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Markov models and master equations are a powerful means of modeling dynamic processes like pro-
tein conformational changes. However, these models are often difficult to understand because of the
enormous number of components and connections between them. Therefore, a variety of methods
have been developed to facilitate understanding by coarse-graining these complex models. Here, we
employ Bayesian model comparison to determine which of these coarse-graining methods provides
the models that are most faithful to the original set of states. We find that the Bayesian agglomerative
clustering engine and the hierarchical Nystrom expansion graph (HNEG) typically provide the best
performance. Surprisingly, the original Perron cluster cluster analysis (PCCA) method often provides
the next best results, outperforming the newer PCCA+ method and the most probable paths algo-
rithm. We also show that the differences between the models are qualitatively significant, rather than
being minor shifts in the boundaries between states. The performance of the methods correlates well
with the entropy of the resulting coarse-grainings, suggesting that finding states with more similar
populations (i.e., avoiding low population states that may just be noise) gives better results. © 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812768]

. INTRODUCTION

Discrete-time Markov models and their continuous time
counterparts, master equation models, are powerful tools for
modeling many biological processes. These models consist
of a set of states and a matrix of transition probabilities (or,
equivalently, transition rates) between every pair of states. For
example, Markov state models are an increasingly popular
means of describing molecular processes, ranging from the
folding and function of small proteins'~® to conformational
changes in large cellular machines.”-® These models consist
of a set of conformational states—each containing a set of
rapidly mixing conformations—and a transition probability
matrix (7) specifying the probabilities for jumping between
every pair of states in some fixed time interval, called the
lag time of the model. These models are typically constructed
by running extensive molecular dynamics simulations, finely
clustering the resulting data to identify states, and inferring
a transition probability matrix from a transition count matrix
(C) obtained by counting the number of transitions observed
between every pair of states within one lag time.

Markov models and master equations can quantitatively
describe many processes; however, they are often far too com-
plex to understand. For example, Markov state models of pro-
tein folding that are capable of quantitative agreement with
experiment often require tens of thousands of conformational
states. Examining each of these states and the probabilities
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of jumping between them would be a daunting task. There-
fore, it is often desirable to coarse-grain these models to ob-
tain a more manageable state-space—say, with 10-100 states.
Building such coarse-grained models may require sacrificing
some of the original model’s quantitative accuracy. However,
they can greatly facilitate the formulation of new hypotheses
that can then be tested with the original model and, ultimately,
via experiment. A number of methods have been developed
for building such coarse-grained models, raising the question
of which method is the best.

Here, we employ Bayesian model comparison’ to quanti-
tatively assess the relative merits of a number of methods for
coarse-graining Markov state models: the Bayesian agglom-
erative clustering engine (BACE),' the hierarchical Nystrom
expansion graph (HNEG),!"!? the most probable paths (MPP)
algorithm,13 Perron cluster cluster analysis (PCCA),'*16 and
a more robust variant of PCCA that is called PCCA+."” We
also apply a number of other metrics to assess how different
the outputs of these various methods really are and what qual-
ities lead to better performance. We focus on Markov state
models for conformational changes in three example proteins
(Fig. 1), however, the results should generalize to other appli-
cations of Markov models and master equation models.

Il. METHODS
A. PCCA

Motivation: PCCA was one of the earliest methods pre-
sented for coarse-graining Markov state models.'*'¢ The de-
velopment of PCCA was motivated by the idea that there

© 2013 AIP Publishing LLC
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should be a separation of timescales between slow transitions
between different free energy basins and more rapid equi-
libration within a single basin. If such a separation exists,
states within the same free energy basin should have rela-
tively high transition probabilities to one another compared
to much lower transition probabilities to states in other free
energy basins. As a result, the transition probability matrix
should have a block structure (where each block corresponds
to a set of states in the same basin). This block structure can
be identified from the spectral decomposition of the transition
probability matrix.

Overview of the method: Given an initial Markov model
with N states, one first chooses a number M (with M < N)
of coarse-grained states to create (the choice of M is dis-
cussed below). One then solves for the M largest eigenval-
ues/eigenvectors of the original transition probability matrix.
Each eigenvalue (X;) corresponds to the fraction of the to-
tal population that does not undergo some dynamic process,
which is described by the corresponding eigenvector (g;).
Specifically, it is a process in which transitions occur between
states with positive eigenvector components and states with
negative eigenvector components. The first eigenvalue (Ag)
and its corresponding eigenvector are always ignored as they
simply describe the equilibrium properties of a system rather
than any dynamic process. Subsequent eigenvectors are used
to coarse-grain the state space, as described below.

Procedure:

1. Initially assume that all of the original states are merged
into one coarse-grained state.

2. Identify the coarse-grained state with the largest spread
in the components of the eigenvector corresponding to
the next largest eigenvalue (A > A, > - -+ > Ay).

3. Split that coarse-grained state into two by separating
states from the original model with positive eigenvector
components from those with negative components.

4. Repeat steps 2 and 3 until the desired number of coarse-
grained states is achieved.

Choosing the number of states: The number of coarse-
grained states (M) has often been chosen based on the exis-
tence of a gap in the eigenvalue spectrum of the transition
probability matrix.'*1%-22 Specifically, a large gap separating
the M — 1 largest (i.e., slowest timescale) eigenvalues from
the remaining eigenvalues suggests the existence of M free
energy basins that are separated by large free energy barriers
(compared to smaller internal barriers). However, the choice
of M is generally very subjective. There is often a continuum
of eigenvalues, so more recently it has become common to
treat the number of states as an adjustable parameter.

Code: PCCA is implemented in the MSMBUILDER
package,’*?* available at https://simtk.org/home/msmbuilder,
and the EMMA package,? available at https://simtk.org/home/
emma.

B. PCCA+

Motivation: PCCA+ was developed to correct for some
of the pitfalls of PCCA.!” Specifically, states that do not
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strongly participate in a given eigenmode will have eigenvec-
tor components near zero, and the sign can vary depending
on finite sampling effects. Therefore, PCCA will arbitrarily
group these states with either the group of states with posi-
tive eigenvector components or the group of states with neg-
ative eigenvector components. This can lead to compound-
ing errors as PCCA sequentially considers each eigenvector.
PCCA+ aims to avoid such errors by simultaneously consid-
ering all the relevant eigenvectors to identify the best set of
coarse-grained states.

Overview of the method: Like PCCA, PCCA+ uses the
eigenspectrum of the transition probability matrix to identify
the underlying block structure. However, instead of consid-
ering each eigenvector sequentially, PCCA+ identifies a set
of indicator-functions that serve as a basis set for g; to gy.
These functions must be either O or 1 for each of the original
states, so they can be interpreted as membership functions for
M coarse-grained states. By considering the M — 1 eigenvec-
tors simultaneously instead of sequentially, it is hoped that
PCCA+ can better deal with states that do not participate
strongly in some of the eigenmodes.

Procedure:

1. For each state j, construct a vector v; where element i is
the entry for that state in the eigenvector g;.

2. Use the Gram-Schmidt algorithm to identify a set of M
representative states that have the most distinct vectors
from {v;}.

3. Assign each of the remaining states to the representative
state that its v; is most similar to.

4. Refine the coarse-graining by moving states to al-
ternative coarse-grained states to maximize either the
metastability or the crispness. The crispness is a mea-
sure of how much more likely a state is to be part of
the coarse-grained state it is assigned to than any other
coarse-grained state (see Ref. 21 for details).

Choosing the number of states: The number of states is
chosen in the same manner as for PCCA.

Code: PCCA+ is implemented in the MSMBUILDER
package,’>?* available at https://simtk.org/home/msmbuilder,
and the EMMA package,? available at https://simtk.org/home/
emma.

C. HNEG

Motivation: One issue with PCCA and PCCA+ is that
they tend to identify poorly sampled states as being kinetically
distinct from their neighbors.'?> Therefore, these states are
often preserved in the coarse-grained model even though
manual inspection strongly suggests that they are likely
just improbable excursions from more thoroughly sampled
states—for example, the state may be observed only once (or
a few times), only have transitions to/from one other state, and
be extremely structurally similar to the single state it transi-
tions to/from. HNEG attempts to solve this problem by plac-
ing more emphasis on well-sampled states than poorly sam-
pled states.'!:!> Physically, this is done by trying to identify
the bottoms of free energy basins (which are better sampled
than other regions of conformational space since they have
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higher statistical weight) and then assigning other regions of
conformational space to the basin bottom they can transition
to most easily (suggesting they belong to that basin).
Overview of the method: Formally, HNEG is based on
the Nystrom method and its multilevel extensions, which al-
low us to approximate the transition probability matrix with
its dominant submatrix. Using the Nystrom approximation,
the eigenvectors of the submatrix A containing the most com-
mon states (i.e., where the entries of A are significantly larger
than those of B or C) are shown to contain the same sign struc-
ture as the eigenvectors of the whole transition probability

matrix P:!!
A B
P = |:BT C:|. (1)

That is, the components of the eigenvectors of the two
matrices have the same sign, suggesting that both provide
insight into the same set of underlying free energy basins.
Therefore, we can obtain the state decomposition based on
the eigenvectors of the submatrix A using PCCA or PCCA+.
In order to define the boundary between A and C, a multiscale
procedure is used, as described below.

Procedure:

1. Sort the original N states (where s; is a state and p;
is its population) from the most populated to the least
populated: {si, s2, ..., sy} with pg, > ps, > -+ > pq,,
where p;, = ng,/Nioral, N, 1S the number of conforma-
tions in state s; and 7,y 1S the total number of confor-
mations. Next, we divide these N states into m super-
level-sets: Py, Py, ..., P,. Each super level (P;) consists
of a set of most populated states ({si,s2,..., Sy }),
where n; is the number of states in the super level P; and
23;1 ps; < Pi. Typically, P, is less than 1, so that the
least populated states are ignored until the final stages of
the algorithm.

2. Apply PCCA to each super-level-set.

3. Arrange the resulting groupings of states as a graph with
edges pointing from groupings in one super-level-set P;
to those in the next set with higher populations (P; + 1).
An edge is added if a pair of groupings in adjacent super-
level-sets have nonempty intersections (i.e., share one or
more common states).

4. Assign all states to leaf-nodes—groupings with no edges
pointing to more highly populated nodes that correspond
to a basin of attraction—by assigning all groupings to
the grouping in the next super-level-set they have the
highest transition probability to.

5. Assign the states that reside between P, and 1 to the
leaf-node they have the highest transition probability to.

6. Consider all states assigned to the same leaf-node (i.e.,
attraction basin) to the same coarse-grained state.

Choosing the number of states: There are many possi-
ble choices of the super-level-sets, each of which could result
in different coarse-grainings (and even different numbers of
coarse-grained states). How best to make these choices is still
an open research question and the answer is likely system-
dependent since the topology of the free energy landscapes
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will vary for different proteins. Currently, we suggest varying
the super-level-sets systematically to produce a large num-
ber of lumpings and then selecting the optimal one using the
Bayes factor criteria. For example, one may construct super
levels by selecting different values of P, and P,,, or different
number of levels m.!" This helps guide the selection of the
number of coarse-grained states; however, there is still some
subjectivity since PCCA is applied to each level set. Another
potential drawback is that the user has less control over the
final number of states than in other methods.

Code: The HNEG code is available for download at
https://simtk.org/home/hneg.

D. BACE

Motivation: The BACE method was also developed to
place more emphasis on better sampled states so that poorly
sampled states do not dominate the coarse-grained model.
This is done in a formal (and automated) fashion by draw-
ing on Bayesian statistics. Physically, BACE identifies coarse-
grained states by finding sets of states that have the same
kinetics (i.e., transition probabilities to other states), within
statistical uncertainty. This is a reasonable way to find coarse-
grained states because two states in the same free energy basin
should have to cross the same free energy barriers when tran-
sitioning to other states.

Overview of the method: BACE will only separate two
states into different coarse-grained states if there is clear sta-
tistical support for their being in different basins of attraction.
States that are clearly similar based on the statistics gathered
are grouped together and highly uncertain states are grouped
with their most similar neighbor. Formally, the similarity be-
tween two states is quantified by the BACE Bayes factor

P(different|C)

QC,D i CD . s 2
P(same|C) (Pillg) + C;Dpjlg),  (2)

where C is the transition count matrix, C‘,- is the number of

transitions observed from state i, D(p;|lq) = Zk pix log %
is the relative entropy between probability distribution p; and
q, pi 1s a vector of maximum likelihood transition probabili-
Cipi+Cipj -

By is the vector
of expected transition probabilities from combining states i

and j.

ties from state i (p;; = %), and g =

Procedure:

1. Calculate the BACE Bayes factor for every pair of con-
nected states using Eq. (2).

2. Identify the pair of states with the smallest Bayes factor
(i.e., the states that are most likely to have come from the
same underlying distribution) and merge them by sum-
ming their transition counts.

3. Update the Bayes factors comparing the new merged
state and every other state it is connected to, again us-
ing Eq. (2).

4. Repeat steps 2 and 3 until only two states remain.

Choosing the number of states: For a model with N
states, BACE will construct a series of coarse-grained mod-
els with M =N — 1, N — 2, ..., 2 states. There are a
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number of ways to choose which of these models warrant fur-
ther investigation, depending on the users’ objective. The best
way to choose is by tracking the Bayes factor between the
two most similar states as BACE progressively merges states
together. A model with M coarse-grained states may be of par-
ticular interest if there is a large increase in this Bayes factor
when performing the next merger into M — 1 states because
this jump suggests that two very similar states will be merged
if one coarse-grains further. One could also choose M such
that no two states have a Bayes factor above some threshold
to ensure a certain level of statistical confidence.

Code: The BACE code is available through the MSM-
BUILDER package?®?* at https://simtk.org/home/msmbuilder
and https://sites.google.com/site/gregoryrbowman/.

E. MPP

Motivation: Like HNEG, the MPP algorithm aims to
find states that are at the bottoms of free energy basins and
then assign other states to the basin they are most likely to fall
into."3

Overview of the method: For each state, the MPP al-
gorithm finds the path a molecule starting in that state is most
likely to take (the most probable path). A state is then grouped
with the most probable state along its most probable path.

Procedure: The algorithm works as follows:

1. Calculate the most probable path for each of the initial
states ().
(a) Initialize the path to [i].
(b) Find the state (k) that the last state in the
path (j) has the highest transition probability to
(k = argmax,,(T;»)), where T is the transition prob-
ability matrix). Only allow k = j if Tj; > Q,i,, Where
Oumin 1s a user-defined parameter specifying the mini-
mum allowable self-transition probability for the end-
state of a most probable path.

(c) Update the most probable path to [i,..., j, k] by
adding k.
2. Assign each state to the most probable state along its
most probable path.

3. Group all the states assigned to the same end state to the
same coarse-grained state.

Choosing the number of states: The number of coarse-
grained states produced by this algorithm can be varied by
adjusting Q.- We chose Q,,;, to force the number of coarse-
grained states to match HNEG. One could also choose Q,in
based on physical considerations and allow the algorithm to
automatically determine the number of coarse-grained states.

Code: The MPP code is not currently available on the
web.

F. Model and simulation details

The model for the 1-residue alanine dipeptide was taken
from Ref. 11. It has 5000 states and a lag time of 9 ps.
The model was built with the data from Ref. 26 using MSM-
BUILDER 1.0.%* Nine hundred seventy five simulations were
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Alanine Villin
dipeptide headpiece

Sl >

FIG. 1. Structures of the 1-residue alanine dipeptide (all-atom), the
35-residue villin headpiece (ribbon),'® and the 263-residue S-lactamase
(ribbon).!” Structures were drawn with PyMOL.?°

B-lactamase

performed with GROMACS.?” Each trajectory is 20 ps long,
with conformations stored every 0.1 ps. Further details on the
model construction and validation are available in Ref. 11.

The model for the 35-residue villin headpiece was taken
from Ref. 28. It has 10000 states and a lag time of 15 ns.
The model was built with the data from Ref. 29 using MSM-
BUILDER 1.0.%} Five hundred simulations were performed
with GROMACS deployed on the Folding@home distributed
computing environment.?’»?>3% The Amber03 force field’!
and Tip3p explicit solvent were used. Each trajectory is up
to 2 us long, with conformations stored every 50 ps. Further
details on the model construction and validation are available
in Ref. 28.

The model for the 263-residue B-lactamase was taken
from Ref. 32. It has 5152 states and a lag time of 2 ns.
The model was built with the data from Ref. 32 using MSM-
BUILDER 2.0.>%2% One thousand simulations were performed
with GROMACS deployed on the Folding@home distributed
computing environment.?”-?%3% The Amber03 force field®'
and Tip3p explicit solvent were used. Each trajectory is up to
320 ns long, with conformations stored every 100 ps. Further
details on the model construction and validation are available
in Ref. 32.

The coarse-grained models for the alanine dipeptide,
villin, and B-lactamase have 5, 83, and 21 states, respectively.
These are the numbers of states selected with the HNEG
method and were chosen because of the physical motiva-
tion this method provides for choosing the number of coarse-
grained states and because tuning the number of states is more
straightforward with the other methods.

For HNEG, we selected 100 different super-level-sets for
the alanine dipeptide system ({P;, P>, ..., P, }), where P,
= 0.2. We varied P,, to be P,, € {0.80, 0.82, ..., 0.96, 0.98}.
For each pair of (P, P,,), we generated super-level-sets with
m levels by equally dividing between P; and P,,, where m
€{2, 4,6, ..., 16, 18, 20}. For villin and B-lactamase, we
selected 400 super-level-sets. Specifically, P; € {0.20, 0.25}
and P,, € {0.50, 0.55, 0.60, ..., 0.85, 0.90, 0.95}. For each
pair of (py, pp), m €{2,4,6, ...,36,38,40}.

lll. RESULTS

To assess the relative performance of the coarse-graining
methods examined here, we applied each of them to a range
of systems from the 1-residue alanine dipeptide to the 263-
residue protein B-lactamase. We chose to include the alanine
dipeptide as part of our test set because it is small enough
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to sample thoroughly and is often used as a test case for
new methods. Another reason it is a favorite test case is that
there are two primary degrees of freedom, so one can mean-
ingfully assess the performance of a method by examining
projections of the free energy surface onto these order pa-
rameters. However, we do not take advantage of this prop-
erty here since all of the methods perform reasonably well
on this system. We also applied each method to a model of
the folding of the 35-residue villin headpiece protein. This
protein is far more complex than the alanine dipeptide but
still small enough to sample thoroughly (albeit with exten-
sive computational resources), so it provides a more realistic
test system. Finally, we have applied each method to a model
of dynamics within the folded state of the 263-residue pro-
tein B-lactamase. This model is of interest for our purposes
because we certainly do not sample structures that are rep-
resentative of the entire conformational space. With 80 us
of simulation, we observe many local fluctuations from the
crystallographic structure that are of interest for understand-
ing aspects of protein function like allosteric communication.
However, B-lactamase folding and unfolding occur on sec-
onds and slower timescales, so we do not observe these large-
scale conformational changes. Given how diverse these data
sets are in terms of the specific application and the amount of
sampling, we expect trends from this range of systems to be
representative of the type of performance one can expect for
other systems.

To make a fair comparison between different methods,
we built models with the same number of coarse-grained
states with each method. In general, it is difficult to choose an
“optimal” number of coarse-grained states. For example, one
of the standard methods for choosing the number of coarse-
grained states depends on the presence of a gap in the eigen-
value spectrum of the transition probability matrix that sug-
gests a separation of timescales between intrastate relaxation
and interstate transitions. However, complicated protein sys-
tems often do not have such a gap. The appropriate number
of coarse-grained states may also depend on the degree of
temporal and spatial coarse-graining one desires. Each of the
methods used in this work comes with its own recommenda-
tions for how to choose the final number of states, so it may be
possible to build better models with a particular method than
the one presented here by following those proscriptions. How-
ever, we did not want to bias the results in favor of any par-
ticular method by allowing it to use more adjustable param-
eters (i.e., states and transition probabilities between them).
Therefore, we used the HNEG method to determine the num-
ber of coarse-grained states to be used in all of the meth-
ods. We chose HNEG for this purpose because it chooses
a physically meaningful number of coarse-grained states. It
is also more difficult to vary the number of states generated
by the HNEG method than the other methods used in this
work.

In Subsections III A-III D, we first use Bayesian model
comparison to quantitatively assess the relative performance
of the methods examined here. We then apply a number of
metrics for comparing two models to determine how similar
or different the outputs from the various methods really are
from one another. Finally, we measure some physical param-
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eters of the models to gain some insight into what properties
distinguish the best models from the rest.

A. Quantitative comparison of model performance

Bayesian model comparison based on Bayes factors is a
powerful method of model selection. The main idea is to de-
termine which of the two models is most consistent with the
original data by comparing how likely each is to have gen-
erated that data. Formally, this is accomplished with a Bayes
factor

P(L,|C)

) 3
P(L;|C) @

where L; and L, are two coarse-grainings—or lumpings—of
a Markov model and C is a transition count matrix specify-
ing the number of transitions observed between every pair of
states. This comparison integrates over all possible transition
probability matrices between the coarse-grained states and
all possible equilibrium probabilities of the original states.
Therefore, the comparison captures both the thermodynam-
ics and kinetics of each model. Such quantitative comparisons
are crucial because the complexity of most real-world Markov
models renders a qualitative assessment of a coarse-graining’s
validity impossible.

Instead of presenting Bayes factors, we actually present
the log of the evidence for different models (log (P(L|C))) to
facilitate the comparison of many different models. The log
of a Bayes factor can be written as the difference between the
logs of the evidences for two models:

logM = log P(L|C) —log P(L,|C). @
P(L,|C)
Models with larger (less negative) evidence are more likely to
explain a given set of observations. To calculate the evidence,
we use the method from Ref. 9.

Comparison of the evidence for each method across a
range of systems demonstrates that BACE and HNEG rou-
tinely provide the best models (Fig. 2). That is, the evi-
dence for models from these methods is generally larger (less
negative) than for models built with other methods. HNEG
provides the best performance for the alanine dipeptide. How-
ever, the relative rankings of the different methods for the ala-
nine dipeptide are not necessarily representative of their rela-
tive performance on more complex systems, highlighting the
need to compare methods on a range of systems. BACE ac-
tually provides the best performance for both the villin head-
piece and B-lactamase. In fact, the gap in performance be-
tween BACE and the other methods increases as the proteins
examined become more complicated (or are less well sam-
pled). This result is consistent with the fact that BACE explic-
itly accounts for finite sampling effects (i.e., statistical uncer-
tainty). More generally, the fact that both BACE and HNEG
perform so well is consistent with the fact that both were de-
veloped to deal with poorly sampled states that have been pro-
posed to mislead other methods.

The rankings of the other methods are relatively consis-
tent across the different proteins examined here. For example,
PCCA is generally the third best method, though it slightly
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FIG. 2. The log of the evidence for coarse-grained models built with dif-
ferent methods. The mean value from 100 bootstrapped samples is reported
(bars) with 68% confidence intervals (error bars). Larger (less negative) num-
bers indicate better results. The large magnitudes are comparable to those
found in Refs. 9 and 10 and arise from the products of a large number of
small probabilities in the likelihood function.

outperforms BACE on the alanine dipeptide. The fact that
BACE and PCCA perform so similarly on the alanine dipep-
tide is consistent with the fact that this is the best sampled
system, where BACE would benefit least from its ability to
deal with statistical uncertainty. More surprising is that PCCA
generally outperforms the newer PCCA+ method that was in-
tended to provide more robust results. PCCA+ and MPP are
close behind the other methods for the alanine dipeptide but
perform less well for the more complicated systems.

B. Alternative methods yield very different models

While there is clearly a statistically significant difference
between the performance of many of the methods, it is less
clear whether this implies that they provide significantly dif-
ferent physical pictures. For example, one could imagine that
all the models are essentially the same but with slight dif-
ferences in where they draw the boundaries between coarse-
grained states.

To determine how different coarse-grained models are
from one another, we developed an overlap function for com-
paring two coarse-grainings. The main idea is to determine
what fraction of the equilibrium population of some set of ini-
tial states are assigned to the “same” coarse-grained state in
two different coarse-grained models. We calculate the overlap
as follows:

1. Use the stable marriage algorithm®® to match coarse-
grained states from model L; with coarse-grained

J. Chem. Phys. 139, 121905 (2013)

states in model L, to maximize their total overlap
(ZMI,MZ P(M;, M,) where M, M, is a pair of coarse-
grained states, one from each model, and P(M;, M) is
the total equilibrium probability of all the original states
that are in both M| and M;). Every state in each model
does not have to be paired with a state in the other model.
For example, a coarse-grained state M; in L; may en-
compass two coarse-grained states M»; and My, in L,
(where P(M,;) > P(M»,)), in which case M; will be
matched with M,; while M, remains unpaired.
2. The overlap is then ) _,, , P(My, M).

The overlap will approach 1 for two coarse-grainings that are
essentially the same and approach O for two models that are
very different.

Application of this overlap function shows that the
coarse-grainings generated by different methods can be quite
different from one another (Fig. 3). In general, models that
performed more similarly (as judged by Bayesian model com-
parison) have greater overlap. BACE has relatively little over-
lap with any of the other methods for villin and S-lactamase,
consistent with the gap in the performance between them. For
example, the maximum overlap between BACE and any of
the other methods is 0.29 for villin, so at least 71% of the
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FIG. 3. The overlap between coarse-grained models built with different
methods. The mean value from 100 bootstrapped samples is reported. Larger
numbers indicate greater similarity.
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equilibrium population is assigned to different groupings
when comparing BACE to other models. PCCA+ and MPP
often have very similar performance and the overlap between
them is generally quite high.

The overlap between the results from different methods
also tends to be greater for the simpler or better sampled pro-
teins. For example, the overlap between the alanine dipeptide
results is generally the highest. Meanwhile, the overlap be-
tween the S-lactamase results is generally the lowest. This
trend is consistent with the idea that the main feature distin-
guishing the better methods from the worse ones is how they
deal with poorly sampled states.

The mutual information between two models provides
another perspective on their similarities and differences. In
general, the mutual information is a measure of how much
information one random variable contains about another. An
important advantage of the mutual information over our over-
lap function is that it can capture nonlinear dependencies.
However, it is less straightforward to interpret. Following
Ref. 11, the mutual information between two models is de-
fined as

P(M,, M>)
I(Ly, Ly) = P(My, M)log | o 5 )
(L1, L) MX;MZL (Mi, M) Og<P(M1)P(M2)>

&)

where M; is a coarse-grained state in model L;, P(M;, M) is
the total equilibrium population of the original states that are
assigned to M, in model L; and M, in model L,, and P(M;)
is the total equilibrium population of the original states that
are assigned to M; in model L;. Models with larger mutual
information are more similar.

Examining the mutual information between models from
the various methods provides a similar picture to that from our
overlap function (Fig. 4). However, identifying the similarities
and differences is somewhat more challenging since the mu-
tual information between models must be judged relative to
the self-information of each of them (along the diagonal). For
example, the mutual information between the PCCA+ and
MPP models for villin is low compared to that between BACE
and PCCA, but the PCCA+ and MPP models are actually
more similar because the mutual information between them
is very close to the self-information of either model. This can
be corrected by normalizing the mutual information by the
joint entropy, as was done in Ref. 34.

C. Avoiding rare states improves models

Examining the mutual information between different
models also provides quantitative support for previous ob-
servations that avoiding rare states leads to better coarse-
grainings. The self-information along the diagonals in Fig. 4
is equivalent to the entropy of the equilibrium populations of
the coarse-grained states. This entropy will be larger for mod-
els with more equally populated states. By cross-referencing
with the evidences presented in Fig. 2, one can see that the
best performing methods also tend to give rise to models with
higher entropies. Therefore, we conclude that part of the ex-
planation for the worse performing methods is that they are
identifying poorly sampled sets of states as being distinct

J. Chem. Phys. 139, 121905 (2013)
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FIG. 4. The mutual information between coarse-grained models built with
different methods. The mean value from 100 bootstrapped samples is re-
ported. Larger numbers indicate greater similarity.

from other states. In reality, it is likely that the apparent ki-
netic differences between these states are due to finite sam-
pling rather than a true difference.

Other physical quantities that have been used as surro-
gates for model quality do not necessarily correlate as well
with the results of Bayesian model comparison. For exam-
ple, maximizing the metastability (Q = Y ;T;) has previ-
ously been used as a strategy for refining coarse-grained
models.>»?® However, the metastability does not correlate
well with the performance of the methods for all of the sys-
tems examined here (Fig. 5). For example, HNEG models
routinely have one of the highest metastabilities even though
BACE often gives better results according to the other metrics
used in this work. The high metastability of HNEG models
is not surprising since this method is designed to deal with
rare states using a multilevel analysis that starts by identify-
ing basins of attraction (i.e., the bottoms of free energy basins)
and then merging less populated neighboring states into these
basins.

D. Kinetics

The various coarse-grained models appear to give very
similar kinetics by standard measures, such as their relaxation
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FIG. 5. The metastability of coarse-grained models built with different meth-
ods. The mean value from 100 bootstrapped samples is reported (bars) with
68% confidence intervals (error bars).

(or implied) timescales (Fig. 6). All of the coarse-grained
models exhibit significantly accelerated kinetics relative to
the original model. These accelerated kinetics are due to two
factors: (i) poorly sampled states in the original model prior
to coarse-graining'”> and (ii) assuming rapid equilibration
within large, coarse-grained states. The relaxation timescales
of all the coarse-grained models are relatively similar. In fact,
PCCA+ and MPP even appear to give somewhat better re-
sults, in that their slowest relaxation timescales level-off at
somewhat shorter lag times (or observation intervals). How-
ever, further analysis reveals that other methods are actually
preferable.

Examining the equilibrium flux between states corre-
sponding to each relaxation timescale reveals that BACE ac-
tually gives the most reliable kinetics (Fig. 7). The equilib-
rium flux (F,) corresponding to the nth relaxation timescale
(or eigenvalue of the transition probability matrix) is given by

F, = lgall®, (6)

where ¢, is the nth w-normalized left eigenvector of the tran-
sition probability matrix and || || denotes the L2-norm.** This
flux will be low for poorly sampled transitions and higher for
well-sampled transitions. BACE gives the highest fluxes (fol-
lowed by PCCA), demonstrating that it identifies the most sta-
tistically reliable transitions.

IV. CONCLUSIONS AND FUTURE PERSPECTIVE

We have employed Bayesian model comparison to quan-
titatively assess the relative performance of some of the most
recently developed and most commonly used methods for
coarse-graining Markov state models on a variety of systems.
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FIG. 6. The 10 slowest relaxation timescales from the slowest (a) to the
fastest (j) for the original villin model before coarse-graining (black) and
coarse-grainings from BACE (blue), HNEG (yellow), MPP (green), PCCA+
(red), and PCCA (cyan).

We find that BACE and HNEG routinely outperform alter-
native methods, with BACE performing particularly well for
less well sampled models. PCCA typically provides the third
best performance, followed by PCCA+ and MPP. We also
demonstrate that the various methods can yield quite different
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FIG. 7. The interstate flux for the 10 slowest relaxation timescales for each
of the villin coarse-grained models. Fluxes were calculated from a transition
probability matrix with a lag time of 100 ns based on the apparent leveling
off of the relaxation timescales at this lag time (which indicates Markovian
behavior??).
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models by comparing their output with metrics like the
overlap function presented here and the mutual information.
Finally, we show that models that avoid low population
states that may be artifacts of finite sampling give improved
performance.

In the future, it will be interesting to assess whether these
results extend to other settings, such as multi-body systems
like ligand-binding. The above analysis is based on mod-
els of single-body processes like folding and functional dy-
namics. Markov models have also proved useful for studying
multi-body systems like ligand-binding and protein-protein
interactions though.*>3¢-3 Constructing Markov models for
these processes is challenging because one must capture both
the protein’s conformational changes and the heterogeneous
timescales of ligand dynamics due to interactions with the
protein. Furthermore, the formation of a protein-ligand or
protein-protein complex is often coupled with protein con-
formational changes that further complicate the system’s ki-
netics. The performance of the coarse-grained methods exam-
ined here may be quite different for these more complicated
scenarios, and new methods may even be required.
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