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A Majorana zero bound mode exists in the vortex core of a chiral pþ ip superconductor or superfluid,
which can be driven from an s-wave pairing state by two-dimensional spin-orbit coupling. We propose here a
novel scheme based on realistic cold atom platforms to generate two-dimensional spin-orbit interactions in a
blue-detuned square optical lattice, and predict both the quantum anomalous Hall effect and chiral topological
superfluid phase in the experimentally accessible parameter regimes. This work may open a new direction
with experimental feasibility to observe non-Abelian topological orders in cold atom systems.
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The search for non-Abelian Majorana fermions has been
a focus of both theoretical and experimental studies in
condensed matter physics, driven by both the pursuit of
exotic fundamental physics and the applications in fault-
tolerant topological quantum computation [1–3]. Majorana
zero modes (MZMs) are predicted to exist in the vortex core
of a two-dimensional (2D) intrinsic (pþ ip)-wave super-
conductor (SC) and at the ends of a one-dimensional (1D)
p-wave SC [1]. Recent studies show that 1D and 2D effec-
tive p-wave superconductivity can be obtained through
heterostructures formed by conventional s-wave SCs and
topological insulators [4] or spin-orbit (SO) coupled semi-
conductors with Zeeman splitting [5,6], leading to MZMs in
the case of an odd number of subbands crossing the Fermi
level. Following the theoretical prediction, signatures of
Majorana end states have been observed in the semiconduc-
tor nanowire or s-wave superconductor heterostructures [7]
through tunneling transport measurements [8]. However,
demonstrating the non-Abelian statistics of MZMs in the
braiding operation [2], as an unambiguous verification, is a
far more demanding task and not yet available in solid-state
experiments.
On the other hand, the recent great advancement in

realizing synthetic SO coupling in cold atoms [9–14] opens
intriguing new avenues to probe topological phases [15–28]
with clean platforms in a fully controllable fashion. So far
the experimentally realized SO interaction [10–14] is a 1D
SO term with equal Rashba and Dresselhaus amplitudes
through a two-photon Raman process as theoretically
pointed out in Ref. [9]. Detailed investigations show that
only the 1D SO term can be realized in an atom gas in the
continuum with an internal Λ-type configuration as consid-
ered in experiments [9,29,30]. With such 1D SO interaction
it is unfortunately not optimistic to reach the topological
superfluid (SF) phase from an s-wave pairing state in cold
atoms. The reason is because, on the one hand, in a quasi-1D
system no long-range s-wave order can be obtained; on
the other hand, the proximity effect, as used in solid-state

experiments [7], is not realistic for cold atoms. Therefore, to
find out a truly experimental scheme to observe MZMs with
higher dimensional SO interactions is a foremost outstanding
goal in the current field of cold atoms.
In this Letter, we propose a novel scheme to observe 2D

SO interaction for (pseudo)spin-1=2 cold fermions trapped
in a blue-detuned square optical lattice and coupled to two
periodic Raman fields, and predict the quantum anomalous
Hall (QAH) effect and chiral topological SF phase in the
single-particle and interacting regimes, respectively. The
main results of this Letter include several important aspects.
(I) The realization of the 2D SO interaction is based on
the minimal setup by integrating the creations of a blue-
detuned square lattice and periodic Raman fields though
the same standing-wave lasers. The minimal realization
is topologically stable against phase fluctuations of the
applied lasers. (II) In the single-particle regime, the realized
2D SO coupled system is already nontrivial and describes a
QAH insulator, and in the interacting regime the topologi-
cal SF phase with MZMs can be obtained. (III) With the
numerical estimates based on the realistic cold atom (40K)
systems, we show that the predicted SO interaction and
exotic topological orders can be studied with currently
available experimental platforms.
We start with the quasi-2D cold fermions trapped in a

conventional square optical lattice, with their internal
degree of freedom (atomic spins) experiencing periodic
Raman fields Mx;y induced by two-photon processes, as
illustrated in Fig. 1. The dynamics of fermions are governed
by the following Hamiltonian:

H ¼ p2
x

2m
þ p2

y

2m
þ VðrÞ þmzðjg↑ihg↑j − jg↓ihg↓jÞ

− f½MxðxÞ þ iMyðyÞ�jg↑ihg↓j þ H:c:g; (1)

where Mx ¼ M0 sinðk0xÞ and My ¼ M0 sinðk0yÞ, and the
optical-dipole potential VðrÞ¼−V0½cos2ðk0xÞþcos2ðk0yÞ�
forms the square lattice. Below we describe how to obtain
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H with the realistic cold atom platform (details of the
realization can be found in the Supplemental Material
[31]). The diagram for light-atom couplings is shown in
Fig. 1(a), where four blue-detuned lasers are applied to
induce the couplings, with two standing-wave lasers Ω1;2
linearly polarized along the z axis and propagating in the
x-y plane, and two σþ-polarized plane-wave lasers ~Ω1;2
propagating along the z direction. According to the selection
rule, the standing-wave and plane-wave lasers can induce
the transitions from ground states jg↑;↓i to excited ones
depicted by the blue (for Ω1), red (for Ω2), and black (for
~Ω1;2) lines in Fig. 1(a), respectively. For the present purpose,
we set Ω1 ¼ Ω0 sinðk0xÞ and Ω2 ¼ Ω0 sinðk0yÞ, while
~Ω1 ¼ i ~Ω2 ¼ Ω0 are constants [31]. In the parameter regime
that Δ1;2 ≫ jΔ1 − Δ2j ≫ jΩ2

0=Δ1;2j, the population of the
excited state jei is negligible [9], and the effective model of
ground states is governed by following two effects induced
by these transitions. First, the atom-light couplings contri-
bute to diagonal potentials for jg↑;↓i given by V↑¼P

j¼1;2ℏðjΩjj2=Δjþj ~Ωjj2=ΔbjÞ and V↓¼
P

jℏðj ~Ωjj2=Δjþ
jΩjj2=ΔajÞ, which create the square lattice. Second, note
that the couplings between jg↑;↓i and jei consist of two
Λ-type configurations, through which two independent
Raman fields are generated. In particular, Ω1, ~Ω1 generate
one Raman field Mx ¼ ℏjΩ0j2 sinðk0xÞ=Δ1, and Ω2, ~Ω2

generate another one given by iMy ¼ iℏjΩ0j2 sinðk0yÞ=Δ2.
TheRamanprocesses can beprecisely tuned in experiment to
have a small two-photon off resonance δðjδj ≪ jΩ2

0=Δ1;2jÞ)
which gives rise to the constant Zeeman term with mz ¼
ℏδ=2 inH [19].Wenote thatwhile the applied lasersΩ1;2 and
~Ω1;2 can also couple to other ground states [e.g., j9=2,þ5=2i
in Fig. 1(a)], these couplings cannot lead to additionalRaman
transitions between jg↑;↓i and other ground levels due to
large two-photon detunings which are much greater than
Raman fields jΩ2

0=Δ1;2j [12,13,31], and thus are neglected.
In the realistic experiment (for 40K atoms), the magnitudes
of detunings Δa;b;j (can be over 1.0 THz) are much larger
than their differences (in the order of 10 ∼ 100 MHz) [12].

Therefore in the formulas of Vσ and Mx;y we can take that
Δ1 ¼ Δ2 ¼ Δa1;2 ¼ Δb1;2 ¼ Δ, which is followed by
V↑ ¼ V↓ ¼ −ðℏjΩ0j2=ΔÞ½cos2ðk0xÞ þ cos2ðk0yÞ� þ const
and M0 ¼ ℏjΩ0j2=Δ. Neglecting the constant terms yields
the effective Hamiltonian, Eq. (1).
Before proceeding further, we provide several important

remarks on the realization. First, the standing-wave lasers
Ω1;2 are used to create both the square lattice and Raman
fields, which minimizes the number of applied lasers for the
realization. Second, since both the square lattice and the
periodic spatial profile of the Raman fields are determined
by the same standing-wave lasers, the phase fluctuations
in Ω1;2, characterized by Ω1 ¼ Ω0 sinðk0xþ ϕfluc

1 Þ and
Ω2 ¼ Ω0 sinðk0yþ ϕfluc

2 Þ, only lead to a global shift of
the lattice and Raman fields as illustrated in Fig. 1(b). The
relative spatial configuration of Mx;y and VðrÞ is always
automatically fixed and therefore the effective Hamiltonian,
Eq. (1), is unchanged.This greatly simplifies the experimental
setup in the realization. Finally, the blue detuning is essential
for the realization. If using red-detuned lasers, i.e.,Δa;b;j < 0,
one has V↑;↓¼−ðjΩ2

0=ΔjÞ½sin2ðk0xÞþ sin2ðk0yÞ�, which
shifts 1=2 lattice site relative to the Raman fields. The red-
detuned laser couplings cannot lead to 2D SO interaction or
nontrivial topological orders as studied below.
The tight-binding model of H can be derived straight-

forwardly. We take that fermions occupy the lowest s
orbitals ϕsσ (σ ¼ ↑;↓), and consider only the nearest-
neighbor hopping terms. The tight-binding Hamiltonian is
given by HQAH ¼ −tsPhi⃗;j⃗i;σ ĉ

†

i⃗σ
ĉ
j⃗σ
þP

i⃗
mzðn̂i⃗↑ − n̂

i⃗↓
Þþ

½Phi⃗;j⃗it
i⃗ j⃗
soĉ

†

i⃗↑
ĉ
j⃗↓
þ H:c:�, where ts denotes spin-conserved

hopping, the 2D lattice-site index i⃗ ¼ ðix; iyÞ, and
n̂i⃗σ ¼ ĉ†

i⃗σ
ĉi⃗σ . From the even parity of the s orbitals and

the periodic profile of Raman fields shown in Fig. 1(b), we
know that the Raman fields (s orbitals) are antisymmetric
(symmetric) corresponding to the center of each lattice site.
Because of this relative spatial configuration, it can be
directly verified that the spin-flip hopping terms due to the

Raman fields satisfy tjx;jx�1
SO ¼ �ð−1Þjx tð0ÞSO and t

jy;jy�1

SO ¼
�ið−1Þjy tð0ÞSO, where tð0ÞSO ¼ M0

R
d2r⃗ϕsðx; yÞ sinðk0xÞϕs

ðx − a; yÞ with a the lattice constant [31]. Redefining
the spin-down operator ĉj⃗↓ → eiπðxjþyjÞ=aĉj⃗↓, we recast
the Hamiltonian into

HQAH ¼ −ts
X
hi⃗;j⃗i

ðĉ†
i⃗↑
ĉ
j⃗↑
− ĉ†

i⃗↓
ĉ
j⃗↓
Þ þ

X
i

mzðn̂i⃗↑ − n̂
i⃗↓
Þ

þ
�X

jx

tð0ÞSOðĉ†jx↑ĉjxþ1↓ − ĉ†jx↑ĉjx−1↓Þ þ H:c:

�

þ
�X

jy

itð0ÞSOðĉ†jy↑ĉjyþ1↓ − ĉ†jy↑ĉjy−1↓Þ þ H:c:

�
: (2)

FIG. 1 (color online). (a) A realistic optical-dipole transition
diagram in cold fermions (40K) coupled to two pairs of laser
beams Ω1;2 (along the x, y directions, respectively) and ~Ω1;2
(along the z direction) under the blue-detuned condition. The
notations F, P, S are angular momentum indices for atomic
states. (b) With this configuration, a square lattice potential and
two periodic Raman fields Mx;y are simultaneously generated.
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It can be seen that the staggered factors ð−1Þjx;y in the
spin-flip hopping terms effectively reverses the hopping
coefficient ts → −ts for spin-down states, which is a key
consequence of the blue-detuned laser couplings and can
lead to the QAH effect [31]. In the k space we have
HQAH¼−Pk;σσ0 ĉ

†
k;σ½dzðkÞσzþdxðkÞσxþdyðkÞσy�σ;σ0 ĉk;σ0 ,

with dx¼2tð0ÞSOsinðkyaÞ, dy¼2tð0ÞSOsinðkxaÞ and dz¼−mzþ
2tscosðkxaÞþ2tscosðkyaÞ. The bulk is gapped when
jmzj≠4ts, 0 and the phase diagram of this Hamiltonian
is determined by the first Chern number CQAH

1 ¼
ð4πÞ−1 R d2kn · ∂kxn × ∂kyn, with n¼ðdx;dy;dzÞ=jd⃗ðkÞj.
In particular, one can verify that CQAH

1 ¼ sgnðmzÞ when

0 < jmzj < 4ts and tð0ÞSO ≠ 0, and the above Hamiltonian
describes a quantum anomalous Hall insulator [16]. On the
other hand, for the regime with jmzj > 4ts the system is a
trivial insulator.
We next study the topological chiral superfluid phase by

considering an s-wave interaction which can be well con-
trolled with Feshbach resonance in cold atoms [32]. In an
optical lattice, this interaction is described by the attractive
Fermi Hubbard model Hint ¼ −Pi⃗Uni⃗↑ni⃗↓, where the re-

gularized 2D effective interaction U¼ℏ2as
ffiffiffiffiffiffi
8π

p
=ðmlzl22dÞ

with lz¼ðh=mωzÞ1=2, l2D¼ðh=mω2DÞ1=2, and the s-wave
scattering length as > 0. The parameters ω2D and ωz
denote the 2D square lattice trapping frequency and a
tight trapping frequency along the z axis, respectively.
We first study the superfluid phase with the self-consistent
mean-field approach by introducing the s-wave superfluid
order parameter by Δs ¼ ðU=N0Þ

P
khck↑c−k↓i with N0

the number of lattice sites. Then the Bogoliubov de
Gennes (BdG) Hamiltonian in the Nambu basis ψk ¼
ðck↑; ck↓; c†−k↓;−c†−k↑Þ can be written as HBdG ¼P

kψ
†
kHBdGðkÞψk, where

HBdG ¼ dxσx ⊗ τz þ dyσy ⊗ τz þ dzσz ⊗ I − μI ⊗ τz

þ ðΔsI ⊗ τþ þ H:c:Þ: (3)

Here μ is the chemical potential, τx;y;z are Pauli matrices
acting on the Nambu space, and τ� ¼ ðτx � iτyÞ=2. The
s-wave order parameter is solved by the gap equation

N0

U
¼ 1

4

X
k;α¼�

1

Eα
k

�
1þ α

d2zðkÞ
wk

�
tanh

�
1

2
βEα

k

�
; (4)

where the energy spectra E�
k ¼ ðΓ2 þ jd⃗kj2 � 2wkÞ1=2by

diagonalizing HBdG, with wk ¼ ½μ2ðd2x þ d2yÞ þ d2zΓ2�1=2
and Γ2 ¼ μ2 þ jΔsj2, and β ¼ 1=ðkBTÞ.
To identify an effective pþ ip chiral superfluid phase

from the Hamiltonian HBdG, we analyze the special
situation with mz ¼ 4ts. In this case, the low-energy
spectrum is captured by the Hamiltonian (up to linear

order of the momentum) HBdG ¼ 2tð0ÞSOðkxσy þ kyσxÞτz−μτz þ ðΔsτþ þ H:c:Þ. It is interesting that this low-energy
model is equivalent to the surface Hamiltonian of a three-
dimensional topological insulator in proximity to an s-wave
SC [4], which renders the 2D chiral pþ ip topological SC
phase. We therefore expect that in our model the chiral
Majorana edge modes and non-Abelian MZM in the vortex
core can be obtained [33]. The full SF phase diagram can be
determined by analyzing the properties of the bulk gap. By
examining E−

k withmz > 0 we find that the bulk gap closes
at k ¼ ð0; 0Þ and k ¼ ðπ; πÞ for μ2 þ jΔsj2 ¼ ðmz − 4tsÞ2
and ðmz þ 4tsÞ2, respectively. Furthermore, at the points
k ¼ ð0; πÞ and k ¼ ðπ; 0Þ the bulk gap closes if
μ2 þ jΔsj2 ¼ m2

z . These properties lead to a rich phase

diagram with tð0ÞSO ≠ 0 as presented below. From the low-
energy Hamiltonian HBdG we know that the superfluid
phase with jΔsj≳ 0, mz ¼ 4ts, and μ ¼ 0 is topological.
This implies that if jmzj > 2ts, the SF phase is topologi-
cally nontrivial with Chern number CSF

1 ¼ þ1 for
ðjmzj − 4tsÞ2 < μ2 þ jΔsj2 < m2

z , and CSF
1 ¼ −1 for m2

z <
μ2 þ jΔsj2 < ðjmzj þ 4tsÞ2. The change by two in the Chern
number originates from the fact that tuning μ2 þ jΔsj2 from
less than to larger than m2

z reverses the mass terms at both
k ¼ ð0; πÞ and k ¼ ðπ; 0Þ. On the other hand, we know that
when 0 < mz < 2ts and μ2 þ jΔsj2 < jmzj2 the system is in
the QAH insulating phase with CQAH

1 ¼ 1 or equivalently
CSF
1 ¼ þ2, since the Nambu space doubles the Chern

number. Starting from this QAH phase and tuning the
parameters into the regime, m2

z < μ2þjΔsj2< ðjmzj−4tsÞ2
with jmzj < 2ts reverses the Dirac mass terms at k ¼ ð0; πÞ
and k ¼ ðπ; 0Þ, yielding a trivial phase in this parameter
regime. Finally, for the parameter regimewith ðjmzj−4tsÞ2<
μ2þjΔsj2< jmzjþ4tsÞ2 and jmzj < 2ts, one further gets that
CSF
1 ¼ −1. In cold atoms the parameters such asmz, ts and μ

can be precisely adjusted in the experiment to tune the system
into topological chiral SF phases.
The self-consistent solutions for Δs and the mean-field

phase diagram are shown in Figs. 2(a) and (b), respectively.
It can be seen that the s-wave order Δs vanishes when the
noninteracting Hamiltonian HTI has a large insulating gap
and the chemical potential μ is located deep in the band gap
[left most area in (a)]. On the other hand, an appreciable
Δs is obtained in the area with 1.5ts < μ < 3.5ts and
0 < mz < 3.0. In such a parameter regime the SO terms
of dx and dy dominate over dz and a relatively large density
of states at the Fermi level is present. In Fig. 2(b) the
superfluid phases with both CSF

1 ¼ þ1 and −1 are
obtained, respectively, leading to chiral and antichiral
Majorana edge modes localized in the boundary [1].
Note that in 2D superfluids no long-range order exists at

the finite temperature and the critical temperature by mean-
field theory is often overestimated. Instead, the Berezinsky-
Kosterlitz-Thouless (BKT) transition occurs at the critical
temperature which is limited by entropically driven vortex
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and antivortex proliferation [34]. The BKT temperature is
calculated by

TBKT ¼ π

2
ρsðΔs; TBKTÞ; (5)

whereρs is the superfluid stiffness (superfluid density). In the
presence of the phase fluctuation, the superfluid order
parameter takes the form Δs ¼ Δ0eiθðrÞ, where θ varies
slowly in the position space. The simplest way to estimate
the stiffness is to use its relation to the supercurrent density
js ¼ ρs∇θðrÞ. For the case that θ varies slowly with the
position, we can approximate that q ¼ ∇θðrÞ, which implies
that the s-wave pairing occurs between two fermions with a
center-of-mass momentum q. The current can also be
calculated by the variation of the free energy js ¼
1
ATr½e−βHBdGδHBdGðμ;Δ0;∇θÞ=δq�=Tr½e−βHBdG �, with A the
area of the lattice. Solving this equation and the gap equation
for Δs, together we can get the stiffness by ρs ¼ js=q. It can
beverified that these results are consistentwith those through
a standard functional path integral approach, where the phase
fluctuation of the superfluid order is described by an effective
action Sfluc ¼ ð1=2Þ R d2rρsð∇θÞ2. The BKT temperature is
then given by Eq. (5). We have numerically confirmed that
when Δs ¼ 0 the supercurrent js vanishes.
The numerical results for TBKT versusU and μ are shown

in Fig. 3. For the case that the Fermi energy touches the
bulk edge, the BKT temperature increases gradually withU
[blue line in Fig. 3(a)], while when the Fermi energy is
located deep into the bulk, the TBKT increases sharply with
U and approaches a saturate magnitude in a small Hubbard
interaction (red, green, and black curves). The BKT
temperature versus μ with fixed U ¼ 5ts and mz is plotted
in Fig. 3(b). It can be found that with mz ¼ 3ts, the
maximum TBKT is around 0.3ts. Note that the upper value
of the blue detuning is limited by the fine-structure splitting
and can be taken as 2π × 1.7 THz for 40K atoms [12,35],
which gives the recoil energy ER=ℏ ∼ ℏk20=2m ¼
2π × 8.5 kHz using lasers of wavelength 764 nm to
form the square lattice. Taking Ω0 ¼ 2π × 0.27 GHz,
we have V0 ¼ 5ER, the lattice trapping frequency
ω ¼ 2π × 34.9 kHz, and the hopping coefficients

tð0Þso =ℏ ∼ ts=ℏ≃ 2π × 0.52 kHz. With this parameter
regime we find that the bulk gap for QAH state Eg ¼
2π × 2.08 kHz by setting δ ¼ 4ts, corresponding to the
temperature T ≈ 0.33TF ≈ 100 nK for observation, and
TBKT for the topological superfluid phase with U ¼ 5ts,
δ ¼ 6ts, and μ ¼ −3.5ts is about 0.086TF.
Before concluding we provide further discussions on the

experimental studies of our proposal. Note that for the blue-
detuned optical lattice, the atoms are trapped in the minima
of lattice potentials which may generally minimize heating
effects [36]. With the previous parameter regime for 40K
atoms (with a natural linewidth Γ ≈ 2π × 6.04 MHz) the
lifetime can be estimated to be τ ≈ 4Δ=ðωΓÞ ≈ 5.1 s [37],
which is long enough for experimental detections. On the
other hand, while the topological superfluid phase with
Majorana modes requires a fermion system, the SO coupling
and QAH states can be demonstrated with cold bosons [38],
which makes such experimental observations be even more
promising.Itisworthwhiletopointoutthat2Dchiraltopological
orders are classified by a Z invariant, and are stable when
stacking multilayers of the 2D system. This enables a study of
topological superfluid in the many-layer square lattice system
which should have a higher transition temperature since the
fluctuation in the superfluid order can be suppressed.
In conclusion, we have proposed a truly experimental

scheme to observe 2D SO interaction which leads to both
the quantum anomalous Hall effect and chiral topological
superfluid phase for cold atoms trapped with a blue-
detuned square optical lattice and coupled to two periodic
Raman fields. We introduced a new technique by integrat-
ing the creations of optical lattice and Raman fields through
the same standing-wave lasers, which greatly simplifies
the experimental setup and leads to the minimal realization
of the 2D SO interaction and exotic topological phases.
We calculated the bulk gap of the topological states and the
BKT temperature of the topological superfluid phase, and
show that the predicted topological orders are reachable
with the realistic parameter regimes. The feasibility of our
proposal will motivate future experimental studies on the
2D topological orders and the observation of non-Abelian
Majorana modes with realistic cold atom platforms.

(a) (b)

FIG. 2 (color online). Self-consistent calculations of the s-wave
order Δs [for (a)] and the bulk gap Eg [for (b)] versus mz and μ at
zero temperature and with U ¼ 5ts. Topological phase transition
occurs atEg ¼ 0. The hopping coefficients tð0ÞSO ¼ ts. In plotting (b)
the gap Eg in the QAH regime (CQAH

1 ¼ þ1) is reduced by half.
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FIG. 3 (color online). BKT temperature as a function of U with
different values of mz and μ (a), and versus μ at U ¼ 5ts and with
different magnitudes of mz (b). The SO coupled hopping
tð0ÞSO ¼ ts. Topological orders of different Chern numbers are
indicated for the case with mz ¼ 3ts.
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