Short communication

Deep blue fluorescent 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles: Synthesis, structure and aggregation-induced emission

Jian Zhoua, Bairong Hea, Bin Chena, Ping Luc, Herman H.Y. Sungb, Ian D. Williamsb, Anjun Qind, Huayu Qiuă, Zujin Zhaoa,*, Ben Zhong Tangb,***

a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
b Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
c State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
d Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Article history:
Received 18 April 2013
Received in revised form 11 May 2013
Accepted 17 May 2013
Available online 24 May 2013

Keywords:
Aggregation-induced emission
Silole
Fluorescence
Crystallography
Blue chromophore
Organosilicon

A B S T R A C T

A series of 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles were synthesized by one pot reaction in moderate yields (47–66%) and characterized by NMR, Mass and elemental analysis. Their crystals were grown from THF/methanol mixtures and analyzed by single-crystal X-ray diffraction. The electronic structures and energy levels were calculated by B3LYP/6-31G(d) basis set. The results show that these new siloles possess a flexible conformation with novel sp* conjugation. The absorption and fluorescence spectra were measured in the solution and aggregate states. Whereas they are weakly fluorescent in solutions, they are induced to emit strong deep blue light in solid films and crystals, demonstrating an aggregation-induced emission (AIE) characteristic.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In 2001, a novel phenomenon of aggregation-induced emission (AIE) [1] was found by Tang’s group, from propeller-like siloles, such as 1-methyl-1,2,3,4,5-pentaphenylsilole (MPPS) and 1,1,2,3,4,5-hexaphenylsilole (HPS). These silole molecules show faint fluorescence in solutions, but are induced to emit intensely with the aggregate formation. This interesting AIE phenomenon is opposite to aggregation-caused emission quenching effect widely observed from conventional chromophores, and has drawn intense research interest due to its bright prospect in materials science and biotechnology. To have a deep insight into the AIE phenomenon, systematic theoretical and experimental researches were carried out. The results disclose that the AIE effect of propeller-like siloles is mainly caused by the restriction of intramolecular rotations of the phenyl rotors against the silole ring stator [1c,2,3a]. The presence of the phenyl rings at the 3,4-positions is crucial. Without them, the phenyl rings at the 2,5-positions become coplanar with the central silole ring, leading to a better conjugation and more rigid conformation. Therefore, the emission efficiency in solutions is improved and the AIE characteristic disappears [1c]. The emission color of siloles is controlled largely by the conjugation extended through the 2,5-positions of silole ring, as well as electronic and steric structures of substituents at both positions [3–5].

Recently, blue luminescent materials are highly pursued [6], for they are essential for high quality full color displays and white lightening. Based on AIE motif, many efficient solid-state blue emitters have been developed [7]. However, to the best of our knowledge, almost all the AIE-active siloles fluoresce in the green to red region [3–5]. And blue siloles, especially deep blue ones, are really infrequent. For instance, MPPS and HPS that carry two phenyl rings at the 2,5-positions only show green light (490–500 nm) in the solution and aggregate states. Replacing the phenyl rings with silylethynyl...
substituents can hardly move the emission to blue region neither [3a,b]. In order to obtain blue fluorescence, a series of tailored silole derivatives (Fig. 1) with flexible sp^3 hybridized silicon linkages between silole core and phenyl rings at the 2,5-positions are rationally designed. It is envisioned that decreasing the conjugation between silole ring and aromatic substituents at the 2,5-positions may shift the emission wavelength into blue region. Another issue we concerned more is whether these silole derivatives are AIE-active still when no phenyl rotors are bonded directly at the 2,5-positions of the silole ring. Herein, we will present the synthesis and optical properties of these new silole derivatives.

2. Experimental

2.1. General

THF was distilled from sodium benzophenone ketyl under nitrogen immediately prior to use. Di(phenylethynyl)silanes (5 and 6) were prepared by lithiation of phenylacetylene followed by reaction with dichlorosilanes [4j]. All the chemicals and other reagents were purchased from Aldrich and used as received without further purification.

\[^1H\] and \[^13C\] NMR spectra were measured on a Bruker AV 300 spectrometer in CD_2Cl_2 using tetramethylsilane (TMS; \(\delta = 0\)) as internal reference. UV spectra were measured on a Milton Roy Spectronic 3000 Array spectrophotometer. Photoluminescence (PL) spectra were recorded on a Perkin-Elmer LS 55 spectrophuorometer.

The absolute PL quantum yields of solid films were measured according to the literature method [8] by a C-701 integrating sphere. The MALDI-TOF mass spectra were recorded on a GCT premier CAB048 mass spectrometer. Elemental analysis was performed on an Elementary Vario EL analyzer. Crystal X-ray diffraction intensity data were collected on a Bruker-Nonices Smart Apex CCD diffractometer with graphite monochromated Mo K\(\alpha\) radiation. Processing of the intensity data was carried out using the SAINT and SADABS routines, and the structure and refinement were conducted by the SHELXL suite of X-ray programs (version 6.10).

2.2. Preparation of nanoaggregates

Stock THF solutions of the luminogens with a concentration of 10^{-4} M were prepared. Aliquots of the stock solution were transferred to 10 mL volumetric flasks. After appropriate amounts of THF were added, water was added dropwise under vigorous stirring to furnish 10^{-5} M solutions with different water contents. The PL measurements of the resultant solutions were then performed immediately.

2.3. Synthesis

2.3.1. 2,5-Bis(dimethyl(phenyl)silyl)-1-methyl-1,3,4-triphenylsilole (1)

A solution of lithium naphthalenide (LiNaph) was prepared by stirring a mixture of naphthalene (2.56 g, 20 mmol) and lithium granular (0.14 g, 20 mmol) in dry THF (30 mL) for 4 h at room temperature. The reaction mixture was then cooled in an ice bath and stirred for 30 min at room temperature. The resulting mixture was added dropwise to a solution of lithium naphthalenide (2.56 g, 20 mmol) in dry THF (30 mL) at room temperature. The reaction mixture was then stirred for 2 h at room temperature. The crude product was then purified by column chromatography on silica gel (10 g, 25% ethyl acetate in hexane) to furnish 2,5-bis(dimethyl(phenyl)silyl)-1-methyl-1,3,4-triphenylsilole (1).
temperature under nitrogen. Then a solution of methyl(phenyl) bis(phenylethynyl) silane (1.6 g, 5 mmol) in THF (10 mL) was added dropwise into the solution of LiNaph. After stirring for 30 min at room temperature, to the mixture was added dropwise Ph(CH₃)₂SiCl (8 mL, 20 mmol). After stirring for 1 h at room temperature, the mixture was poured into water and extracted with dichloromethane twice. The combined organic layers were washed by water and then dried by magnesium sulfate. After filtration, the solvent was evaporated under reduced pressure, and then the residue was purified through column chromatography (silica gel, hexane as eluent) to afford 1 (2.0 g, 66% yield) as white solid. ¹H NMR (300 MHz, CD₂Cl₂), δ (ppm): 7.46–7.32 (m, 5H), 7.23–7.17 (m, 2H), 7.14–7.04 (m, 8H), 6.98–6.91 (m, 6H), 6.79–6.76 (m, 4H), 0.27 (s, 3H), 0.15 (s, 6H), 0.21 (s, 6H). ¹³C NMR (75 MHz, CD₂Cl₂), δ (ppm): 172.0, 144.2, 143.1, 140.9, 135.1, 134.7, 134.6, 130.1, 129.6, 129.0, 128.6, 128.0, 127.6, 126.9, −0.4, −1.0, −6.1.

Fig. 2. ORTEP drawings of siloles 1 (CCDC 922983), 2 (CCDC 922984), 3 (CCDC 922985) and 4 (CCDC 922986).

Fig. 3. Molecular packings of siloles 1 and 4 in crystals, with indicated distance between the parallel planes of silole rings. Hydrogen atoms are omitted for clarity.
MALDI-TOF-MS (m/z) calcd for C_{39}H_{40}Si_{3} 592.2438 (M^+), found 615.1047 (M + Na^+). Anal. Calcd for C_{39}H_{40}Si_{3}: C, 78.99; H, 6.80. Found: C, 78.78; H, 6.84%.

2.3.2. 2,5-Bis(methyldiphenylsilyl)-1-methyl-1,3,4-triphenylsilole (2)

The procedure was analogous to that described for 1 (59% yield, a white solid). ^1H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 7.49–7.31 (m, 17H), 7.04–6.99 (m, 8H), 6.78–6.73 (m, 4H), 6.66–6.63 (m, 4H), –0.03 (s, 6H), –0.16 (s, 3H). ^13C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 173.1, 143.4, 142.4, 138.8, 138.6, 135.6, 135.0, 133.7, 129.9, 129.4, 129.2, 129.1, 128.4, 128.0, 127.8, 127.4, 126.8, –2.4, –6.6. MALDI-TOF-MS (m/z) calcd for C_{49}H_{44}Si_{3} 716.2751 (M^+), found 739.2454 (M^+ + Na^+). Anal. Calcd for C_{49}H_{44}Si_{3}: C, 82.07; H, 6.18. Found: C, 81.88; H, 6.21%.

2.3.3. 2,5-Bis(dimethylphenylsilyl)-1,1,3,4-tetraphenylsilole (3)

The procedure was analogous to that described for 1. White solid, 56% yield. ^1H NMR (300 MHz, CD₂Cl₂), δ (TMS, ppm): 7.76–7.73 (m, 4H), 7.53–7.39 (m, 6H), 7.15–7.09 (m, 2H), 7.00–6.86 (m, 10H), 6.81–6.78 (m, 4H), 6.69–6.66 (m, 4H), –0.18 (s, 12H). ^13C NMR (75 MHz, CD₂Cl₂), δ (TMS, ppm): 173.7, 143.5, 142.9, 140.8, 136.5, 134.5, 132.7, 130.7, 129.6, 128.8, 128.7, 127.8, 126.9, –0.3. MALDI-TOF-MS (m/z) calcd for C_{44}H_{42}Si_{3} 654.2594 (M^+), found 656.0916 (M^+ + H^+), 678.2716 (M^+ + Na^+). Anal. Calcd for C_{44}H_{42}Si_{3}: C, 80.68; H, 6.46. Found: C, 80.36; H, 6.45%.

2.3.4. 2,5-Bis(methyldiphenylsilyl)-1,1,3,4-tetraphenylsilole (4)

The procedure was analogous to that described for 1 (47% yield, a white solid). ^1H NMR (300 MHz, CD₂Cl₂), δ (TMS, ppm): 7.46–7.41 (m, 6H), 7.33–7.28 (m, 4H), 7.17–7.12 (m, 4H), 7.01–6.90 (m, 16H), 6.86–6.81 (m, 2H), 6.74–6.69 (m, 4H), 6.60–6.57 (m, 4H), 0.02 (s, 6H). ^13C NMR (75 MHz, CD₂Cl₂), δ (TMS, ppm): 174.9, 142.6, 142.4, 138.8, 138.5, 135.7, 135.5, 129.1, 130.5, 129.6, 128.5, 127.8, 127.4, 126.8, –1.3. MALDI-TOF-MS (m/z) calcd for C_{54}H_{46}Si_{3} 778.2907 (M^+), found 801.2826 (M^+ + Na^+). Anal. Calcd for C_{54}H_{46}Si_{3}: C, 83.24; H, 5.95. Found: C, 83.16; H, 5.93%.

3. Results and discussion

Scheme 1 shows the synthetic routes to 2,5-bis(phenylsilyl)-substituted 3,4-biphenylsiloles. The detailed synthetic procedures and characterization data are given in Experimental section. Briefly, these new siloles are synthesized via endo–endo intramolecular reductive cyclization of di(phenylethynyl)silanes (5 and 6) in the

![Fig. 4](image-url)
Fig. 4. Optimized molecular structures, and molecular orbital amplitude plots of HOMOs and LUMOs of siloles 1–4 calculated using B3LYP/6-31G(d) basis set.

![Fig. 5](image-url)
Fig. 5. (A) Absorption spectra of 1–4 in THF solutions. (B) PL spectra of 4 in THF/water mixtures with different water fraction (f_w), excited at 330 nm.
presence of LiNaph, followed by the treatment with diphenylmethylichlororosilane or phenyldimethylchlororosilane to afford target siloles (1–4) in moderate yields. These new siloles are soluble in common organic solvents such as dichloromethane and tetrahydrofuran (THF) but insoluble in water. The crystals of new siloles are grown from THF/methanol mixtures and are analyzed by single-crystal X-ray diffraction. The ORTEP plots of 1–4 are depicted in Fig. 2, where highly twisted conformations are observed for them. The molecular packings of siloles 1 and 4 in the crystalline state are displayed in Fig. 3 and those of 2 and 3 are given in Fig. S1 in Supporting Information (SI). It can be seen that the silole rings are located in a parallel pattern, but close \(\pi \)-stacking of silole rings is inhibited and \(\pi - \pi \) interactions between phenyl rings also greatly lowered, due to the propeller-like conformations. The theoretical calculations carried out using B3LYP/6-31G(d) basis set reveal that phenylsilyl substituents at the 2,5-positions have significant contributions to HOMOs and LUMOs (Fig. 4). Dense electronic cloud is located on the exocyclic Si–C bonds due to orbital overlapping between \(\sigma \) bonds on silicon and \(\pi^* \) orbitals of butadiene fragment, leading to efficient \(\sigma - \pi^* \) electronic delocalization [9].

Siloles 1–4 show similar absorption spectra in THF solutions (Fig. 5A). The absorption maxima of 3 and 4 are located at 318 and 320 nm, respectively, which are slightly red-shifted relative to those of 1 (311 nm) and 2 (313 nm), due to the inductive effect of phenyl rings at the 1,1-positions [4j,10]. In comparison with those of HPS, MPPS and 2,5-silyl substituted siloles [3a,b], due to the weak \(\sigma - \pi^* \) conjugation, the \(\Phi_F \) values of siloles 1–4 in films have blue-shifted by more than 50 nm in comparison with those of HPS, MPPS and 2,5-silyl substituted siloles [3a,b], leading to the more planar molecular conformations in the amorphous films as well as intermolecular interactions induced thereby. The emissions of siloles 1–4 in films have blue-shifted by more than 50 nm in comparison with those of HPS, MPPS and 2,5-silyl substituted siloles [3a,b], due to the weak \(\sigma - \pi^* \) conjugation. The \(\Phi_F \) values of siloles 1–4 in films are 18, 21, 12 and 16%, respectively, which are much higher than those in solutions, again confirming their AIE characteristics. These results demonstrate that the AIE characteristic is retained then if the there are no phenyl rotors conjugated directly to the 2,5-positions of the silole ring. Solid-state deep blue emissive siloles are achieved when sp\(^2\) hybridized silyl substituents take the place of aromatic groups at the 2,5-positions of silole ring.

Conclusions

In summary, for the sake of creation of luminescent materials with excellent blue emission in the aggregate state, a new synthetic protocol is proposed, based on which a series of novel 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles are synthesized and characterized. Their crystal and electronic structures and photophysical properties are investigated. These new siloles show AIE characteristics even if the phenyl rings are not directly bonded to the 2,5-positions of silole ring, indicating that the phenyl rotors at the 3,4-positions are much more important to keep the AIE characteristic of siloles. Deep blue emissions are observed from these new siloles in the film and crystal states. The weak \(\sigma - \pi^* \) conjugation between phenylsilyl groups and silole ring enables the molecule to emit much bluer lights than most siloles reported so far.

Fig. 6. Photos of (A) THF and aqueous solutions, (B) powders and (C) crystals of 4, taken under the illumination of a UV lamp.

<table>
<thead>
<tr>
<th>Table 1 Optical properties of siloles 1–4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{\text{abs}}) (nm)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Solution(^a)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

\(^a\) In THF solution (10 \(\mu \)M); \(^b\) Aggregate in aqueous solutions; \(^c\) Film drop-casted on quartz plate; \(^d\) Determined in amorphous film by integrating sphere. The \(\Phi_F \) values in THF solutions are measured below 0.01%, using 9,10-diphenylanthracene as standard.
Acknowledgments
We acknowledge the financial support from the National Natural Science Foundation of China (51273053, 21104012 and 21074028), the National Basic Research Program of China (973 Program, 2013CB834702), the Natural Science Foundation of Zhejiang Province (Y4110331), the Project for Changjiang Scholars and Innovative Research Teams in Chinese Universities (IRT 1231) and the Project of Zhejiang Key Scientific and Technological Innovation Team (2010R50017). B. Z. Tang thanks the support of the Guangdong Innovative Research Team Program of China (2011OC0105067115).

Appendix A. Supplementary data
Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dyepig.2013.05.016.

References

(f) Shih PI, Chuang CY, Chien CH, Diao EWN, Shu CF. Highly efficient non-doped blue-light-emitting diodes based on an arachidonic derivative end-capped with tetraphenylenylethene groups. Advanced Functional Materials 2007;17(16):3141–6;

