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We propose to observe and manipulate topological edge spins in a one-dimensional optical lattice based

on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic

Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which

belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries.

In the free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions.

The zero edge modes of the SPT phase are spin polarized, with left and right edge spins polarized to

opposite directions and forming a topological spin qubit (TSQ). We demonstrate a novel scheme to

manipulate the zero modes and realize single spin control in an optical lattice. The manipulation of TSQs

has potential applications to quantum computation.
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Introduction.—Since the discovery of the quantum Hall
effect in a two-dimensional electron gas [1], the search for
nontrivial topological states has become an exciting pursuit
in condensed matter physics [2]. The recently observed
time-reversal invariant topological insulators have opened
a new chapter in the study of topological phases (TPs),
attracting great efforts in both theory and experiments
[3,4]. Depending on whether the ground states have long-
range or short-range entanglement, the TPs can be classi-
fied into intrinsic or symmetry-protected topological (SPT)
orders [5–7]. Being protected by the bulk gap, the intrinsic
TPs are robust against any local perturbations, and the SPT
phases are robust against those respecting given symme-
tries [5–8]. This property may be applied to fault-tolerant
quantum computation [9].

While in theory there are numerous types of TPs, existing
topological orders in nature are rare. The recent great
advancement in realizing an effective spin-orbit (SO) inter-
action in cold atoms [10–15] opens intriguing new possi-
bilities to probe SO effects [16] and TPs in a controllable
fashion. Theoretical proposals have been introduced in cold
atoms for the study of topological insulators [17–21] and
topological superfluids [22–26]. Experimental studies of
these exotic phases are, however, a delicate issue due to
stringent conditions such as complicated lattice configura-
tions or SO interactions. By far the only experimentally
realized SO interaction [11–15] is the equal-Rashba-
Dresselhaus-type SO term as theoretically proposed by
Liu et al. [10]. Therefore, how to observe nontrivial topo-
logical states with currently available experimental plat-
forms is a central issue in the field of cold atoms [25].

In this Letter, we propose to observe and manipulate
topological edge spins in a one-dimensional (1D) optical

lattice with the SO interaction realizable in recent experi-
ments [11–14]. The predicted SPT phase belongs to the
AIII class and is protected by Uð1Þ and chiral symmetries,
with spin-polarized zero modes forming topological spin
qubits (TSQs). Our results may open the way to observe
topological states of all ten Altand-Zirnbauer symmetry
classes [5] with realistic cold atom systems, and may have
a broad range of applications including realizing single
spin control in an optical lattice.
Model.—Our model is based on quasi-1D cold fermions

trapped in an optical lattice, with the internal three-level
�-type configuration coupled to radiation, as shown in
Fig. 1. The transitions jg"i, jg#i ! jei are driven by the

laser fields with Rabi frequencies �1ðxÞ ¼ �0 sinðk0x=2Þ
and �2ðxÞ ¼ �0 cosðk0x=2Þ, respectively. In the presence
of a large one-photon detuning j�j � �0 and a small
two-photon detuning j�j � �0 for the transitions [see
Fig. 1(a)], the Hamiltonian of the light-atom coupling

FIG. 1 (color online). (a) Cold fermions trapped in a 1D
optical lattice with an internal three-level �-type configuration
coupled to radiation. (b) Energy spectra with open boundary
condition in the topological (diamond, �z ¼ 0) and trivial

(circle, �z ¼ 3ts) phases. The SO coupled hopping tð0Þso ¼ 0:4ts.
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system reads H ¼ H0 þH1, with H0 ¼
P

�¼";#½p
2
x

2m þ
V�ðxÞ�jg�ihg�j þ @�jg#ihg#j, H1 ¼ @�jeihej � @ð�1jei�
hg"j þ�2jeihg#j þ H:c:Þ. Here the diagonal potentials

V";#ðxÞ are used to construct the 1D optical lattice, and

�y;z are the Pauli matrices in spin space. For j�j � �0,

the lasers �1;2 induce a two-photon Raman transition

between jg"i and jg#i. This configuration has been used

to create the equal-Rashba-Dresselhaus SO interaction
[10–15]. The effect of the small two-photon detuning is
equivalent to a Zeeman field along the z axis �z ¼ @�=2,
which in experiments can be precisely controlled with an
acoustic-optic modulator. Eliminating the excited state by
jei � 1

� ð��
1jg"i þ��

2jg#iÞ yields the effective Hamiltonian

Heff ¼ p2
x

2m
þ X

�¼1;2

½VLatt
� ðxÞ þ �z�z�jg�ihg�j

� ½MðxÞjg"ihg#j þ H:c:�; (1)

where MðxÞ ¼ M0 sinðk0xÞ with M0 ¼ @�2
0

2� representing a

transverse Zeeman field induced by the Raman process.
We next derive the tight-binding model. We consider

first the s-band model in an optical lattice formed by the
trapping potentials VLatt

";# ðxÞ ¼ �V0cos
2ðk0xÞ, with the

lattice trapping frequency ! ¼ ð2V0k
2
0=mÞ1=2 [27]. From

the even parity of the local s orbitals �s� (� ¼" , # ),
the periodic term MðxÞ does not couple the intrasite

orbitals �ðiÞ
s";#, but leads to a spin-flip hopping by

tijso ¼ R
dx�ðiÞ

s" ðxÞMðxÞ�ðjÞ
s# ðxÞ [see Fig. 1(a)], representing

the induced SO interaction. The spin-conserved hopping

reads ts ¼
R
dx�ðjÞ

s�ðxÞ½p2
x

2m þ V��ðjþ1Þ
s� ðxÞ. Bearing these

results in mind we write down the effective Hamiltonian

in the tight-binding form: H¼�ts
P

<i;j>;�ĉ
y
i�ĉj�þP

i�zðn̂i" � n̂i#Þþ ½P<i;j>t
ij
soĉ

y
i"ĉj# þH:c:�, with n̂i�¼

ĉyi�ĉi�. It can be verified that tj;j�1
so ¼ �ð�1Þjtð0Þso , where

tð0Þso ¼ �2
0

�

R
dx�sðxÞ sinð2k0xÞ�sðx� aÞ with a the lattice

constant. Redefining the spin-down operator ĉj# !
ei�xj=aĉj#, we recast the Hamiltonian into

H ¼ �ts
X

<i;j>

ðĉyi"ĉj" � ĉyi#ĉj#Þ þ
X
i

�zðn̂i" � n̂i#Þ

þ
�X

j

tð0Þso ðĉyj"ĉjþ1# � ĉyj"ĉj�1#Þ þ H:c:

�
: (2)

The above model can also be realized with p-band fermi-
ons in a different configuration of the optical lattice,
VLatt
";# ðxÞ ¼ �V0sin

2ðk0xÞ, which can be directly verified

by noticing the odd parity of the p orbitals. Remarkably,
for the p-band model the periodic Zeeman term MðxÞ and
the 1D lattice can be realized simultaneously by setting
�1ðxÞ ¼ �0 sinðk0xÞ and�2 ¼ �0 without applying addi-
tional lasers (see the Supplemental Material [28] for
details). This further greatly simplifies the experimental

setup and we believe that our proposal can be realized with
realistic experimental platforms.
We analyze the symmetry of the Hamiltonian [Eq. (2)].

The time-reversal and charge conjugation operators are
respectively defined by T ¼ iK�y with K the complex

conjugation, and C: ðĉ�;ĉy�Þ � ð�zÞ��0 ðĉy
�0 ; ĉ�0 Þ. One can

check that while both T and C are broken in H, the chiral
symmetry, defined as their product, is respected and
ðCT ÞHðCT Þ�1 ¼ H, with ðCT Þ2 ¼ 1. Note that the chiral
symmetry is still preserved if a Zeeman term �y�y along

the y axis is included in H. The complete symmetry group
then reads Uð1Þ � ZT

2 , where Uð1Þ gives particle-number
conservation and the antiunitary group ZT

2 is formed by
fI; CT g. The SPT phase of our free-fermion system
belongs to the chiral unitary (AIII) class and is character-
ized by a Z invariant [5–7]. H can be rewritten in k space

as H ¼ �P
k;��0 ĉyk;�½dzðkÞ�z þ dyðkÞ�y��;�0 ĉk;�0 , with

dy ¼ 2tð0Þso sinðkaÞ and dz ¼ ��z þ 2ts cosðkaÞ. This

Hamiltonian describes a nontrivial topological insulator
for j�zj< 2ts and otherwise a trivial insulator, with the

bulk gap Eg ¼ minfj2ts � j�zjj; 2jtð0Þso jg [see Fig. 1(b)]. In

particular, when �y;z ¼ 0 and ts ¼ jtð0Þso j, our model gives

rise to a flat band with a nontrivial topology.
Edge states.—The nontrivial topology can support

degenerate boundary modes. Considering hard wall
boundaries located at x ¼ 0, L, respectively, [29] and
diagonalizing H in position space H ¼ P

xi
H ðxiÞ with

H ðxiÞ ¼ �ðts�z þ itð0Þso �yÞĉyxi ĉxiþa þ �z�zĉ
y
xi ĉxi þ H:c:,

we obtain the edge state localized on the left boundary
x ¼ 0 as

c LðxiÞ ¼ 1ffiffiffiffiffiffiffi
N

p ½ð�þÞxi=a � ð��Þxi=a�j�þi; (3)

and accordingly the one on x ¼ L by c RðxiÞ ¼
1ffiffiffiffiffi
N

p ½ð�þÞðL�xiÞ=a � ð��ÞðL�xiÞ=a�j��i. Here N is the

normalization factor, the spin eigensates �xj��i¼
�j��i, and ��¼ð�z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
z�4t2sþ4jtð0Þso j2

q
Þ=ð2tsþ2jtð0Þso jÞ.

Therefore the two edge modes are polarized to the opposite
�x directions. Note that c L and c R span the complete
Hilbert space of one single 1=2 spin or spin qubit. Each
edge state equals one half of a single spin, similar to the
relation between a Majorana fermion and a complex fer-
mion in topological superconductors. As a result, we
expect the robustness of the zero modes to any local
operations without breaking the Uð1Þ and CT symmetries
[30]. These properties of the topological spin qubit (TSQ)
may be applicable to fault-tolerant quantum computation
[9]. Moreover, the Z classification implies that single-
particle couplings respecting Uð1Þ and CT cannot gap
out the edge modes in an arbitrary N-chain system of 1D
lattices. Interestingly, however, we have confirmed that
with weak interactions a system with up to four chains of
the 1D lattices can be adiabatically connected to a trivial
phase without closing the bulk gap, implying that the Z
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classification breaks down to Z4 with the interactions [28].
This result suggests an interesting platform to study the
classification of SPT phases with cold atoms.

The existence of zero modes leads to particle fraction-
alization, which is another direct observable in experi-
ments. Note that a zero mode is equally contributed from
the valence band and the conduction band. Therefore, an
edge state carries aþ1=2 (� 1=2) particle if it is occupied
(unoccupied) [28]. This result is confirmed by the numeri-
cal simulation shown in Fig. 2, where we calculate
�N1;2ðxiÞ ¼

Rxi
0 dx0N1;2ðx0Þ � xi=a at half filling, with

N1ð2ÞðxÞ the density of fermions when the left (right) edge

mode is filled. The fermion number carried by an occupied
(unoccupied) edge mode is then given by n1ð2Þ ¼ �N1ð2Þð�Þ
with � � �0. Here �0 ¼ �a= lnj�þj is the localization
length of c L;R. The 1=2 fractionalization is clearly seen

when � is several times greater than �0 [see Fig. 2(b)].
Being a topological invariant, the 1=2 fractionalization can
be confirmed to be robust against weak disorder scatterings
without breaking the given symmetries.

Correlation effects.—A particular advantage in cold
atoms is that one can investigate correlation effects on
the predicted SPT phase by precisely controlling the inter-
action. For spin-1=2 cold fermions the onsite Hubbard
interaction U

P
ini"ni# can be well controlled by the

Feshbach resonance [27]. For a single-chain system, we
expect that the topological phase is stable against weak
interactions relative to the single-particle bulk gap, while
the strong repulsive interaction can always drive the sys-
tem into a Mott insulating phase. The correlation effects
around the critical point can be probed by an Abelian
bosonization approach combined with renormalization
group (RG) analysis [31]. Note that in the noninteracting
regime, the phase diagram of the single-chain system is
determined by the SO and Zeeman terms which define

two mass terms H SO ¼ u
�a sin

ffiffiffi
2

p
�� cos

ffiffiffi
2

p
	�, H Z ¼

w
�a cos

ffiffiffi
2

p
�� sin

ffiffiffi
2

p
	� in the bosonized Hamiltonian, where

the masses u ¼ 2tð0Þso and w ¼ �y, and ��;�, 	�;� are the

boson representations of the fermion fields [28]. The fate of
the system in the presence of the interaction depends on
which mass term flows first to the strong coupling regime
under the RG.

A direct power counting shows the same RG flow for the
masses u and w in the first-order perturbation. Therefore
the next-order perturbation expansion is necessary to cap-
ture correctly the fate of the topological phase transition.
By deriving the RG flow equations up to one-loop order
[32], we find the renormalization to u, w, the umklapp
scattering g�, and spin backscattering g� by [28]

du

dl
¼ 3� K�

2
u� g�u

4�vF

þ g�u

4�vF

;

dw

dl
¼ 3� K�

2
wþ g�w

4�vF

þ g�w

4�vF

;

dg�

dl
¼ g2�

�vF

;
dg�
dl

¼ g2�
�vF

;

(4)

where the bare values of the coupling constants g� ¼
�g� ¼ U; u ¼ 2tð0Þso ; w ¼ �y, and l is the logarithm of

the length scale. The renormalization of the Luttinger
parameter K� has been neglected as it is a higher order

correction. For U > 0, g� marginally flows to zero so we
drop it off below. This is consistent with the result that
the repulsive interaction cannot gap out the spin sector in
the 1D Hubbard model. g� is marginally relevant

and can be solved by g�ðlÞ ¼ �vFg�ð0Þ
�vF�g�ð0Þl . Substituting this

result into the RG equations of u and w yields after

integration uðlÞ ¼ uð0Þ½1� g�ð0Þl
�vF

�1=4eð3�K�Þl=2, wðlÞ ¼
wð0Þ½1þ g�ð0Þl

�vF
�1=4eð3�K�Þl=2. The physics is clear: the

repulsive interaction (g� > 0) suppresses the SO induced

mass term u while it enhances the trivial mass term w. The
fate of the system depends on which of u and w reaches
the strong-coupling regime first. Assuming jg�ð0Þlj � vF,

we find the TP transition occurs at

uð0Þ ¼ ½wð0Þ�
; 
 � 1� g�ð0Þ
4�vFð3� K�Þ : (5)

This gives the scaling law at the phase boundary with the
interaction. Note that 
 < 1 for U > 0. The above scaling
relation implies that a repulsive interaction suppresses the
SPT phase. Accordingly, if initially the noninteracting
system is topologically nontrivial with uð0Þ>wð0Þ> 0,
increasing U to the regime uð0Þ< ½wð0Þ�
 drives the sys-
tem into a trivial phase.
Single spin control.—Now we study an interesting appli-

cation of the present results to realizing single spin control.
Besides the edge modes localized on the ends, TSQs can
also be obtained in the middle areas by creating mass
domains in the lattice. This can be achieved by applying
a local Zeeman term �y or �z. For example, we consider

�z ¼ 0 everywhere, but �y ¼ �0 for x1 < x< x2 and

�y ¼ 0 otherwise. The local �y can be generated by apply-

ing another two lasers which cross with the 1D lattice and
couple the atoms in the area x1 < x < x2 to induce a local
resonant Raman coupling between jg"i and jg#i [see

Fig. 3(a)]. Employing a �=2-phase offset in the Rabi

FIG. 2 (color online). (a) Wave functions for zero modes
jc L;Ri; (b) 1=2-particle fractionalization (seen by �N1;2) for

zero modes. The parameters tð0Þso ¼ 0:4ts and �z ¼ 0:3ts, with
which the localization length of bound modes �0 ¼ 2:36a.
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frequencies of the two lasers, the Raman coupling takes the
form �0�y, with �0 controlled by the laser strength. When

j�0j> 2jtð0Þso j a mass domain is created, associated with two
midgap spin states jc�i respectively localized around x ¼
x1;2 [see Fig. 3(a)]. The width �x ¼ x2 � x1 and height of

the domain are respectively adjusted by the waist size and
strength of the two laser beams. Due to the nonlocality of
the TSQ, the creation of a single qubit here is not restricted
by the size of the laser beams. This is a fundamental
difference from creating a conventional single qubit by
optical dipole trapping which requires tiny-sized laser
beams to reach a very small trapping volume [33]. Note
in the realistic case that the laser induced �y may vary fast

but not in the form of step functions around x ¼ x1;2,
which, however, does not affect the main results presented
here [28]. Coupling between jcþi and jc�i results in an

energy splitting 2E / e�ðj�0j�2jtð0Þso jÞ�x=ð2atsÞ, which is con-
trolled by �0 and �x [see Fig. 3(a), lower panel]. In the

limit ðj�0j � 2jtð0Þso jÞ�x=ð2atsÞ � 1, such coupling is neg-
ligible, and the two zero modes consist of a single spin
qubit which is topologically stable. Let jcþi be initially
occupied while jc�i is left vacant. Reducing j�0j
smoothly can open the coupling in jc�i and lead to the
spin state evolving as [34] jc ðtÞi¼�ðtÞ’�ðx�x1Þj��iþ
�ðtÞ’þðx�x2Þj�þi, with �ð0Þ ¼ 0, �ð0Þ ¼ 1, and ’�
the spatial parts of the bound state wave functions. The
spin-polarization densities are given by sx;y;zðx;tÞ¼
hc ðxÞj�x;y;zjc ðxÞi, and the spin expectation values

Sx;y;zðtÞ ¼
R
dxsx;y;zðx; tÞ. It can be verified that

SyðtÞ ¼ 0, and

SxðtÞ ¼ j�ðtÞj2 � j�ðtÞj2;
SzðtÞ ¼ 2Re½�ðtÞ��ðtÞ

Z
dx’�þðxÞ’�ðxÞ�:

(6)

This phenomenon is analogous to spin precession with the
rotating angle yielding 
ðtÞ ¼ 2

R
t
0 dt

0Eðt0Þ. We have then

� ¼ cos
ðtÞ and � ¼ sin
ðtÞ. The amplitude of SzðtÞ is
given by Smax

z ¼ jR dx’�þðxÞ’�ðxÞj, which measures the
overlapping integral of ’�. Accordingly, if we apply the
local Zeeman field along the z axis rather than the y axis,
we shall obtain that the spin evolves in the xy plane. Note
that the spin Rabi oscillation is induced by quantum tun-
neling. Therefore it is associated with a tunneling current

given by JmðtÞ ¼ � �xE
2�@ @tj�ðtÞj2 between x1 and x2. In

experiments the internal states of a single atom can be
detected without energy transfer [35], which is applicable
to observations of the spin Rabi oscillations, while the
oscillation of SxðtÞ can be more conveniently observed by
measuring the number of fermions hn�ðtÞi localized
around x1;2 with single-site resolution technology [36],

and JmðtÞ can be detected by measuring the change rate
with time of such fermion numbers.
We show in Figs. 3(b)–3(d) the numerical simulation

for single spin control with the parameter regime ts ¼
3:15 kHz, tð0Þso ¼ 0:4ts, and �x ¼ 10a. For t < 0, �0 ¼
8tð0Þso and the coupling in jc�i is negligible. Reducing �0

at t > 0 leads to spin evolution and by fixing �0 ¼ 2:5tð0Þso

for t > t1 the spin oscillates with a period of 5.984 ms [see
Figs. 3(b) and 3(c)]. Note that the quantum state of the spin
can be precisely controlled by properly manipulating 
ðtÞ.
For example, in Fig. 3(d) we demonstrate the spin-flip
operation j�þi ! j��i by requiring 
ðt3Þ ¼ ð2mþ 1Þ�.
Here m 2 Z and in Fig. 3(d) we take m ¼ 1. Note that one
may integrate multiple TSQs with, e.g., atom-chip tech-
nology, and individually control them by creating multiple
mass domains in the 1D lattice. The precise manipulation
of such integrated TSQs may have interesting applications
in developing scalable spin-based quantum computers.
Finally we estimate the parameter values for realistic

experimental observations. For example, in 40 K atoms we
have the recoil energy ER=@ ¼ @k20=2m ¼ 48 kHz using

red-detuned lasers of wavelength 773 nm to form the
optical lattice. Taking V0 ¼ 5ER and M0 ¼ 2ER, we have
the lattice trapping frequency ! ¼ 214 kHz, and hopping

coefficients ts=@ ’ 3:15 kHz and tð0Þso =@ ’ 1:3 kHz. Then
the bulk gap equals Eg=@ ¼ 2:6 kHz for �z ¼ 0, indicating

a temperature T ¼ 19 nK for the experimental observa-
tion. Also, under this parameter regime the lifetime of the
atoms is over 1.0 s, which is long enough for the detection
and manipulation of the topological edge spins.
Conclusions.—We have proposed to observe and ma-

nipulate the SPT phase of the AIII class in a 1D optical
lattice, and have demonstrated single spin control by

FIG. 3 (color online). Spin Rabi oscillations with the parame-

ters ts ¼ 3:15 kHz, tð0Þso ¼ 0:4ts, and �x ¼ 10a	 4
m.

(a) Mass domain created by setting j�0j> 2tð0Þso for x1 < x<
x2 which localizes a spin qubit composed of two bound modes
jc�i on x ¼ x1; x2, respectively. (b) Spin Rabi oscillation by

smoothly reducing j�0j from 8tð0Þso to 2:5tð0Þso . (c) The mass current
JmðtÞ and expectation values of particle numbers hn�ðtÞi in states
jc�i. (d) Spin-flip operation by controlling 
ðt3Þ ¼ ð2mþ 1Þ�
withm ¼ 1. The initial spin state j�þi (points A) flips to be j��i
(points B).
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manipulating spin-polarized zero modes which is appli-
cable to spin-based quantum computation. The minimum
requirement for the proposed scheme is a regular 1D lattice
and a transverse Zeeman field, which can be realized simul-
taneously in a single two-photon Raman transition as used
in the recent experiments [11–15]. The present study may
open the search for topological states of all ten Altand-
Zirnbauer symmetry classes with realistic cold atom
systems, and its remarkable feasibility will attract both
theoretical and experimental efforts in the future.

We thank T.-L. Ho, X.G. Wen, X. Chen, V.W. Liu, and
C. Xu for helpful discussions. We thank the support of
JQI-NSF-PFC, Microsoft-Q, and DARPAQuEST. X.-J. L.
also thanks the support from HKRGC through Grants
No. 605512 and No. HKUST3/CRF0. Z. X. L. thanks the
support from NSFC 11204149.

[1] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.
45, 494 (1980); D. C. Tsui, H. L. Stormer, and A. C.
Gossard, Phys. Rev. Lett. 48, 1559 (1982).

[2] F. D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983); Phys.
Lett. 93, 464 (1983); N. Read and D. Green, Phys. Rev. B
61, 10267 (2000); A. Y. Kitaev, Phys. Usp. 44, 131 (2001).

[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005); B. A. Bernevig, T. L. Hughes, and S.-C. Zhang,
Science 314, 1757 (2006); L. Fu, C. L. Kane, and E. J.
Mele, Phys. Rev. Lett. 98, 106803 (2007); J. E. Moore and
L. Balents, Phys. Rev. B 75, 121306(R) (2007); R. Roy,
ibid. 79, 195322 (2009).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010); X.-L. Qi and S.-C. Zhang, ibid. 83, 1057 (2011).

[5] A. Altland and Martin R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

[6] Z. C. Gu and X.G. Wen, Phys. Rev. B 80, 155131 (2009);
X. Chen, Z.-C. Gu, and X.-G. Wen, ibid. 82, 155138
(2010); X.-G. Wen, ibid. 85, 085103 (2012).

[7] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W.W. Ludwig,
New J. Phys. 12, 065010 (2010).

[8] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509
(2010); A.M. Turner, F. Pollmann, and E. Berg, ibid. 83,
075102 (2011); L. Fidkowski and A. Kitaev, ibid. 83,
075103 (2011).

[9] Y. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003); S. Das
Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett. 94,
166802 (2005); C. Nayak, A. Stern, M. Freedman, and
S. D. Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[10] X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev.
Lett. 102, 046402 (2009).
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