inflation of scalar particles directly coupled to the inflaton.
The signatures of scalar particle production during infla-
tion, including important rescattering effects, were fully
derived in Ref. [42]. The phenomenology of the bumplike
feature in the curvature spectrum was subsequently studied
in Ref. [43]. (See Ref. [44] for a discussion of non-
Gaussian signatures and Ref. [45] for a review.) To derive
observational constraints, we follow closely the analysis in
Ref. [43] and replace the somewhat complicated shape
function (75) by the following simple fitting function

SfitðxÞ ¼ 4:5x3e�1:5x2 ; (76)

which, again, is normalized to have maximal value unity at
x ¼ 1. In the right panel of Fig. 1 we show that the simple

13In this discussion, we disregard the contribution from the
longitudinal vector mode to the source of tensor and scalar
perturbations. As discussed at the end of the previous subsection,
the longitudinal mode changes the result for the gravity wave
spectrum by at most a factor 3

2 (if it is produced in equal amount
to each tensor mode). We expect an analogous enhancement
for � . The current discussion can be easily modified to account
for these additional Oð1Þ factors; all of our conclusions are
unchanged.

14Concretely kb � 4:67H if the scale factor is normalized to
one at t ¼ t�.
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formula (76) provides an adequate description of the
feature.

In Ref. [43], a variety of data sets were used to perform a
detailed analysis of the observational constraints on local-
ized features with shape (76); we refer the reader to that
paper for a discussion of the methodology. See also
Ref. [70] for forecast constraints from large scale structure
data, and see Ref. [54] for a discussion of both current and
forecasted constraints from measurements of the CMB
energy spectrum. In the present work we are mostly inter-
ested in a feature localized on CMB scales, in which case
the likelihood contours presented in Ref. [43] are approxi-
mately flat and the observational bound can be roughly
summarized as:

Ab

P
& 0:1 ) _m1=2

�
H

& 1:2P�1=7��2=7: (77)

Since the sourced part needs to be subdominant in the
power spectrum, P ¼ 2:5� 10�9; then, the bound (77)
can be expressed as

_m1=2
�
H

& 20��2=7: (78)

(Recall that _m1=2
� � H and � � 1 are both required for

theoretical consistency.) We will see shortly that the ob-
servational bound (78) excludes the possibility of having
any interesting effect from particle production in the tensor
spectrum.

So far we have discussed the bumplike feature in the
spectrum of curvature perturbations. However, there will
also be a corresponding localized feature in the bispectrum.
This kind of localized non-Gaussianity is very far from
scale invariant and hence quite different from the bispec-
trum templates that are most often used in data analysis.

To get a very rough sense of the amplitude of non-
Gaussianity in our model, we have computed the effective

(k-dependent) f
equil
NL ðkÞ parameter, which exhibits a bump-

like structure. This parameter assumes the maximal value:

fequil effNL ðkÞjmax � 1:9� 10�10�3
_m9=2
�
H9

& 92�3=7;

at k ’ 1:2kb;
(79)

where P ¼ 2:5� 10�9 has been used in the first equality
and the upper bound comes from imposing (78). It should
be emphasized that existing observational constraints

(or forecasts) on fequilNL cannot be applied directly to (79).
A dedicated search for this type of localized non-
Gaussianity would be interesting, however, it is beyond
the scope of this paper. (See also Refs. [44,71] for a
discussion about localized non-Gaussianities from scalar
particle production during inflation.) In the event of a
detection of a bump in the power spectrum, localized non-
Gaussian features could play an important role to falsify (or
support) models of particle production during inflation.
Using our result (71), the total primordial tensor spec-

trum in the model (26) is given by

PGWðkÞ ¼
X
�

½P�;v þ P�;s�

¼ 2H2

�2M2
p

�
1þ 4:17� 10�4 H

2

M2
p

_m3=2
�
H3

� ln2
�
_m1=2
�
H

�
SGW½x�

�
; (80)

where in the shape function

SGW½x�
0:0226

x3
½sinð4:67xÞ�4:67xcosð4:67xÞ�2; (81)
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FIG. 1 (color online). Left panel: the total observable power spectrum in the model (26) for a representative choice of parameters,
illustrating the appearance of a localized bump feature. The solid black curve is the total spectrum while the dashed blue line gives the
spectrum of the vacuum fluctuations for comparison. Right panel: a comparison of the shape function Sb (solid black curve) and the
fitting function Sfit (dashed red curve).
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the scale x is normalized as in the scalar shape function
(75). The shape function is maximized at x ¼ k

kb
’ 0:53,

where it evaluates to ’ 1.
To estimate the amplitude of the gravitational wave

signal that can be obtained from particle production, we
evaluate the tensor-to-scalar ratio on scales where the
second term in (80) is maximized. Assuming the observa-
tional constraint (78) is satisfied, we can approximate
P� � P�;v ¼ 2:5� 10�9 and we find:

rðkÞjmax � 16�

�
1þ 8:2� 10�11�

_m3=2
�
H3

ln2
�
_m1=2
�
H

��
;

at k ’ 0:53kb:
(82)

Using (78) and � & 0:006 (corresponding to rvac & 0:1), it
is straightforward to show that the sourced contribution to
(82) is always & 10�6, which is undetectably small. We
conclude that an observationally interesting signature in
gravitational waves cannot be obtained in the model (26).

Before concluding, we note that the estimates presented
here should be interpreted as lower bounds on the efficiency
of particle production effects. We have considered only a
single instance where c ¼ 0, leading to a single burst of
vector particle production. However, in a concrete model
one could expect c to undergo damped oscillations about
the minimum of its potential, passing through zero several
times before its kinetic energy is dissipated due to Hubble
friction or backreaction effects. In such a scenario reso-
nance effects would be expected to enhance the occupation
number of the produced gauge fields by some factor E that
could, in principle, be � 1. The enhancement nk ! Enk
leads to a factor of E2 in the sourced contribution to the
tensor spectrum, so that the relevant term in (82) becomes

rðkÞjmax; sourced � 1:3� 10�9E2�2
_m3=2
�
H3

ln2
�
_m1=2
�
H

�
; (83)

where we still assume that the scalar spectrum is dominated
by the vacuum fluctuations. The sourced part of the scalar
spectrum also gets enhanced by a factor ofE2, so the bound
(78) becomes stronger:

_m1=2
�
H

& 20ð�EÞ�2=7: (84)

Combining these results we find:

rðkÞjmax; sourced & 10�5ðE�Þ8=7ln2½20ðE�Þ�2=7�: (85)

The value E * 200��1 gives rs � 0:01 at the bump. It
would be interesting to study under which conditions this
value can be reached in a concrete model.

D. Comparison with GW sourced
by modes of different spins

In subsection III B, we have computed the power in
gravity waves sourced by vector fields produced in
the model (26). Schematically, the sourced part of the
power spectrum is P � / R

d3phTTi, where T is the

traceless-transverse spatial part of the energy-momentum
tensor of source (the gauge fields, in this case) with appro-
priate contraction. The spatial part of the energy momen-
tum tensor contain dominant terms that scale as
Tij �M2AiAj in the M � p limit (we recall that p and

M are, respectively, the momentum and mass of the quanta
sourcing the gravity waves). One could therefore conclude
that P � / R

dpp2M4. However, we showed that the domi-

nant terms cancel against each other. Also the next to

leading term in a p2

M2 Taylor expansion of the integral

cancel, and one is left with P � / R
dpp6, see Eq. (70).

In Appendix D we performed the analogous computa-
tion using fermion fields rather than vector fields as
sources. In this case the spatial part of the energy-
momentum tensor has terms of the type Tij � ���ipj�,

and one may conclude that P � / R
dpp4M2 [the factor

M2 coming from the different normalization of the fermion
wave function with respect to the vector one, compare the
function f in (28) and in (D6)]. Also in this case there is
however a cancellation, resulting in h�2i / p2, see
Eq. (D15), and in P � / R

dpp6, see Eq. (D16).
These two scalings agree with that obtained if the source is

a scalar particle. In this case, Tij / pipj

2, and one imme-

diately has P � / R
dpp6 without any cancellation. In fact,

from our results (70) and (D16), and from the result for the
analogous computationwith a scalar sourcegiven inRef. [23],
we obtain a very general expression for the power spectrum:

P�;s ’ 2gsk
3

15�4a2M4
p

~T 2
k

Z
dpp6j�pj2ðj
pj2

þ ð�1Þ2sj�pj2Þ; (86)

where s is the spin of the sourcing field, and gs is the number
of degrees of freedomof that field:gs ¼ 1 for a scalar,gs ¼ 2
for a vector if the longitudinal mode is produced in a negli-
gible amount (gs ¼ 3 if it is produced in the same amount as
each transverse mode), and gs ¼ 4 for a Dirac fermion.
We see that, apart from the difference in the number of

degrees of freedom, and a small difference due to the spin
statistics, the different fields in the nonrelativistic regime
M � p have a comparable quadrupole moment (trans-
verse and traceless projection of Tij) and generate a com-

parable amount of gravity waves.

IV. MODEL II: VECTOR PRODUCED BYA
PSEUDOSCALAR INTERACTION

In this section we consider the following model

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� 1

2
ð@’Þ2 � Vð’Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
inflaton sector

� 1

2
ð@c Þ2 �Uðc Þ � 1

4
F2 � c

4f
F ~F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hidden sector

�
: (87)
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In addition to a standard inflationary sector, we have
introduced a ‘‘hidden’’ sector consisting of a light pseudo-
scalar, c , and a Uð1Þ gauge field, A	, whose energy

density is small as compared to that of the inflaton (so
that the Friedmann equation takes the usual form
3H2M2

p � Vð
Þ). As in Sec. III, the hidden sector in (87)

has been introduced so that the production of gauge field
fluctuations can provide a new source of inflationary gravi-
tational waves, complementary to the usual quantum vac-
uum fluctuations of the tensor part of the metric. Unlike the
model of Sec. III, however, we will see that particle pro-
duction in the theory (87) occurs continuously during
inflation, leading to broad-band signatures rather than lo-
calized features in the scalar and tensor n-point correlation
functions.

The coupling c ð0ÞðtÞF ~F of the gauge field to the time-
dependent pseudoscalar condensate leads to an exponential
production of fluctuations A	. This effect has already been

discussed at length in the literature—see Refs. [46–48], for
example—and here we only review the key features that
will be necessary for our analysis. Employing the decom-
position (1) we find the following linearized equation of
motion of the gauge field mode functions�

@2� þ k2 � 2k�

�

�
A�ð�; kÞ ¼ 0; � 


_c ð0Þ

2Hf
: (88)

If the pseudoscalar is in an overdamped regime then the
parameter � can be treated as a constant. Moreover, we

assume that _c ð0Þ > 0 so that the ‘‘þ’’ helicity state of the
gauge field gets copiously produced while the ‘‘�’’ state
remains in the vacuum and its effect is renormalized
away.15 The properly normalized solutions of (88) can be
written as [46]

Aþð�; kÞ �
���

8�k

�
1=4

e���
ffiffiffiffiffiffiffiffiffiffiffi
�2�k�

p
;

A0þð�; kÞ �
�
2�k

��

�
1=2

Aþð�; kÞ:
(89)

This solution is valid only in the phase space interval 1
8� �

�k� � 2�, where the production of gauge fluctuations is
most important. By restricting ourselves to this regime we
effectively cut-off an ultra-violet divergence associated
with the usual quantum vacuum fluctuations of the gauge
field on subhorizon scales; see Ref. [48] for more discus-
sion. We have also assumed that � * Oð1Þ, so that the
phase space of produced fluctuations is nontrivial and each
mode experiences a significant exponential enhancement,
e�� � 1, near horizon crossing. (For � < 1 there is no
interesting particle production in the model).

We are interested in a scenario where inflation is
driven by the potential energy of the ’ field, so that

3H2M2
p � Vð’Þ; the ‘‘hidden’’ sector in (87) instead

should give a small contribution to the total energy density
of the universe. This requirement imposes several con-
straints on the model parameters, which we now discuss.
We must first require that the energy density in the pro-
duced gauge field fluctuations is smaller than the kinetic
energy of c ,

1

2
h ~E2 þ ~B2i �

_c ð0Þ2

2
; (90)

where the ‘‘electric’’ and ‘‘magnetic’’ fields are Ei 

� 1

a2
A0
i, Bi 
 1

a2
�ijl@jAl. Using the solution (89) to evalu-

ate the expectation value [48], the condition (90) can be
written as:

H2

_c ð0Þ � 60�3=2e���: (91)

We also require that the energy density of the rolling
pseudoscalar can be neglected with respect to that of the
inflaton:

1

2
ð _c ð0ÞÞ2 þUðc ð0ÞÞ � 3H2M2

p: (92)

Finally, we require that � is adiabatically evolving,
_�

H� ¼
€c ð0Þ

H _c ð0Þ � _H
H2 � 1, so that it is appropriate to treat it as nearly

constant during the time interval in which each mode of A
is relevant (namely, close to horizon crossing, when the
mode is produced, and affect cosmological perturbations).

As j _H
H2 j � 1 during inflation, we need to require

€c ð0Þ

H _c ð0Þ � 1 , mc � 3H

2
; (93)

where in the last condition we have approximated Uðc Þ as
a quadratic potential, and we have required the evolution of

c ð0Þ to be in the overdamped regime. Throughout our
analysis we will require that the conditions (91)–(93) are
simultaneously satisfied (these conditions are discussed at
the end of subsection IVC).
The background equation for the pseudoscalar reads:

€c ð0Þ þ 3H _c ð0Þ þU0ðc ð0ÞÞ ¼ 1

f
h ~E � ~Bi: (94)

It is interesting to note that the condition (91) guarantees
right-hand side of this equation can be disregarded.
Indeed [48]:

jU0ðc ð0ÞÞj � 1

f
jh ~E � ~Bij , H2

_c ð0Þ � 82�3=2e���; (95)

which is implied by (91).

The quantity Dð�Þ introduced in (13) characterizes the
two-point function of the produced gauge field fluctuations.

15None of our results for the scalar or tensor correlation
functions will depend on the choice _c ð0Þ > 0.
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This function, and its derivative, can bewritten explicitly in
terms of the c-number mode functions as

Dð�Þ
ð0;0Þ½�1; �2; q� 
 A�ð�1; qÞA�

�ð�2; qÞ;
Dð�Þ

ð1;1Þ½�1; �2; q� 
 A0
�ð�1; qÞA�0

� ð�2; qÞ:
(96)

Considering only the ‘‘þ’’ helicity state and using the
approximate solution (89), we have

DðþÞ
ð0;0Þ½�1; �2; q� �

ð�1�2Þ1=4ffiffiffiffiffiffiffiffiffi
8�q

p e2���
ffiffiffiffiffiffi
2�q

p
½ ffiffiffiffiffiffiffi��1
p þ ffiffiffiffiffiffiffi��2

p �;

DðþÞ
ð1;1Þ½�1; �2; q� �

2�qffiffiffiffiffiffiffiffiffiffi
�1�2

p DðþÞ
ð0;0Þ½�1; �2; q�:

(97)

A. Scalar perturbations sourced by the vector modes

1. The master equation

The hidden sector in (87) decouples from the inflaton in
the limit Mp ! 1. However, at finite Mp, gravitational

couplings will transmit the effects of particle production in
the hidden sector to the inflaton perturbations, modifying
the usual predictions for the observable curvature fluctua-
tions. To see this effect we follow closely the analysis of
subsection III A and derive a master equation for the
inflaton perturbations in the model (87). At linear order
in perturbation theory we have recovered the standard
result

ð@2� �r2Þ’1 þ 2H’0
1 ’ 0; (98)

where we work to leading order in slow roll parameters. At
second order, instead, we have the following equation of
motion

ð@2� �r2Þ’2 þ 2H’0
2 ’ � ’ð0Þ0a2

2M2
pH

	
E2 þ B2

2|fflfflfflffl{zfflfflfflffl}
gives J1

þ 1

a4
r�2@�½a4 ~r � ð ~E� ~BÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gives J2




þ . . . ; (99)

which is formally equivalent to (45) with m2 ! 0. In (99)
the. . . schematically denotes terms involving ’2

1, c
2
1 and

h21;ij which do not involve the exponential factors e�� that

characterize the gauge field modes (89) and may therefore
be neglected.

As we did in subsection III A, both the first and second-
order equations can be combined into the single master
equation (3). The first-order mode ’1 is the homogeneous
solution of this master equation, while the second-order ’2

is the particular solution of this master equation. The
source in the master equation can be written as a sum of
two terms

J’ð�; ~kÞ ¼ J1ð�; ~kÞ þ J2ð�; ~kÞ: (100)

The source J2 is associated with the second term on
the right-hand side of (99), which is nonlocal in position
space. We show in Appendix C that this term is actually
infrared finite and that the full source can be cast in the
form

J’ð�; ~kÞ ¼ ’0ð0Þa3

4M2
pH

Z d3p

ð2�Þ3=2
�
�1þ ðp� j ~k� ~pjÞ2

k2

�
� ½ ~Eið�; ~pÞ ~Eið�; ~k� ~pÞ þ ~Bið�; ~pÞ ~Bið�; ~k� ~pÞ�:

(101)

where we have defined the ‘‘electric’’ and ‘‘magnetic’’

field operators as ~Eið�; ~kÞ 
 � 1
a2

~A0
ið�; ~kÞ and ~Bið�; ~kÞ 


i
a2
�ijlkj ~Alð�; ~kÞ. This expression appears simpler than the

corresponding source (48) in the previous model, due to the
fact that only the modes Aþ are relevant here.
In this model the energy density in the ‘‘electric’’

field dominates over that in the ‘‘magnetic’’ field [48].
Dropping terms involving ~Bi we have a source term of the
form (4) where the model-dependent operator can be
approximated by

Ô’;ijð�; ~k; ~pÞ � ’0ð0Þ

4M2
pHa

�
�1þ ðp� j ~k� ~pjÞ2

k2

�
� �ij@

ð1Þ
� @ð2Þ� ; (102)

where we recall our notation (49).

2. Two-point and three-point correlation functions

We now proceed to compute the two-point and
three-point correlation functions of the gauge invariant
curvature perturbation, � . We are only interested in
contributions that are sourced by particle production ef-
fects, since the vacuum fluctuations in the model (87) are
standard. The sourced contribution to the power spectrum
of � is given by (19). As discussed above, we only consider
the � ¼ þ contributions in the sum over helicity states.

Using the explicit expression (102) for the operator Ô,
along with the identity (14), we find that (19) can be
written as

P�;sðkÞ � k3

64�2M4
pa

2

Z d�1
að�1ÞGkð�; �1Þ

�
Z d�2

að�2ÞGkð�; �2Þ
Z d3p

ð2�Þ3
�
1þ p2 � ~k � ~p

pj ~k� ~pj
�
2

�
�
1� ðp� j ~k� ~pjÞ2

k2

�
2
DðþÞ

ð1;1Þ½�1; �2;p�

�DðþÞ
ð1;1Þ½�1; �2; j ~k� ~pj�: (103)
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Next we insert our previous result (97) forDðþÞ
ð1;1Þ. Since we

are interested in computing the spectrum at late times, the
explicit expression (10) for the Green function can be
employed. The sourced power spectrum takes the form

P�;sðkÞ ¼ �e4��H4

128�2M4
p

Z d3q

ð2�Þ3 q
1=2jk̂� ~qj1=2

� ½1� ðq� jk̂� ~qjÞ2�2

�
�
1� ~q � ðk̂� ~qÞ

qjk̂� ~qj
�
2
I2½q; jk̂� ~qj�; (104)

where we have introduced dimensionless variables

~q 
 ~p=k and k̂ 
 ~k=k. The dimensionless time integral is
defined as

I ½a;b�

Z 1

�k�
dz

sinz�zcosz

z1=2
e�2

ffiffiffiffiffiffi
2�z

p
½ ffiffiap þ ffiffi

b
p �; (105)

(notice that z 
 �k�0). In the super-horizon regime,
�k� � 1, we can set the lower bound of integration to
zero. Moreover, particle production effects are most inter-
esting in the regime � * Oð1Þ, in which case the integral
(105) has most of its support in the region z � 1 where we

can approximate sinz� z cosz � z3

3 . Hence, we have the

following analytical approximation

I½a; b� �
Z 1

0
dz

z5=2

3
e�2

ffiffiffiffiffiffi
2�z

p
½ ffiffiap þ ffiffi

b
p �

¼ 15

32
ffiffiffi
2

p ð ffiffiffi
a

p þ ffiffiffi
b

p Þ7�7=2
: (106)

Finally, the momentum integral in (104) must be
performed numerically, giving the final result

P�;sðkÞ � 4� 10�10 H
4

M4
p

e4��

�6
: (107)

The computation of the three-point correlation function
is completely analogous to the derivation that we have
outlined for the source power spectrum. Here we simply
state the final result for the bispectrum in the equilateral
configuration:

B� ðk1¼k2¼k3
kÞ�2:6�10�13 H
6

M6
p

e6��

�9

1

k6
: (108)

The reason for considering the equilateral configuration is
that, in this model, the source at any moment is dominated
by modes with wavelength comparable to the horizon at
that moment. This generates mostly correlations between
scalar perturbations of comparable size [47,48].

B. Gravity waves sourced by the vector modes

The produced gauge field fluctuations that are described
by the mode solution (89) carry anisotropic stress/energy

and provide a source of gravitational wave fluctuations that
is complimentary to the standard quantum vacuum fluctu-
ations from inflation.16 The computation of the gravita-
tional wave spectrum in the model (87) follows closely
what we had for the curvature perturbation. Moreover, this
computation has in fact already been performed in
Refs. [47–49]. Therefore, we simply state the final result:

Pþ ¼ Pþ;v þ Pþ;s ’ H2

�2M2
p

�
1þ 8:6� 10�7 H

2

M2
p

e4��

�6

�

P� ¼ P�;v þ P�;s ’ H2

�2M2
p

�
1þ 1:8� 10�9 H

2

M2
p

e4��

�6

�
:

(109)

The first term in the square braces corresponds to the usual
contribution from the quantum vacuum fluctuations of the
graviton, and the two helicities have equal power. The
second term, on the other hand, corresponds to gravita-
tional wave perturbations that have been sourced by parti-
cle production effects in the hidden sector. The production
is much more significant for the hþ mode, due to the fact
that the source consists of only Aþ modes.

C. Phenomenology

In this subsection we explore the phenomenology of the
scalar and tensor cosmological fluctuations in the model
(87). We first consider the spectrum of curvature fluctua-
tions. The total observable power spectrum is the sum of
(107) and the standard result for the vacuum fluctuations
[see the general result in Eq. (19)]. Explicitly, we have

P� � P
�
1þ 2:5� 10�6�2P

e4��

�6

�
; P 
 H2

8�2�M2
p

;

(110)

where the first term in the square braces is the usual
spectrum from quantum vacuum fluctuations, while the
second term is the sourced contribution coming from gauge
field production in the model (87).
Next, we consider the spectrum gravitational wave fluc-

tuations. From (109) and (110) we can write the tensor-to-
scalar ratio as

r 

P
�

P�

P�

� 16�
1þ 3:4� 10�5�P e4��

�6

1þ 2:5� 10�6�2P e4��

�6

: (111)

When both the tensor and scalar spectra are dominated
by the vacuum fluctuations we recover the standard result,

16At second order in cosmological perturbation theory tensor
fluctuations can also be sourced by bilinear combinations of the
first-order scalar fluctuations, �’ and �c . Neither of these
exhibit the exponential enhancement that characterizes the linear
gauge field perturbations-see (89); therefore, we can safely
neglect this effect in what follows.
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r � 16�. On the other hand, if the sourced contributions to
(109) and (110) dominate then we have r � 218, indepen-
dently of model parameters. The current observational
limit is r & 0:17 [72], while r� 0:01 might be detectable
with future missions [1]. Since the expression (111) inter-
polates between 16� and 218, it follows that an observable
signal can be obtained for any value of �.

Let us now discuss the phenomenology of the scalar
perturbations. From (110) and (111) we get

P�;s

P�;v
’ r� 16�

218
: (112)

We therefore see that the scalar power spectrum is domi-
nated by the vacuum part (P� ’ P ). Concerning the scalar

bispectrum, the effective nonlinearity parameter is imme-
diately obtained from (25) and (108):

f
equil eff
NL � 1:5� 10�9�3

P 3

P2
�

e6��

�9
: (113)

The current CMB bound is �214< f
equil
NL < 266 [73],

while fNL �Oð10Þ might be accessible with Planck [74].
To obtain the correct amplitude of density fluctuations,

we must impose the normalization condition P� ¼ 2:5�
10�9 on CMB scales. We can use this condition to elimi-
nate the parameter P in favour of � and �. Having done so,

the key observables r and fequil effNL then depend only on the
model-dependent quantities � and �, which in turn depend
on the inflationary potential and the dynamics of the hidden
sector fields. In Fig. 2 we plot our results for r and fNL as a
function of �, for various representative choices of �.

The observational bound on the tensor-to-scalar ratio
forces us into a region of parameter space, where
non-Gaussianity is undetectably small. Therefore, gravita-
tional wave fluctuations constitute the most interesting

phenomenology associated with the model (87). This is
shown in Fig. 3, where we plot contours in the �-� plane
leading to various phenomenologically interesting scenar-
ios. We note that our findings are relevant also for values of
� smaller than those shown in the figure.
As discussed in Refs. [48,49,55], the sourced contribu-

tion to the tensor spectrum is chiral; only one helicity state is
efficiently sourced by the gauge field fluctuations (89). This
effect may be detected through TB and TE correlations in
the CMB [75,76]. This was first explored by Ref. [49] in the
case in which the inflaton is the pseudoscalar sourcing the
vector modes; in this case, the direct inflaton-gauge field
coupling is so strong that, typically, the main bound on the
gauge field production is given by the sourced scalar per-
turbations (non-Gaussianity [47,48] and, depending on the
inflaton potential, increased power at small scales [25,53]).
To overcome this, [49] assumed the presence of �1000
sourcing gauge fields (this decreases the amount of non-
Gaussianity), or the curvaton mechanism for the generation
of the scalar perturbations. For some values of parameters,
the signal can be above the 1� detection line for a cosmic-
variance limited experiment [49]. As we shall now discuss,
a more optimistic conclusion is reached if one assumes that
the gauge field production occurs in a sector only gravita-
tionally coupled to the inflaton, as we have studied here.
A measure of the net handedness of the tensor modes is

the following quantity:

j��j 

��������Pþ � P�
Pþ þ P�

��������¼ 3:4� 10�5�P e4��

�6

1þ 3:4� 10�5�P e4��

�6

’ 1� 16�

r
; (114)

which interpolates between zero (at small �, when the
vacuum fluctuations dominate the tensor mode spectrum)
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FIG. 2 (color online). Left panel: The tensor-to-scalar ratio as a function of �, for several illustrative choices of �. The horizontal line
corresponds to r ¼ 0:1, the approximate current observational limit. Notice that an observable tensor-to-scalar ratio can be achieved
for any inflationary potential, by suitably tuning the dynamics in the hidden sector. Right panel: The effective nonlinearity parameter as
a function of �, for several illustrative choices of �. The horizontal line corresponds to fNL ¼ 266, the approximate current
observational limit on non-Gaussianity.
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and unity (at large � when the sourced GW dominate the
tensor mode spectrum). In the final approximation we have
used the fact that, for r < 0:1, the scalar power spectrum in
this model is dominated by the vacuum modes.

In Fig. 4 we plot the relation (114) in the r vs �� plane,
for a few representative values of �; each of the red/solid

lines is characterized by a given �, and by varying �
(growing � leads to more gravity wave production, and
therefore greater values of r and ��). We stress that
arbitrary large values of r in the range shown in the figure
can be reached for any value of �. As � decreases, this
requires a greater and greater amount of sourced modes,
which in turn leads to a greater and greater ��. This
explain why, for any given obtained r, greater �� corre-
spond to smaller �. These predictions are superimposed in
the figure to 1� detection lines from various experiments;
from top to bottom, the lines shown are for the ongoing and
forthcoming Planck (P) [74] and SPIDER (S) [77] experi-
ments, for the suggested CMB-Pol experiment (C) [1], and
for a hypothetical cosmic-variance limited experiment
(CV). The signal needs to be above a line to be detectable
at 1� by that experiment. These lines are taken by Fig. 2 of
Ref. [76]. We observe that, for some values of parameters,
the parity-violation could be detected (at least at 1�) al-
ready by the ongoing / forthcoming Planck and SPIDER
experiments.
Before concluding this section, we comment on the

constraints (91) and (92) which are necessary for the con-
sistency of our calculation. We find:

0:074

ffiffiffiffiffiffiffi
�P

p
e��

�5=2
� f

Mp

� 1:2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Uðc Þ

Vð’Þ

s
; (115)

where the first condition, obtained from (91), ensures that
the energy density of the produced gauge quanta is smaller
than the kinetic energy of c , while the second condition,
obtained from (92), ensures that the energy density of c is
smaller than that of the inflaton.
The interval in (115) exists for any reasonable choice of

model parameters, therefore we can always choose f=Mp

such that that various backreaction constraints are satisfied.
The lower bound on the inflationary scale becomes simpler
in the limit in which the sourced part of the gravity wave
signal dominates over the vacuum one (which is the regime
of most interest for our work). Using (111) in this regime,
the lower limit in (115) can be expressed as:

f

Mp

� 3:7� 10�3r1=4

�
� Oð10�4Þ;

rv < rs � 0:01–0:1;
(116)

where r has been chosen so that the gravity wave signal is
observable in the near future (we note that this requires
�� 4–5).
Finally, using (74), the condition (93) for the adiabatic

evolution of � can be cast in the form

mc

Mp
� 6:6� 10�4

ffiffiffi
�

p
: (117)

For a quadratic inflaton potential,m’ ’ 6:4� 10�6Mp andffiffiffi
�

p ’ 0:09 (for 60 e-folds of inflation). The condition (117)
then rewrites mc � 9m’.
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FIG. 3 (color online). Here we plot contours in the �-� plane
leading to fNL ¼ 266 (the current observational bound on non-
Gaussianity), r ¼ 0:1 (the current observational bound on tensor
modes), and r ¼ 0:01 (which may be detectable in the near
future). The region above the solid red line is ruled out by
producing too much non-Gaussianity while the region above
the dashed green line is ruled out by nondetection of tensor
fluctuations. We see that the non-Gaussianity bound is weaker,
meaning that the dominant signature of the model comes from
gravitational waves.
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FIG. 4 (color online). Red/solid lines: Predictions for r vs ��
in the model (87); each line is obtained for a fixed value of �, and
for varying �, with greater � corresponding to greater particle
production, and therefore larger signal. Black/dotted lines: 1�
detection lines for the Planck (P), SPIDER (S), CMB-Pol (C),
and a cosmic-variance limited (CV) experiment. The signal
needs to be above a line to be detectable at 1� by that experi-
ment. These experimental forecasts are an approximate copy of
the lines shown in Fig. 2 of Ref. [76].

BARNABY et al. PHYSICAL REVIEW D 86, 103508 (2012)

103508-20



V. CONCLUSIONS

A large experimental effort is currently taking place to
detect gravitational waves from inflation. The conventional
vacuum signal will be detectable only if the scale of

inflation is sufficiently high, V1=4 * 1016 GeV (corre-
sponding to r * 0:01, or � * 6� 10�4 in single field
slow roll inflation). Does this imply that, for a lower scale,
this experimental effort will be unsuccessful, or can we
hope that an observable gravity wave signal can be ob-
tained from some different mechanism? And can we dis-
tinguish the gravity waves generated by this mechanism
from the conventional vacuum ones?

Recently, Refs. [23,24] considered the possible gravity
signal from particle production taking place during
inflation. A difficulty with this idea is that the same particle
production will also source scalar perturbations; the
observed scalar perturbations have properties in perfect
agreement with standard vacuum fluctuations generated
by the simplest inflationary model; in particular, they are
Gaussian to a very high degree, while there is no reason to
expect that this should be the case for a generic model of
particle production.17 Therefore, any mechanism of gravity
waves from inflation needs to explain why the mechanism
has not already manifested itself in the scalar sector.

To evade this problem, Ref. [23] studied scenarios in
which the particle production takes place (or increases at a
sufficient level) only toward the end of inflation, so to
generate gravity waves only at scales much smaller than
the CMB ones. At these scales, the scalar perturbations are
only constrained by primordial black holes (see for in-
stance Ref. [78] for a recent study), which is a significantly
weaker bound than those from non-Gaussianity at the
CMB scales. One of the scenarios of Ref. [23] was further
studied in Ref. [25] to account for the backreaction of the
produced particles on the background inflaton. It was
shown in Ref. [25] that in this region the sourced gravity
wave signal can already be observed by the next LIGO
stage [4]. The main purpose of the present paper is to study
whether an analogous mechanism can produce an observ-
able gravity wave signal at CMB scales, without conflict-
ing with the limits from non-Gaussianity in the scalar
sector.

Let us denote by X the field that is produced during
inflation, and that sources the gravity waves. In the models
considered in Refs. [23,24] quanta of X are produced by
the motion of the inflaton, which we denote by ’. This
implies a direct coupling between the inflaton and the
produced quanta. As a consequence, if the inflaton is the
source of cosmological perturbations � , quanta of X will
source � with a stronger than gravitational interaction. On

the contrary, the source of gravity waves from X is of
gravitational strength. To minimize the relative amount
of produced � vs produced gravity waves, in this work
we made the opposite assumption of considering the weak-
est possible coupling (in standard gravitational theory)
between X and the inflaton; namely, we assumed that ’
and X are coupled only gravitationally. We therefore as-
sumed that particle production occurs in a ‘‘hidden sector’’
and in this paper, for the first time, we computed the
amount of scalar perturbations � induced by X through a
purely gravitational interaction. We then computed the
amounts of gravity waves produced by X in these two
models (for model II, we quote existing results), and we
compared the two effects.
Clearly, there is a large arbitrariness in the choice of the

model for particle production, and we do not claim our
findings to be exhaustive; in particular, we did not study
here the analogous of all the scenarios considered in
Ref. [24], where for instance multiple bursts of particle
production, and production of strings were also studied.
We study two models in which X is a vector field, which is
produced by the motion of a field c � ’. In model I, the
vector field has a mass term c ðtÞ2A2, and quanta of A are
produced when the classical value of c crosses zero. In
model II the vector is continuously sourced by a pseudo-

scalar c
f F

~F interaction. The reasons for considering these

two models is that, after the particle production, the vector
quanta are highly massive in Model I, while massless in
Model II. We showed that in the first case this gives rise to a
strong suppression of the gravity wave signal with respect
to the amount of scalar perturbations. In the remainder of
this concluding section, we summarize our findings in
these two models, together with some discussion.
(1) Model I: The main signature of particle production

in this model is a bump in the scalar power spec-
trum, at the scales that exited the horizon when the
gauge quanta were produced.18 If this bump will be
observed, this mechanism can be supported/
disproved by the presence/absence of an analogous
bump in the bispectrum, which we also computed
here for the first time. The spectrum of gravity
waves produced by the gauge quanta also presents
a peak at the same scales, which—if sufficiently
high—could distinguish them from the vacuum
gravity waves. However, we found that—once the
bound from not having observed a large bump in the
scalar spectrum is respected—the amount of gravity
waves produced in this model is completely unob-
servable (r & 10�6). The relative smallness of the
gravity waves vs scalar perturbations produced in
the model may come as a surprise, due to the fact

17In fact, as shown in Ref. [47], particle production is a very
simple source of observable non-Gaussianity of the scalar per-
turbations, even for the highly motivated class of natural infla-
tion models.

18This is qualitatively identical to the findings of Ref. [42],
where the sourced field is a scalar with mass depending on the
inflaton.
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that the gauge quanta are coupled gravitationally to
both these quantities. The reason for the suppression
is due to the fact that the quanta are highly non-
relativistic after they are produced. This highly sup-
presses their quadrupole moment and the amount of
gravity waves that they generate.

To verify this, we also computed the amount of gravity
waves produced if the vector field is replaced by a fermion,
with mass / c ðtÞ. Reference [23] computed the amount of
gravity waves produced by a scalar with mass / c ðtÞ.
From our two results, and from the result of Ref. [23] for
the scalar case, we actually obtained the very general
formula (86) for the amount of gravity waves produced
in all these cases. We see that there is no large enhance-
ment between the different spins, apart from the propor-
tionality of the final result to the number of degrees of
freedom in each case.

We did not compute the amount of scalar perturbations �
sourced in the fermionic case. However, we believe that also
in this case the result will be analogous to the one
that we have computed, and that therefore our conclusions
on the relative importance of gravity waves vs scalar pertur-
bations production apply for produced particles of any spin.

In this model, the vector field is massive after the pro-
duction, and it therefore also possesses a longitudinal
component. The results for this component are more model
dependent than those of the transverse components: they
depend on the specific choice of the potential U for c (the
results for the transverse component are independent of U
provided that it is smaller than the kinetic energy of c
during particle production). The longitudinal mode may
drive the theory out of perturbative regime when m /
c ðtÞ ! 0. We showed that this is avoided if the ratio 1

c �
dU
dc remains finite as c ! 0. This is, for instance, the case if

U � 1
2m

2
c c

2 at the origin. These considerations can be

relevant for all the models in which symmetries are en-
hanced at some point during the cosmological evolution.
For instance, we expect massive gauge modes to become
massless when different branes move to the same bulk
location as in the trapping mechanism of Ref. [79]. We
also found that for U � 1

2m
2
c c

2, the longitudinal compo-

nent is produced as much as each transverse component,
and sources the same amount of gravity waves, for the most
reasonable values of the mass mc .

Finally, it is worth pointing out that our study applies to a
single instance of particle production. Things may be
different in cases of multiple bursts of particle production;
for instance, if the potential U does not flatten at large c ,
so that c performs oscillations about its minimum, gauge
quanta will be produced at each oscillation, in a regime of
parametric resonance [19]. We have found that the gravity
wave signal can reach an interesting level if the parametric
resonance enhances the amount of produced quanta by a
factor of * 200��1 with respect to the single episode of
particle production (� being the slow roll parameter). It

would be interesting to study under which conditions this
value can be reached in a concrete model.
(2) Model II: The amount of gravity waves produced in

this model was already computed in Refs. [47–49]. The
novel computation in this work is the amount of scalar
perturbations produced in this model under the assumption
that the inflaton is only gravitationally coupled to the gauge
field, and the comparison of the two effects. We found that
coupling the inflaton only gravitationally sufficiently sup-
presses the amount of scalar modes generated in this
model, so that the limits from non-Gaussianity are irrele-
vant when compared to those from gravity waves.
Therefore, particle production in this model can lead to
gravity waves observable at the CMB scales. Differently
fromModel I, the gravity waves in this model are produced
at all scales, and not just with a localized bump. However,
this signal may be distinguishable from the vacuum one
since one gravity wave helicity is produced in a much
stronger amount than the other one, and this can lead
[49] to observable nonvanishing TB and EB correlations
in the CMB [75,76].
Reference [49] already studied whether the parity vio-

lation in the sourced gravity waves produced by this model
can be observed. Also in that case, the problem was to
suppress the non-Gaussianity of the scalar perturbations
produced by the gauge field [47]. This was overcome in
Ref. [49] by assuming the presence of �1000 sourcing
gauge fields, or the curvaton mechanism for the generation
of the scalar perturbations. It was shown in Ref. [49] that,
under these assumptions, and for some values of parame-
ters, the parity-violation signal can be above the 1� detec-
tion line for a cosmic-variance limited experiment [49]. We
have seen that in our implementation of the mechanism
(namely, by assuming that the gauge field is only gravita-
tionally coupled to the inflaton) the parity violation can, for
some choice of parameters, be observed already by the
ongoing/forthcoming Planck and SPIDER experiments.
We have seen that backreaction bounds from this

mechanism are under control for an axion scale f in the
interval 10�4Mp & f & Mp. Interestingly, the axion de-

cay constant one typically finds in string theory is of the
order of the grand unified theory scale f� 1016 GeV (see
e.g., Refs. [66,67]) which fits comfortably within this
window. Indeed, given the UV sensitivity of inflation, it
is natural to ask whether one can realize our model in
string theory. The low-energy spectrum of string theory
contains generically many axionlike particles, which
arise from the reduction of antisymmetric p-form fields
on p-cycles of the internal space.19 These closed string

19In addition to these closed string axionlike particles, there are
also open string axions but their presence is more model depen-
dent. For this discussion, we shall focus on closed string axions.
Moreover, we consider only those axions that are not projected
out by discrete symmetries (e.g., orientifolding) and do not
receive a Stuckelberg mass.
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axions have a pseudoscalar coupling cF ~F to Uð1Þ gauge
fields on the worldvolume of D-branes.20 In such string
theory setting, it is not difficult to find inflaton candidates
with no direct coupling to the axion-gauge field sector.
For example, the inflaton can be another axion; the ab-
sence of direct couplings to the hidden sector follows
from some topological and geometrical constraints.
Consider a basis of p-cycles �i, and their dual p-forms

!j such that
R
�i
!j ¼ �j

i . Two of such axions c ¼R
�i
Cp, ’ ¼ R

�j
Cp do not have kinetic mixing if

R
!i ^

�!j ¼ 0. The absence of direct inflaton-gauge field ’F ~F

coupling is ensured by
R
!i ^ ~!j ¼ 0, where ~!j is the

6-p form dual to !j, and F is the gauge field to which the

axion c couples. In fact, the shift symmetries enjoyed by
the axions may provide a natural explanation for why they
remain as the light dynamical fields during inflation. The
modest hierarchy of masses [see e.g., Eq. (117)] can be
reasonably accommodated without necessarily assuming
an ‘‘axiverse’’ [80].,21 though having a hierarchy of axion
masses offer more flexibilities. Clearly, more model
building possibilities (with the inflaton being an axion
or not) remain to be explored. We hope to return to such
string theory realizations in the future.
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Note added in proof.—After the completion of the
present manuscript, Ref. [86] appeared, studying the GW
produced by a scalar particle produced by the mechanism
of model I. Ref. [86] pointed out that a higher order term in
the expansion of T	� can provide a contribution to the

produced GW of comparable amount to the one computed
here and in Ref. [23]. This may change by an order one
factor the amount of GW produced in this model. The
result continues to be completely unobservable, so that
all the physical conclusions reached in the present work
remain valid.

APPENDIX A: ALONGITUDINALVECTOR MODE

In the model (26) the vector has also a longitudinal
mode, which was disregarded in the computations per-
formed in the main text. The longitudinal sector is actually
more subtle than the transverse one, as perturbation theory
may break down in the m ! 0 limit. This can be seen, for
example, from the action of the longitudinal modes, as we
now show.
Let us start by disregarding the perturbations of�, as we

do in the main text. Also, for simplicity, we disregard the
expansion of the universe. As we have discussed in the
main text, this is a good approximation as long as H �ffiffiffiffiffiffi

_m�
p

. Then the mass of the vector field is a classical
function of time, and the longitudinal mode is encoded in

A	ðxÞ ¼
Z d3k

ð2�Þ3=2 eix�kð ~A0; iki ~�Þ

) L 
 � 1

4
F2 �m2

2
A2

¼ 1

2
½k2j~�0j2 � k2 ~Ay

0 ~�
0 � k2 ~�0y ~A0 þ k2j ~A0j2

� k2m2j~�j2 þm2j ~A0j2�: (A1)

The component ~A0 is nondynamical (it enters in the action
without time derivatives) and it can be integrated out.
Namely, from (A1) we obtain the equation

~A 0 ¼ k2

k2 þm2
~�0: (A2)

Plugging this solution back into (A1) leads to the action of
the longitudinal mode

Slong ¼ 1

2

Z
dtd3k

�
j ~L0j2 �

�
k2 þm2 þ 3k2m02

ðk2 þm2Þ2

�m00

m

k2

k2 þm2

�
j ~Lj2

�
;

~L 
 kmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ~�: (A3)

The field ~L is the canonical field associated with the
longitudinal mode. We see that its equation of motion
has a term that formally diverges as m ! 0. 22 The formal
reason for the divergence is that the kinetic term for the
original longitudinal mode vanishes in this limit, as it
appears from the relation between ~L and ~� (A3). This is
not surprising, since a massless vector has only transverse
modes.
When, as in the present case, the Uð1Þ symmetry is

broken spontaneously, there is actually not a decrease of
the number of degrees of freedom when the classical

20Such couplings arise from the reduction of Chern-Simons
terms in the worldvolume action of D-branes, e.g.,

R
Dpþ4

Cp ^
F ^ ~F.
21See Refs. [81,82] for some string theory ways of generating a
logarithmic hierarchy of axion masses in an ‘‘axiverse.’’

22Clearly, the same equation of motion can also be obtained by
writing out the equations for the system in terms of the modes ~A0
and ~� and by eliminating ~A0 from these equations.
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background part �ð0Þ vanishes. The physical mass term in

the original action is obtained from L 
 e2j�ð0ÞðtÞ þ
��j2A2, and the quantity that we have denoted by m in the

main text is only related to the classical part, m2 

2e2j�ð0ÞðtÞj2. However, when �ð0ÞðtÞ ¼ 0, the fluctuations
of� cannot be disregarded, and one does not obtain a truly
massless vector mode at this point (compare this with what
would happen ifmwas a hard and time dependentmass in the
original theory; in this case there would be instead a discon-
tinuity in the number of degrees of freedom at m ¼ 0).

In short, a full study of the longitudinal sector would
require going beyond the linearized theory; this may also
affect the transverse sector, since all the sectors are coupled
to each other beyond the linearized level. Here we use a
simpler approach, and discuss under which conditions the
longitudinalmode does not blow up in the linearized theory;
if this is the case, then one can expect that dealing with the
full theory is unnecessary.We note that these considerations
apply for a general class of model in which symmetries are
enhanced at some point during the cosmological evolution.
For instance we expect massive gauge modes to become
massless when different branes move to the same bulk
location as in the trapping mechanism of Ref. [79].

Using the background equations of motion, the danger-
ous factor m00=m in the linearized computation (A3)
rewrites

m00

m
¼ ðac Þ00

ac
¼ a00

a
� a2U;c

c
’ �U;c

c
; (A4)

where the first two equations are exact, and in the final step
we instead disregard the expansion of the universe.

Therefore, the equation of motion of ~L remain finite
provided that U;c =c does not diverge. This could be, for

instance, the case for a quadratic potentialU� 1
2m

2
c c

2 for

c � 0. In our computations, we assumed a constant
_c ð0Þ 
 _m�

e , corresponding to c ð0Þ ¼ _m�
e ðt� t�Þ. As we

discussed in the main text, this implies that the gauge fields
are produced during the time interval �t� 1ffiffiffiffiffi

_m�
p around

t ¼ t�. Then, for a quadratic potential, imposing that the

potential energy gained by c ð0Þ during this interval is

smaller than its kinetic energy at t� (so that _c ð0Þ can indeed
be taken as constant) amounts in requiring mc � ffiffiffiffiffiffi

_m�
p

.

This also ensures that the period of oscillations of c ð0Þ is
much greater than the time in which particle production
takes place, so that one can indeed treat 
 and � as
constant when computing the amount of perturbations
sourced by the gauge modes.
Using (A3), we computed the occupation number of

longitudinal vector modes with U� 1
2m

2
c c

2, and mc �ffiffiffiffiffiffi
_m�

p
. We found that in this regime the longitudinal mode is

produced in essentially the same amount as each transverse
vector mode (for instance, we found that formc ¼ 0:1

ffiffiffiffiffiffi
_m�

p
the total number densities of the longitudinal and of one
transverse polarization differ from each other by less than
1%). We stress, however, that this conclusion is model
dependent, as the precise evolution of the effective fre-
quency in (A3) depends on the details of Uðc Þ. On the
contrary, the amounts of the transverse modes produced is
independent of U, provided that it remains sufficiently
smaller than the kinetic energy during the time of
production.
In the remainder of this Appendix we study the spectrum

of gravity waves produced in this model, once also the
longitudinal modes are taken into account. When all modes
are taken into account, we formally separate the energy
momentum tensor (41) of the vector field into TTT

	� þ
TLT
	� þ TLL

	�, where the first term is quadratic in the trans-

verse polarizations, and it is the only one used in the main
text, while the third term is quadratic in the longitudinal
polarization, and the second term is the ‘‘mixed term.’
Inserting the last two terms into (7), we obtain the two
contributions

JLT� ð ~kÞ ¼ ��
ij;�

aMp

ðk̂Þ
Z d3p

ð2�Þ3=2 2ipiM
2

�
� @ð1Þ� @ð2Þ�

p2 þM2
þ 1

�
~�ð ~pÞ ~Ajð ~k� ~pÞ

JLL� ð ~kÞ ¼ ��
ij;�

aMp

ðk̂Þ
Z d3p

ð2�Þ3=2 M
2pipj

�
� M2@ð1Þ� @ð2Þ�

½p2 þM2�½ðk� pÞ2 þM2� þ 1

�
~�ð ~pÞ~�ð ~k� ~pÞ

(A5)

to the gravity wave source in (6). These add up to the term JTT� , which is the only one studied in subsection III B of the main
text (where it is denoted simply by J�).

To obtain the total power spectrum, we need to evaluate the correlator h½JTT� þ JLT� þ JLL� ��1; ~k1½JTT�0 þ JLT�0 þ JLT�0 ��2; ~k2i
and insert it in (11). Each piece in J� is correlated only with the corresponding piece in J�0 .

Proceeding as in the main text, we obtain

hJLT� ð�1; ~kÞJLT� ð�2; ~k0Þi ’ 2

5�2M2
p

���0�ð3Þð ~kþ ~k0ÞMð�1Þ2
að�1Þ

Mð�2Þ2
að�2Þ

Z
dpp4

�
� �a1

p2 þM2
þ �a0

�
�1

�
�
� �b1

p2 þM2
þ �b0

�
�2

Cða;bÞ½�1; �2;p�Dða;bÞ½�1; �2;p� (A6)

and

BARNABY et al. PHYSICAL REVIEW D 86, 103508 (2012)

103508-24



hJLL� ð�1; ~kÞJLL� ð�2; ~k0Þi ’ 2

15�2M2
p

���0�ð3Þð ~kþ ~k0ÞMð�1Þ2
að�1Þ

Mð�2Þ2
að�2Þ

Z
dpp6

�
� M2�a1

ðp2 þM2Þ2 þ �a0

�
�1

�
�
� M2�b1

ðp2 þM2Þ2 þ �b0

�
�2

C2ða;bÞ½�1; �2;p�: (A7)

In these expressions we have introduced the correlators

h~�ð�1; ~p1Þ~�ð�2; ~p2Þi¼Cð0;0Þ½�1;�2;p1��ð3Þð ~p1þ ~p2Þ; (A8)

which evaluate to

Cð0;0Þ½�1; �2;p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ð�1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ð�2Þ

p
p2Mð�1ÞMð�2Þ

�DL
ð0;0Þ½�1; �2;p�; (A9)

where DL
ða;bÞ are formally identical to the Dð�Þ

ða;bÞ quantities
given in Eqs. (34) and (36), with the only difference that in
DL

ða;bÞ we use the Bogolyubov coefficients and the mode

functions of the longitudinal mode:

~Lð ~kÞ ¼ ½
L
k gk þ �L

k g
�
k�aL~k þ H:c:; (A10)

where aLk is an annihilation operator, and

gk
 e�i
R

�
d�0!Lð�0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!Lð�Þ
p ;

!L

�
k2þM2þ 3k2M02

ðk2þM2Þ2�
M00

M

k2

k2þM2

�
1=2

:

(A11)

As in the computation of hJTT� JTT�0 i presented in the

main text, the square of the correlators appearing in
(A6) and (A7) contain terms proportional to fast oscillating
phases, which give a negligible contribution to the final
result. Disregarding these terms, we obtain

hJLT� ð�1; ~kÞJLT� ð�2; ~k0Þi’ ����0

20�2M2
p

�ð3Þð ~kþ ~k0Þ

�
Z
dpp6Re½
p


L�
p ��

p�
L
p

�Qð�1ÞQð�2Þ�j�pj2j�pj2
�Qð�1ÞQ�ð�1Þ�; (A12)

where

Qð�Þ 
 1

aM

�
2M0

M2
� 3iM02

M4
þ iM00

M3

�
(A13)

and

hJLL� ð�1; ~kÞJLL� ð�2; ~k0Þi ’ ���0

15�2M2
p

�ð3Þð ~kþ ~k0Þ

� 1

aMð�1Þ
1

aMð�2Þ
�
Z

dpp6j�L
pj2ðj
L

pj2 þ j�L
pj2Þ:
(A14)

In these expressions, we have retained only the dominant
contributions to the!L in the adiabatic regime (namely, we
have used M0 � M2 and M00 � M3). As in the computa-
tion of the main text, the terms without oscillatory phases
are of Oðp6Þ, as a consequence to a cancellation of the
would be dominant terms in the transverse and traceless
projection of the energy-momentum tensor. This cancella-
tion is already visible in (A6) and (A7), see the discussion
after the analogous expression (63) presented in the main
text.
We see that the mixed term (A12) is suppressed in the

adiabatic regime and can be disregarded. From the (A14)
we instead obtain

P�;sjfrom AL
’ 2k3

15�4a2M4
p

~T
2
k

Z
dpp6j�L

pj2ðj
L
pj2 þ j�L

pj2Þ;

(A15)

where ~T k is defined in (67). This contribution adds up to
the one of the transverse modes leading to the result (72)
given in the main text.

APPENDIX B: SOURCE FOR � IN MODEL I

In this Appendix, we derive the approximated expres-
sion (48) for the scalar source in Model I. The source we
are interested in is the part of (47) that depends on the
gauge field. From the three terms at the rhs of (45) we
obtain, respectively,

J½A2
	� ¼ J1ð�; ~kÞ þ J2ð�; ~kÞ þ J3ð�; ~kÞ

J1ð�; ~kÞ ¼ � _’ð0Þ

4M2
pHað�Þ

Z d3p

ð2�Þ3=2
~A0
ið�; ~pÞ ~A0

ið�; ~k� ~pÞ;

(B1)
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J2ð�; ~kÞ ¼ _’ð0Þ

2M2
pHað�Þ

1

k2

�
Z d3p

ð2�Þ3=2 @�½piki ~Ajð�; ~pÞ ~A0
jð�; ~k� ~pÞ

� kikj ~Aið�; ~pÞ ~A0
jð�; ~k� ~pÞ�; (B2)

J3ð�; ~kÞ ¼ � M2 _’ð0Þ

4M2
pHað�Þ

Z d3p

ð2�Þ3=2
~Aið�; ~pÞ ~Aið�; ~k� ~pÞ:

(B3)

In the part J1 we have actually disregarded the ‘‘magnetic’’
contribution with respect to the ‘‘electric’’ one.23 The
relative contribution between the two terms in the inte-

grand is B2

E2 � ~A02
~A2 � k2;kp;p2

M2 . The quantity k is the momentum

of the cosmological perturbations that we are computing;
we show in the main text that the signal from particle
production is maximal at k�H (we recall that the scale
factor is normalized to one at the moment of particle
production). We also show in the main text that the source
integrand is peaked at p� ffiffiffiffiffiffi

_m�
p

. We therefore have k � p
due to (30). Finally M ¼ am � m � ffiffiffiffiffiffi

_m�
p

after the parti-
cle production has taken place. As a consequence p � M
and the magnetic contribution can indeed be disregarded.

We perform the time derivative in J2 and eliminate
the second derivative through the equation of motion
~A00
i ’ �M2 ~Ai. We obtain

J2 ’
_


2M2
pHa

1

k2

Z d3p

ð2�Þ3=2 ð
~k � ~p�ij � kikjÞ

� ½ ~A0
ið ~pÞ ~A0

jð ~k� ~pÞ �M2 ~Aið ~pÞ ~Ajð ~k� ~pÞ�: (B4)

We rewrite (B4) changing the integration variable ~p !
~k� ~p. We add the resulting expression to (B4) and divide
by two. We obtain

J2 ’
_


2M2
pHa

�
1

2
�ij � k̂ik̂j

�Z d3p

ð2�Þ3=2 ½
~A0
ið ~pÞ ~A0

jð ~k� ~pÞ

�M2 ~Aið ~pÞ ~Ajð ~k� ~pÞ�: (B5)

It is worth noting that this expression explicitly shows
that J2 does not diverge in the k ! 0 limit. This is not
immediately obvious from the original expression, since J2
originates from the term with an inverse Laplacian in (45).

Adding this expression for J2 to the expression for J1
and J3 given above, one readily obtains the result (48)
given in the main text.

APPENDIX C: SOURCE FOR � IN MODEL II

In this Appendix, we derive the expression (101) for the
scalar source in Model II. In Eq. (99) we separated the
source in the two parts J1 þ J2.
In Fourier space we have the relatively simple

expression

J1ð�; ~kÞ ¼ � ’0ð0Þa3

4M2
pH

Z d3p

ð2�Þ3=2 ½
~Eið�; ~pÞ ~Eið�; ~k� ~pÞ

þ ~Bið�; ~pÞ ~Bið�; ~k� ~pÞ�; (C1)

for the first part. For the second part, we have instead

J2ð�; ~kÞ¼ ’0ð0Þ

2M2
pHa

1

k2

Z d3p

ð2�Þ3=2@�½piki ~Ajð�; ~pÞ

� ~A0
jð�; ~k� ~pÞ�kikj ~Aið�; ~pÞ ~A0

jð�; ~k� ~pÞ�: (C2)

Some manipulations are instead necessary to put the non-
local source term J2 in a form that is amenable to compu-
tations and is manifestly infrared finite. We begin by noting

that ~Ai effectively only contains the ‘‘þ’’ helicity state in
this model. This allows us to use the identity

kikj�
ðþÞ
i ð ~pÞ�ðþÞ

j ð ~k� ~pÞ ¼ ½pj ~k� ~pj þ ð ~k� ~pÞ � ~p�
� �ðþÞ

i ð ~pÞ�ðþÞ
i ð ~k� ~pÞ; (C3)

to simplify the tensor structure in the second term of (C2),
and re-write J2 as

J2ð�; ~kÞ ¼ ’0ð0Þ

2M2
pHa

1

k2

Z d3p

ð2�Þ3=2 p½p� j ~k� ~pj�

� @�½ ~Aið�; ~pÞ ~A0
ið�; ~k� ~pÞ�: (C4)

Next we perform the time derivative and use the equation

of motion (88) to eliminate ~A00 which gives the result

J2ð�; ~kÞ ¼ ’0ð0Þa3

2M2
pH

1

k2

Z d3p

ð2�Þ3=2 ðj
~k� ~pj � pÞ

�
�
�p ~Eið�; ~pÞ ~Eið�; ~k� ~pÞ þ

�
j ~k� ~pj þ 2�

�

�
� ~Bið�; ~pÞ ~Bið�; ~k� ~pÞ

�
: (C5)

We rewrite (C5) changing the integration variable

~p ! ~k� ~p. We add the resulting expression to (C5) and
divide by two. We obtain:

J2ð�; ~kÞ ¼ ’0ð0Þa3

4M2
pH

Z d3p

ð2�Þ3=2
ðp� j ~k� ~pjÞ2

k2

� ½ ~Eið�; ~pÞ ~Eið�; ~k� ~pÞ þ ~Bið�; ~pÞ
� ~Bið�; ~k� ~pÞ�: (C6)

We note that this expression is manifestly finite in the limit
k2 ! 0, proving that the nonlocal source term in (99) does
not lead to any spurious effects in the infrared.

23An analogous simplification cannot be done for the source of
gravity waves, since in this case the dominant term cancels.
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Adding (C1) and (C6) leads to the expression (101)
reported in the main text.

APPENDIX D: FERMIONIC PRODUCTION
AND GRAVITY WAVES

In this Appendix, we outline the computation of gravity
waves produced by a fermion with a mass varying as in
Model I studied in the main text. If we denote by X the

fermion in the original action, and we rescale, � ¼ Xa3=2,
the action for the fermion field becomes identical to the one
of a massive fermion in Minkowski spacetime, whose mass
is multiplied by the scale factor

Sf ¼
Z

d4x ��½i�	@	 �MðtÞ��;
M ¼ gaðtÞ½c ð0ÞðtÞ � c ��:

(D1)

As in the main text, c ð0Þ is a homogeneous classical field
that evaluates to c � at some given moment t� during
inflation, while g is the coupling of the Yukawa interaction
in the original action. Without loss of generality we can
choose c � ¼ t� ¼ 0. As in the main text, we consider a
regime in which the expansion of the universe can be
disregarded during the particle production, and we expand

gc ð0ÞðtÞ 
 _m�t; t ’ 0: (D2)

We instead include the expansion of the universe when we
study the amount of gravity waves sourced by the fermi-
onic quanta produced at t ’ 0.

The fermionic production in this model was studied
in Refs. [83,84] for reheating after inflation and lepto-
genesis, and in Ref. [40] for the imprint on the scalar
power spectrum. Here we follow the computations of
Refs. [84,85], skipping some intermediate steps. We refer
the reader to those works for details. One decomposes 24

� ¼
Z d3k

ð2�Þ3=2 ei
~k� ~x ~�ð�; ~kÞ;

~�ð�; ~kÞ ¼ X
r

½Urð�; ~kÞarð ~kÞ þV rð�;� ~kÞbyr ð� ~kÞ�;
(D4)

where, for ~k aligned along the z-axis,

Urð�; kzÞ ¼ 1ffiffiffi
2

p Uþð�; kÞc r

U�ð�; kÞrc r

 !
;

V rð�;�kzÞ ¼ 1ffiffiffi
2

p �Vþð�; kÞc�r

�V�ð�; kÞrc�r

 !
;

(D5)

where

cþ ¼ 1
0

� �
and

c� ¼ 0
1

� �
:

The spinor V is related to U by charge conjugation,
giving V�ð�; kÞ ¼ U�	ð�; kÞ.
It is convenient to decompose the spinors in terms

of the Minkowski solutions (more precisely, the adiabatic
solution, since in the current case M is not constant)

U�ð�; kÞ ¼ 
ðtÞf�ð�; kÞ 	 �ðtÞf�	ð�; kÞ;

f�ð�; kÞ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

E

s
e
�i
R

�

��
d�0E

(D6)

and E 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. Starting from � ¼ 0 at asymptoti-

cally early times and using (D2), one finds at late times
(see, for instance, Ref. [84] for the computation)


ðt � 0Þ ’ 2
ffiffiffiffi
�

p
q

eiq
2=2 ei�=4

�
qffiffiffi
2

p
��iq2 e��q2=4

�ð�iq2

2 Þ
;

�ðt � 0Þ ’ �e��q2=2; q 
 kffiffiffiffiffiffi
_m�

p :
(D7)

As in the bosonic case, j�j2 is the occupation number, and
Pauli blocking is ensured by the fact that, in the fermionic
case, the Bogolyubov coefficients satisfy j
j2 þ j�j2 ¼ 1.
To compute the gravity waves produced by these quanta,

we proceed as in the main text, and obtain the formal
solution (10) for the sourced part Q�;s of the canonical

gravity wave modes introduced in (5). Using the fermionic
energy-momentum tensor

T	�¼ i

4a2
½ ���	@��þ ����@	��ð@	 ��Þ����ð@� ��Þ�	��;

(D8)

we can cast the source appearing in (10) in the form

J�ð�; ~kÞ ¼ 1

2aMp

��
ij;�ðk̂Þ

Z d3p

ð2�Þ3=2
�~�ð�; ~pÞð�ipj þ �jpiÞ

� ~�ð�; ~kþ ~pÞ: (D9)

After Wick contraction, the correlator of two sources
acquires the form

hJ�ð�; ~kÞJ�0 ð�0; ~k0Þi¼ 1

M2
pað�Það�0Þ

��
ij;�ðk̂Þ��

lm;�0 ðk̂0Þ

�
Z d3pd3p0

ð2�Þ3 tr½�ipjh~�ð�; ~kþ ~pÞ
� �~�ð�0; ~p0Þi�lp0mh �~�ð�; ~pÞ
� ~�ð�0; ~k0 þ ~p0ÞiT�; (D10)

24We use

�0 ¼ 1 0
0 �1

� �
; �i ¼ 0 �i

��i 0

� �
(D3)

and, only in this Appendix, we switch to þ, �, �, � signature.
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where the transposition acts on the spinor indices. The correlators appearing in this expression need to be regularized. We
adopt the same prescription adopted in Sec. III for the vector field correlators. Namely, we normal order the fields
appearing in the correlators with respect to the time dependent operators

âð ~kÞ 
 
að ~kÞ � ��byð� ~kÞ
b̂yð� ~kÞ 
 �að ~kÞ þ 
�byð� ~kÞ

(D11)

that diagonalize the Hamiltonian at any given time. We then recall that the vacuum of the theory is annihilated by the
original time-independent a and b operators. After some algebra, we obtain

h:~�ð�; ~kþ ~pÞ �~�ð�0; ~p0Þ:i ¼ �ð3Þð ~p0 � ~p� ~kÞ C11½�; �0;p0�1 C12½�; �0;p0� ~� � p̂0

C21½�; �0;p0� ~� � p̂0 C22½�; �0;p0�1

 !

¼ �ð3Þð ~p0 � ~p� ~kÞ
�
C11 þ C22

2
1þ C11 � C22

2
�0 þ C12 þ C21

2
�0 ~� � p̂0 þ C12 � C21

2
~� � p̂0

�
h �~�ð�; ~pÞ~�ð�0; ~k0 þ ~p0ÞiT ¼ �ð3Þð ~p� ~p0 � ~k0Þ �C22½�; �0;p�1 C�21½�; �0;p� ~� � p̂

C�12½�; �0;p� ~� � p̂ �C11½�; �0;p�1

 !
; (D12)

where, when particle creation has completed, and (D7) holds,

C11½�; �0;p0� ¼ 1

2
f�j�j2½fþð�; p0Þf�þð�0; p0Þ � f��ð�; p0Þf�ð�0; p0Þ� � 
��fþð�; p0Þf�ð�0; p0Þ � 
��f��ð�; p0Þf�þð�0; p0Þg

C12½�; �0;p0� ¼ 1

2
fj�j2½fþð�; p0Þf��ð�0; p0Þ þ f��ð�; p0Þfþð�0; p0Þ� � 
��fþð�; p0Þfþð�0; p0Þ þ 
��f��ð�; p0Þf��ð�0; p0Þg

C21½�; �0;p0� ¼ �C�12½�; �0;p0� C22½�; �0;p0� ¼ C�11½�; �0;p0�: (D13)

We insert these expressions into (D10). We evaluate the trace and (as in the analogous computation of the main text)

disregard ~k and ~k0 in comparison to ~p and ~p0. The d3p0 integral can be performed using one � function. We perform the
angular part of the remaining d3p integral. Finally, we use the property of the polarization operators �ij. We obtain

hJ�ð�; ~kÞJ�0 ð�0; ~k0Þi ¼ 2

15�2

�ð3Þð ~kþ ~k0Þ���0

M2
pað�Það�0Þ

Z
dpp4 Re½5C211 þ C212�: (D14)

Squaring the correlators, we have

C 2
11 ¼ j�j2ðj
j2 � j�j2Þ p2

2Eð�ÞEð�0Þ þ oscillatory phases; C212 ¼ �C211 þ oscillatory phases; (D15)

and we see that the nonoscillatory part of the integrand in (D14) is of Oðp6Þ as in the vector case studied in the main
text. The oscillatory part gives a negligible contribution to the tensor power. Combining this result with (11) and (20) we
obtain

P�;s ’ 8k3

15�4a2M4
p

~T 2
k

Z
dpp6j�j2ðj
j2 � j�j2Þ; (D16)

where ~T k is defined in (67).
Inserting the result (68) for this quantity, and performing the momentum integral, gives

P�;s ’ ð8� ffiffiffi
2

p ÞH4 _m3=2
�

16�7M4
pk

3

�
sin

�
k

H

�
� k

H
cos

�
k

H

��
2
ln2
� ffiffiffiffiffiffi

_m�
p
H

�
; k � ffiffiffiffiffiffi

_m�
p

; (D17)

while the result is exponentially suppressed at higher momenta.
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