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Abstract
The microwave induced elastic deformation of a metallic thin film in a cavity structure is
computed using a Maxwell stress tensor method and we found that the microwave can induce a
significantly enhanced deformation at the anti-symmetric resonance mode, and the
deformation magnitude is a few orders larger than that of the non-resonance case. The
previous transmission line approach for the electromagnetic stress (Wang et al 2011 Phys. Rev.
B 84 075114) is applied to develop an analytical model of deformation based on elastic theory.
We show that the analytical model can reproduce the numerical results almost quantitatively
and at the same time reveal the underlying physics.

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical force has received a lot of attention and has
been applied successfully in recent years in small particle
manipulations [1–5]. In a broader sense, electromagnetic
induced forces and their ability to manipulate a variety of
structures such as tunable metamaterials [6], waveguides
[7, 8], nanowires [9, 10] and nanopatches [11–13] have been
investigated. However, the effect of stress induced by
electromagnetic wave on structures is rarely considered,
probably because it is assumed a priori that the mechanical
effect should be small and hardly detectable (except for soft
biological materials [14, 15]), particularly in the microwave
regime where it is difficult to focus the microwave onto a
small spot with very high intensity due to the diffraction
limit. Accurate numerical computation of electromagnetic
stress of realistic systems is also fairly involved and previous
consideration concerned simple model systems [16]. It is
the purpose of this article to explore the microwave-induced
stress in a metallic double-film cavity structure, and we
show that readily measurable deformation can be induced
in very simple settings. Using a Maxwell stress tensor
formulation, we determined accurately the form and magnitude
of the microwave-induced deformation and we showed that
the deformation can be significantly enhanced at the anti-
symmetric resonance mode which has a high quality factor.
We also showed that the salient features of numerical results

can be reproduced analytically using a simple model based on a
previously developed transmission line theory [12] which can
help to reveal the underlying physics.

2. The metallic double-film structure

We consider a three-dimensional structure consisting of two
metallic thin films clamped at the edges by a surrounding
dielectric frame (εr = 2.3) as shown schematically in figure 1.
The two metallic films have a length of a, width of b

and thickness of t and they are separated by an air gap of
d = w − 2t , where w is the thickness of the surrounding
dielectric. We will consider the mechanical deformation of the
upper film induced by an incident plane wave at the microwave
frequency. The incident field has the form:

Einc = x̂E0 exp[i(−k0z − ωt)]. (1)

The metal is assumed to be gold with a conductivity of
σ = 4.098 × 107 S m−1.

3. Numerical results and discussions

Photon pressure produced by an incident plane wave on a single
metallic film is very weak even at its resonance. However,
for the configuration shown in figure 1, the two metallic
films (separated by an air gap) form an electromagnetic
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Figure 1. A schematic picture showing the system under
consideration. Two metallic films of dimensions a × b × t are
separated by an air gap and are clamped at the edges by a dielectric
frame. The wave vector of the incident plane wave is perpendicular
to the surfaces of the metallic films.
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Figure 2. Resonance modes of the metallic double-film structure
induced by the incident microwave: (a) the symmetric mode is
characterized by parallel currents on the surfaces of the films and
charges with the same sign at the ends; (b) the anti-symmetric mode
is characterized by anti-parallel currents on the surfaces of the films
and charges with opposite signs at the ends. The arrows show the
directions of the induced currents.

cavity [11, 12]. The near-field coupling between the two
metallic films will split the resonance into a so-called
symmetric/bonding mode and an anti-symmetric/anti-bonding
mode (see figure 2) [17]. The symmetric mode is characterized
by induced parallel currents on the surfaces of the films and
accumulating charges with the same sign at the ends. Such
a mode has a relatively low quality factor and we are not
interested in it. The anti-symmetric mode has a much higher
quality factor as the electromagnetic energy is well confined in
the cavity. In the anti-symmetric mode, anti-parallel currents
are induced on the surfaces of the two films due to the
time-varying electromagnetic flux. The oscillations of the
currents produce a non-uniform charge distribution on the films
with most of the charges accumulating at the edges along y

direction. As a result, we expect the electric field to be strong
at the edges while the magnetic field should be strong near
the middle of the films. Numerical results shown in figure 3
computed by a finite element package (COMSOL [18]) do

verify such a distribution. In the numerical simulations, we set
a = b = 10 mm, t = 10 µm, w = 120 µm and we assume
a microwave with a total power of 200 mW impinging on the
upper surface of the metallic film, which is a plane wave with
its wave vector being perpendicular to the metal surface and
the electric field being along x-axis (as defined in equation (1)).
Figures 3(d) and (e) show the electric and magnetic fields at
the resonance frequency f = 14.45 GHz. The electric field
between the two films is dominated by the z component, which
has opposite directions at the two edges since the accumulated
charges have opposite signs. The magnetic field is dominated
by the y component, which is strong in the middle region.
The red squares in figures 3(b) and (c) show the numerically
computed current and charge distributions, which confirm our
previous conclusion. We will show by our analytical model
later that the distributions are approximately sinusoidal. The
electromagnetic field-induced stress is needed to calculate the
elastic deformation of the metallic film. The electromagnetic
total fields are first computed, and then the stress is evaluated
using the Maxwell stress tensor approach [19]. We note
the Maxwell stress tensor approach should not be applied
to calculating internal stresses inside a material if the fields
penetrate the material [20]. Fortunately, in the microwave
regime the penetration depth is negligibly small compared with
the thickness of the metal film so that we do not need to worry
about the internal stress. In the microwave regime, only the
surface stress exerted on the metallic film is important, which
can be obtained using the Maxwell stress tensor approach.
Figure 4(a) shows the distribution pattern of the numerically
computed surface stress exerted on the upper film. The
stress takes negative values near the edges along y direction
while it is positive in the middle region. This corroborates
intuitively with the charge and current distributions. At the
edges the force is attractive because the accumulated charges
have opposite signs. In the middle region the anti-parallel
currents produce a repulsive force. This surface stress acts as
a boundary load and the deformation caused by the stress is
calculated by COMSOL with the clamped boundary condition
[21]. Figure 3(a) shows the numerically computed maximum
deformation of the upper film as a function of the exciting
frequency, showing a typical resonance profile. We see that
the deformation is strongly enhanced at the resonant frequency
14.45 GHz. Figure 4(c) shows the numerically computed
deformation pattern of the upper film at 14.45 GHz. The
maximum deformation uz = 25 nm happens at the centre
point of the film. We note that when the system is off-
resonance (e.g. 15.0 GHz), the maximum deformation is only
a few angstroms, which is orders of magnitude smaller than
the resonance case. This indicates a very strong enhancement
due to the field enhancement at the cavity resonance. Even
at the resonance, the deformation is still small compared with
the air gap between the two films. This is the reason that we
can first compute the electromagnetic fields and then apply the
corresponding surface stress to calculate the deformation. If a
larger microwave power or a much thinner film is employed,
the deformation may not be considered as a small perturbation,
the electromagnetic part and the elastic part interact with each
other and they have to be both considered simultaneously. We
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Figure 3. Resonance enhancement of microwave-induced
deformation of the metallic thin film structure. (a) Maximum
displacement of the upper film as a function of the exciting
frequency. (b) Numerical (squares) and analytical (line) results of
the current distribution along x direction. (c) Numerical (squares)
and analytical (line) results of the charge distribution along x
direction. (d) Ez component of the electric total field at resonance
on the symmetry plane between the two films showing that the
electric field is strongest at the edges. (e) Hy component of the
magnetic total field at resonance on the symmetry plane between the
two films showing the magnetic field is strongest near the centre.

can solve the problem iteratively but for the configuration we
are considering, this is not necessary.

4. Analytical model

In the following we show that this problem can be addressed
analytically using a model that captures the essence of
the physics at this frequency scale. We first obtain the
electromagnetic wave-induced stress using a transmission
line model [12]. The results given by the model are first
briefly summarized (equations (2a), (2b)–(6)), then we extend
the model by elastic theory to calculate the stress-induced
deformation. Under the condition d � a, the two metallic
films can be treated approximately as a transmission line where
the induced current and voltage are governed by the telegraph
equations [22, 23]:

∂V (x)

∂x
+ (R − iωL)I (x) = iωµ0

∫ z2

z1

ŷ · Hinc(z) dz, (2a)

∂I (x)

∂x
+ (G − iωC)V (x) = iω(G + C)

∫ z2

z1

ẑ · Einc(z) dz,

(2b)

where Hinc(z) and Einc(z) are the incident magnetic and
electric fields, R is the resistance per unit length, G is
the conductance per unit length of the medium sandwiched
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Figure 4. Electromagnetic surface stress and elastic deformation at
resonance. (a) Electromagnetic surface stress calculated
numerically by Maxwell tensor approach. (b) Electromagnetic
surface stress calculated analytically by the model described in the
text. (c) Numerical result of the deformation along z direction.
(d) Analytical result of the deformation along z direction.

between the films (zero in this case), L = µ0d/b and
C = ε0b/d are the per-unit-length inductance and capacitance
of the system, respectively. By applying the resonance
boundary condition I (0) = I (a) = 0, we can solve the above
two equations to obtain the current distribution as

I (x) = B

A2

[
1 − cos(Ax) − tan

(
Aa

2

)
sin(Ax)

]
, (3)

where
A =

√
ω2CL + iωRC, (4a)

B = −µ0ω
2C

∫ z2

z1

ŷ · Hinc(z) dz. (4b)

At the microwave frequency we take the limit R → 0 and then
the current distribution becomes

|I (x)| ≈
∣∣∣∣ B

A2
tan

(
Aa

2

)
sin(Ax)

∣∣∣∣ (5)

as the tangent term is dominant at resonance and so the current
distribution on the metallic film is approximately sinusoidal.
The lowest order resonance frequency is determined by
Aa/2 = π/2, which gives ω0 ≈ π/(a

√
LC). Combining the

expressions of L and C we obtain the resonance wavelength
λ ≈ 2πc/ω = 2a, which indicates that the resonance
frequency here is near the resonance frequency (antenna
resonance) of a single film. We note this resonance frequency
is valid under the condition d/a → 0. For a finite value
of d/a the electric field leakage effect will contribute to an
additional capacitance. We take this into account by assigning
an effective length to the total capacitance [24], i.e. replace Ca
by Caeff with aeff = a(1 + αd/a), where α is the coefficient
of the first order correction and this correction changes the
resonance frequency to

ω0 ≈ π

a
√

LC(1 + αd/a)
. (6)
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By fitting the numerically computed current distribution in
figure 3(b) we obtain α = 0.73. This α is the only parameter
in the model and the value is then used throughout our model
to calculate the charge distribution and the electromagnetic
surface stress. The lines in figures 3(b) and (c) show the
analytical results of current and charge distributions, where
the charge distribution is obtained by applying the conservation
law of ∇ ·j +∂ρ/∂t = 0. The analytical results agree well with
numerical results obtained using full wave electromagnetic
field solvers. The electromagnetic surface stress is then
obtained by calculating the interaction force point by point
between the charges and currents with the Coulomb’s law
and the Biot–Savart law. Figure 4(b) shows the analytically
calculated stress distribution, where a good match with the
numerical result obtained with Maxwell stress tensor approach
is clear.

The elastic deformation of the film is then obtained
using elastic theory. The deformation of a thin film under
a vertical surface stress can be determined by the equilibrium
equation [25]:

D∇4uz − P(x, y) = 0, (7)

where D = Ygt
3/[12(1−ν3)] is the flexural rigidity, P(x, y) is

the surface stress/pressure obtained using the transmission line
model and uz(x, y) is the deformation along the z direction.
The Young’s modulus and the Poisson’s ratio of gold are
Yg = 79 GPa and ν = 0.44, respectively. The equation is
solved by applying the clamped boundary condition:

uz = 0,
∂uz

∂x
= 0 at x = 0, a, (8a)

uz = 0,
∂uz

∂y
= 0 at y = 0, b. (8b)

In compliance with this boundary condition, we write the trial
solution as [21]

uz =
∞∑

m=1

∞∑
n=1

Cmn

[
1 − cos

(
2mπx

a

)] [
1 − cos

(
2nπy

b

)]
.

(9)

The coefficients Cmn are determined variationally by the Ritz
method:

∂(U − W)

∂Cmn

= 0, (10)

where the strain energy U is

U = D

2

∫∫ (
∂2uz

∂x2
+

∂2uz

∂y2

)2

dx dy, (11)

and the work done by the surface stress is

W =
∫∫

P(x, y)uz dx dy. (12)

By truncating the expansion orders at finite values (mmax = 3
and nmax = 3) we obtain a set of linear equations that can be
solved for Cmn. Figure 4(d) shows the analytical results of
the deformation, where an excellent match with the numerical

results obtained using brute force simulations is again
evident.

5. Conclusions

In conclusion, we have numerically and analytically studied
the elastic deformation of a metallic thin film induced by
an electromagnetic plane wave at the microwave frequency.
We obtained the deformation pattern and showed that the
deformation is greatly enhanced at resonance. Deformation
on the nanometre scale (maximum value of about 25 nm)
is found when utilizing a microwave with 200 mW power
incident on the metallic surface. A transmission line
model is applied to capture the underlying physics in the
electromagnetic part, which almost reproduces the numerical
results of electromagnetic surface stress with a fitting fringe
effect parameter. A variational method combined with Fourier
expansions is then used to calculate the deformation of
the metallic thin film, which gives results that match the
numerical results very well. It is well established that strong
opto-mechanical effects can be observed at optical frequencies
and we prove in this paper that microwave can also induce
mechanical effects with the help of resonance. The resonance
behaviour in our considered structure is very robust and the
structure forms a microwave ‘drum’ that can vibrate under the
modulation of the incident wave. We note in particular that
a very simple cavity structure can already couple microwave
to the mechanical degrees of freedom and this may find
applications in the electromagnetic wave manipulations of
macro structures in the future.
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