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We study the probability distribution P (Λ) of the cosmological constant Λ in a specific set of KKLT type
models of supersymmetric IIB vacua. We show that, as we sweep through the quantized flux values in
this flux compactification, P (Λ) behaves divergent at Λ = 0− and the median magnitude of Λ drops
exponentially as the number of complex structure moduli h2,1 increases. Also, owing to the hierarchical
and approximate no-scale structure, the probability of having a positive Hessian (mass-squared matrix)
approaches unity as h2,1 increases.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The cosmological constant Λ as the dark energy is exponen-
tially small; setting Planck scale M P = 1, we have [1,2] (and refer-
ences therein),

Λ ∼ 10−122.

Since string theory has many solutions (i.e., leading to the so-
called cosmic landscape), we are interested in the probability dis-
tribution P (Λ) of the cosmological constant Λ of the meta-stable
solutions. In this Letter, we consider a class of supersymmetric
vacua (of the well studied KKLT type) in Type IIB string theory
[3,4].

At low energies, we obtain an effective supergravity theory af-
ter 6 of the 9 spatial dimensions are compactified. A typical flux
compactification in string theory involves many moduli and 3-form
field strengths with quantized fluxes. Together with the quantized
fluxes, the moduli and their dynamics describe the string theory
landscape. It is pointed out [5] that the spacing δΛ can be expo-
nentially small, so a very small Λ value is possible. However, this
alone does not explain why nature picks such a very small Λ, in-
stead of a value closer to the string or Planck scale.

Consider the 4-dimensional low energy supergravity effective
potential V for the vacua coming from some flux compactification
in string theory. To be specific, let us consider only 3-form field
strengths F I

3 wrapping the 3-cycles in a Calabi–Yau type manifold.
So we have
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V
(

F I
3, φ j

) → V (ni, φ j),

i = 1,2, . . . , N, and j = 1,2, . . . , K , (1.1)

where the flux quantization property of the 3-form field strengths
F I

3 allow us to rewrite V as a function of the quantized values ni
of the fluxes present and φ j are the moduli describing the size and
shape of the compactified manifold as well as the coupling. There
are finite barriers between different sets of flux values.

For a given set of ni , we can solve V (ni, φ j) for its meta-
stable (classically stable) vacuum solutions via finding the values
φ j,min(ni) at each solution and determine Λ = Λ(ni). Collecting all
such solutions, we can next find the probability distribution P (Λ)

of Λ of these meta-stable solutions as we sweep through the flux
numbers ni . A typical ni can take a large range of integer values
(|ni | � M2

P /M2
s ), subject to validity constraints. So we may simply

treat each ni as a random variable with some uniform distribu-
tion Pi(ni) and, given Λ(ni), we can determine P (Λ). With P (Λ),
we can find both the average and the median value of Λ. Since
the ranges of ni can be very large, we may approximate them as
continuous random variables.

It turns out that the string theory dynamics (i.e., the resulting
functional form of Λ(ni)) together with simple probability the-
ory typically yields a P (Λ) that peaks (i.e., diverges) at Λ = 0. In
fact, this peaking at Λ = 0 behavior is relatively insensitive to the
details of the smooth distributions Pi(ni) and becomes more diver-
gent as the number of moduli and fluxes increase. This divergence
is always mild enough so P (Λ) can be properly normalized, i.e.,∫

P (Λ)dΛ = 1, henceforth implying that the probability at exactly
Λ = 0 will remain exactly zero. Since the number of moduli as
well as cycles that fluxes can wrap over in a typical known flux
compactification (e.g., the well studied CP
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structure moduli [6,7]) is of order O(100), a vanishingly small but
non-zero Λ appears to be statistically preferred.

To be specific, the model of interest in this Letter is given by its
4-dimensional low energy effective supergravity approximation,

V = eK (|DT W |2 + |D S W |2 + |DUi W |2 − 3|W |2),
K = −3 ln(T + T̄ ) − ln(S + S̄) −

h2,1∑
i=1

ln(Ui + Ū i),

W = W0 + Ae−aT ,

W0 = c1 +
h2,1∑
i=1

bi Ui −
(

c2 +
h2,1∑
i=1

di Ui

)
S, (1.2)

where T is the Kähler modulus (the field that measures the vol-
ume of the 6-dimensional manifold), S is the dilation and Ui
(i = 1,2, . . . ,h2,1) are the complex structure (or shape) moduli.
Note that W0 in general takes the form [8],

W0(Ui, S) =
∑
cycles

∫
G3 ∧ Ω = C1(Ui) + SC2(Ui), (1.3)

where G3 = F3 − i S H3 and F3 = dC2 is the Ramond–Ramond (RR)
type and H3 = dB2 is the Neveu–Schwarz (NS–NS) type. Here
Ci(Ui) are complex functions of Ui only. Expanding them in terms
of the flux parameters,

C1(Ui) = c1 + bi Ui + · · · , C2(Ui) = c2 + di Ui + · · · . (1.4)

For general compactifications, W0(Ui, S) remains to be deter-
mined. In orientifolded toroidal orbifolds, the complex flux param-
eters take the form

bi ∝ nbi + ωbimbi, nbi,mbi ∈ Z, (1.5)

where |ωbi | = 1 and similarly for ci and di [9,10]. So the discrete
flux parameters ci , bi and di may be treated as independent ran-
dom variables with uniform distributions.

Since the quantized fluxes of the 3-form field-strengths are ex-
pected to vary over large ranges [5,11,12], the discrete flux pa-
rameters bi , c j and di may be treated as continuous parameters
sweeping through some smooth uniform ranges. Validity of the
weak coupling approximation requires that s = Re S > 1 while re-
ality of the Kähler potential K requires that ui = Re Ui > 0. The
second term (with parameters a > 0 and A) in the superpotential
W is a non-perturbative term emerging from, e.g., gauging con-
densation.

After finding a supersymmetric vacuum solution, we can ex-
press Λ in terms of the physical parameters. Since there are many
solutions, the values of Λ are expected to form a closely spaced
“discretuum”. Treating the flux parameters as random variables
with (smooth) distributions Pi(bi), Pi(di), Pi(ci), we are able to
find the probability distribution P (Λ).

• P (Λ) peaks at Λ = 0− for the model (1.2) with multi-complex
structure moduli. As an illustration, we simplify the problem
by treating the flux parameters to be real random variables.
Fig. 1 shows the result of a specific set of uniform distribu-
tions for the flux parameters. Here, the expected value 〈|Λ|〉
of Λ is shown as a function of the number h2,1 of complex
structure moduli. Because of the long tail in P (Λ), we see that
〈|Λ|〉 does not drop as h2,1 increases. To get a better feeling
of the property of P (Λ), let us introduce |Λ|Y %, defined by∫ 0
−|Λ|Y %

P (Λ)dΛ = Y %. That is, there is a Y % probability that
Λ will fall in the range 0 � |Λ| � |Λ|Y %. In Fig. 1, we see that
Fig. 1. The comparison of 〈|Λ|〉 (red circle), |Λ|80% (blue square), |Λ|50% (purple
diamond), |Λ|10% (green triangle) are shown as functions of the number of complex
structure moduli h2,1 = 1,5,10,15,20,25,30. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Letter.)

a typical |Λ|Y % decreases exponentially as h2,1 increases. If we
take the median value |Λ|50% to be the likely value of |Λ| and
assume its behavior in Fig. 1 extends to larger h2,1, we see
that, for h2,1 > 5,

|Λ| 
 10−0.82h2,1+2.7. (1.6)

Since h2,1 ∼ O(100) in some known models (see e.g. [7] and
references therein), we see that it is quite natural to get a van-
ishingly small Λ.

• To prepare for the analysis of the full model (1.2), we study an-
alytically the single Kähler modulus case. In this simple case,
P (Λ) (shown in Fig. 2) already diverges at Λ = 0−: P (Λ) 

(ln |Λ|)2/2e3/2√|Λ|, where only the parameter W0 = c1 is
treated as a random variable with a uniform distribution. It
would be interesting to compare with the peaking behavior of
P (Λ) in the Kähler Uplift models where two random param-
eters are required to have a log divergence as a result of the
product distribution [13,14].

• Another interesting property is the positivity of the Hes-
sian (∂i∂ j V ). After making the standard assumption that the
axionic modes will receive periodic potentials that stabilize
them, we may focus on the real components of the moduli
only. Here we see that the probability of having a positive
Hessian increases quickly towards unity as h2,1 increases. This
property is due to the approximate no-scale behavior and the
hierarchical structure adopted. The latter is fully justified for
large h2,1.

This statistical preference for a vanishingly small Λ is inter-
esting since energetics alone may suggest that more negative Λ

should be preferred. Here we see that this small |Λ| property is
actually a consequence of the probability theory for the specific
functional form of Λ in terms of the flux parameters [13]. This re-
sult strengthens our earlier observation for semi-positive Λ, where,
because of supersymmetry breaking, the functional form of Λ is
only known approximately [14]. Combining these results, we see
that there are string theory scenarios where a vanishingly small
Λ, either positive or negative, is generic. That the Hessian is mostly
positive allows us to be optimistic in the search for de-Sitter vacua
in this type of models.

2. The single Kähler modulus case

To prepare for a full analysis, we first focus on the simple model
for a single Kähler modulus stabilization at supersymmetric vacua
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as in [3],

K K = −3 ln(T + T̄ ), W = c1 + Ae−aT , (2.1)

where W0 = c1 here. Now we solve the supersymmetric condi-
tion DT W = ∂T W + (∂T K )W = 0. The imaginary part of T would
have a cosine type of potential and therefore the solution stays at
Im T = 0. Then the condition becomes

−3y = (2x + 3)e−x, (2.2)

where we defined x = at = a Re T and the parameter y = c1/A. The
real part of the modulus is defined to be positive so that the vol-
ume of compactification is correctly measured. Therefore the RHS
of (2.2) is not only positive, but has an upper bound value of 3.
The corresponding condition for the LHS implies −1 < y � 0. If we
rewrite in terms of X = −x − 3/2, (2.2) becomes

z ≡ 3

2
e−3/2 y = Xe X , (2.3)

where z 
 0.3y. The solution of this equation is known as a Lam-
bert W function or a product logarithm. There are two branches
of solutions: W−1 for X � −1 and W0 for X � −1. Since t mea-
sures the volume of the 6-manifold for compactification, we need
X < −3/2. This branch of solution can be expanded around z � 0
by

X(y) = W−1(z) = ln(−z) − ln
[− ln(−z)

] + · · · . (2.4)

So x = −(X + 3/2) is solved in terms of y. Inserting this into the
potential V = eK K (K T T̄

K |DT W |2 − 3|W |2) sitting at a minimum, we
get

Λ ≡ V |min = −3eK K |W |2
= a3 A2e3+2W−1(z)/[

9 + 6W−1(z)
]

y→0
 a3 A2 3y2

8 ln(−y)
. (2.5)

We see that small Λ is precisely related to small y or c1.
Using the condition (2.2) to eliminate A, we obtain

∂2
t V

∣∣
min = 3a5W 2

0
2x2 + 5x + 2

2x3(2x + 3)2
. (2.6)

Since x > 0 and a > 0, the stability condition for the vacuum is
automatically satisfied for this model (2.1).

2.1. The probability distribution of Λ

The probability distribution P (Λ) is easy to obtain:

P (Λ) =
0∫

−1

dy P (y)δ

(
a3 A2e3+2X

9 + 6X
− Λ

)
, (2.7)

where P (y) is the distribution of −1 < y � 0 and X(y) =
W−1(3e−3/2 y/2). If we set A = 1 for simplicity, y obeys the same
distribution as that of c1. The resulting probability distribution
P (Λ) is easy to evaluate numerically.

It is interesting to see analytically the peaking behavior of
P (Λ). Given P (y), the integration in (2.7) can be easily performed
using the property of delta function δ(g(y)) = |g′(y0)|−1δ(y − y0).
So we need to express y as a function of Λ. That is, let us solve
(2.5) for y. With a = A = 1, let us choose a uniform distribution
for −1 < y � 0. Introducing p = −(3 + 2X), (2.5) becomes

−1/3Λ = pep . (2.8)
Fig. 2. The probability distribution P (Λ) of the single Kähler modulus model (2.1).
The (blue) bars are numerical result for (2.7) while the curve is for the analytical
formula (2.12). Both agree nicely even at Λ = 0− , where P (Λ) is divergent. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

Now the physical constraint for X(y) =W−1(z) as in (2.4) requires
p to satisfy X = −(p + 3)/2 < −3/2. So the solution for p > 0 is
given in terms of the other branch of the Lambert W function,
namely,

p = W0

(
− 1

3Λ

)
Λ∼0−→ − ln

[
3Λ ln(−3Λ)

] + · · · . (2.9)

Rewriting (2.5) using the basic relation of the Lambert W function,
we have

Λ =
(

3

2
e−3/2 y

)2 e3

X2(9 + 6X)
. (2.10)

Since now X(y) is related to p =W0(−1/3Λ), we obtain, after us-
ing (2.8) and rewriting (2.5) using the basic relation of the Lambert
W function,

y = −1

3
e−W0(−1/3Λ)/2

[
W0

(
− 1

3Λ

)
+ 3

]
. (2.11)

Using (2.11), we get, after some calculations,

P (Λ) = 1

2

[
3 + 2W−1

(
f (Λ)

)]2
e−3/2−W−1( f (Λ)), (2.12)

f (Λ) = −1

2

[
3 +W0

(
− 1

3Λ

)]
e−3/2−W0(−1/3Λ)/2.

Using the expansion formulae of the W functions, we find that
P (Λ) is actually divergent as Λ → 0− ,

P (Λ)
Λ→0−


 (3 + ln |Λ|)2

2e3/2
√|Λ| + · · · . (2.13)

We present both the “analytical result” (2.12) and the numerical
result (2.7) in Fig. 2, where a = A = 1 and −1 � c1 � 0 has an
uniform distribution. Note that P (Λ) is properly normalized in this
Letter, i.e.,

∫
P (Λ)dΛ = 1.

3. Solving the model

3.1. Solutions

Now we are ready to solve the model (1.2) with h2,1 number of
complex structure moduli for supersymmetric vacua, i.e., DT W =
D S W = DUi W = 0. In order to find the properties with a large
number of Ui , some semi-analytic solution is crucial. So we restrict
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ourselves to real flux parameters bi , ci and di (thus cutting the
number of random parameters by half). Picking the Im T = Im S =
Im Ui = 0 solution, we have

ui = −1

h2,1 − 2

ĉ1 − sc2

bi − sdi
, (3.1a)

(
h2,1 − 2

) ĉ1 + sc2

ĉ1 − sc2
=

h2,1∑
i=1

bi + sdi

bi − sdi
, (3.1b)

3W + 2xAe−x = 0, (3.1c)

W = − 2(ĉ1 + sc2)
∏h2,1

i=1(bi − sdi)∑h2,1

i=1(bi + sdi)
∏

j �=i(b j − sd j)
, (3.1d)

where s = Re S, ui = Re Ui , x = a Re T = at and ĉ1 = c1 + Ae−x . Note
that, with (3.1d), (3.1b) and (3.1c) form a pair of equations for s
and x. Solving them determines s and x (as well as ui ), so the
minimum W (3.1d) becomes a function of the parameters of the
model.

To solve this efficiently, we assume that the complex structure
and dilation sector are stabilized at higher energy scales than that
of the Kähler modulus t . In this hierarchical setup (to be checked
a posteriori), we first stabilize ui and s in the model (1.2) and
then the Kähler modulus stabilization can be dealt with. Under
ĉ1 = c1 + Ae−x → c1, W → W0, and (3.1a), (3.1b), (3.1d) reduce to
those studied in [14] based on [10]. Although we deal with approx-
imate solutions here, we can solve for all ui even in the presence
of the non-perturbative term Ae−x . After determining s (which has
multiple solutions) and W0, we solve for x and the minimum W .

3.2. Probability distribution of Λ

To solve for the remaining Kähler modulus x = at , we simply
replace c1 in the earlier analysis by the solved W0. The Λ of the
supersymmetric vacuum is now determined to be

Λ = −3eK |W |2 = 1

2h2,1+1s
∏

ui

a3 A2e3+W−1(z)

9 + 6W−1(z)
. (3.2)

It is now straightforward to calculate probability distribution P (Λ)

numerically, given the distributions of the parameters of the model
(1.2). We see that P (Λ) typically peaks sharply at Λ = 0− .

To be specific, consider the following scenario. To deal with a
divergent value of Λ coming from 1/ui , we introduce a cutoff f
for flux inputs, bi = − f ,− f � di � f while keeping −1 � c j � 1
at each h2,1 such that 90% of the Λ values fall within the Planck
scale (M P = 1) range, similarly to [14]. Note that the qualitative re-
sult will not change even if bi is randomized, though this will take
more computer time. The remaining 10% of the data sitting over
the Plank scale are discarded to maintain the validity of this su-
pergravity approximation. As before, we set a = A = 1. The result
is shown in Fig. 1. We see that the likely |Λ| drops exponentially
as h2,1 increases, even though 〈|Λ|〉 stays more or less constant.
Similar qualitative properties are expected for some choices of dis-
tributions for the parameters, but not for others.

What happens when we turn on a supersymmetry breaking
term? If this term is simply an additive term to the potential V in
(1.2) and results in an additive term to Λ, then the peaking behav-
ior of P (Λ) will generically be erased [13]. To maintain and even
enhance the peaking behavior in P (Λ), the supersymmetry break-
ing term must couple to the rest of V . So a good understanding
of the supersymmetry breaking dynamics of the KKLT scenario (in-
cluding back-reactions) is crucial.
Table 1
The probability of having a positive Hessian (∂i∂ j V ) at h2,1 = 1,5,10,15,20,25. The
probability is approaching unity as h2,1 increases.

h2,1 1 5 10 15 20 25

Probability 0.897 0.981 0.984 0.989 0.990 0.994

3.3. Probability of positive mass matrix

Since we consider basically supersymmetric moduli stabiliza-
tion for both the complex structure and Kähler sectors, all eigen-
values of the mass-squared matrix are expected to satisfy the
Breitenlohner–Freedman bound [15]. However, for the purpose of
uplifting to de-Sitter vacua (where the uplifting will be exponen-
tially small) later, it is motivating to investigate the probability that
all of the eigenvalues are positive at the supersymmetric vacua. Let
us consider the Hessian

H I J = ∂ψI ∂ψ J V |extremal, (3.3)

where ψI runs through x, s, ui . Note that the extremum solution is
inserted after taking the derivatives. Inserting the numerical so-
lutions into the Hessian (3.3), we can check the probability of
positively defined mass-squared matrix since the positivity of Hes-
sian is the necessary and sufficient condition for the positivity of
mass-squared matrix at extremal points, due to the linear transfor-
mation.

Now we calculate the probability of having a positive Hessian
in our model assuming the hierarchical setup. The result is shown
in Table 1. This probability actually increases as h2,1 increases, and
the value at h2,1 = 5 is already very close to unity. Note that this
probability is insensitive to the cutoffs for bi , di since the cutoffs
we took only change the scale of quantities, and does not touch
the sign.

The reason is actually quite simple. Before introducing the non-
perturbative term in W in (1.2), we have |DT W |2 − 3|W |2 =
K T T̄ DT W0 DT̄ W0 − 3|W0|2 = 0 and the no-scale structure yields
V = eK (|D S W |2 + |DUi W |2) which is positively defined and
bounded below. Then the supersymmetric solutions sit at Min-
kowski vacua, and the eigenvalues of Hessian are by definition
semi-positive since the potential is convex downward at supersym-
metric points. Next let us introduce the non-perturbative term. The
correction to the supersymmetric solutions for the complex struc-
ture sector is of order of

0 � Ae−x

W0
= 1

−(2x/3 + 1)
∼ 3

2 ln(−W0/A)
> −1, (3.4)

where we used (2.2) and (2.4) for small −W0/A, and
x > 0. Note that the Kähler modulus stabilization (2.2) requires
0 � −W0/A < 1. In fact, the distribution of W0 is more peaked
toward W0 = 0 as h2,1 increases, therefore smaller values of W0
become more likely [14]. Thus we see that the correction due to
the non-perturbative term for Kähler modulus stabilization gets
smaller and becomes negligible when we increase h2,1. This is the
reason why the positivity of the Hessian for large h2,1 is satisfied
at most of extremal points. This also means that the hierarchi-
cal structure between the complex structure sector and the Kähler
sector we have employed for effective analysis is actually reliable,
as anticipated in [3].

4. Discussions

This behavior of the probability is compatible with that studied
in [16], since their Gaussianly suppressed probability result will be
applicable to our model only if we increase the number of Kähler
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moduli (lighter fields) to a large number. That a positive mass ma-
trix is almost automatic for large h2,1 is very encouraging in the
search of meta-stable de-Sitter vacua in the KKLT models.

Combining with the result in [14], we have a clear statistical
preference for a vanishingly small Λ, either positive or negative,
emerges. This is a consequence of the non-trivial functional de-
pendences of Λ on the flux parameters, when probability theory
is applied to these string theory scenarios. Treating all parameters
as physical, the Λ studied here should be the physical Λ as well.

Notice that we have a number of reasonable ways to implement
the distributions for the flux parameters. Also we have to introduce
cut-offs to ensure the validity of the supergravity approximation.
One may wonder whether these inputs have unwittingly forced us
to have only very small Λ. This is an important question requir-
ing further study. So it is somewhat reassuring in this preliminary
study that the average Λ stays within a few orders of magnitude
of the Planck scale, suggesting that relatively large Λ < 1 has not
been thrown out by the various cut-offs introduced, which are nec-
essary for the validity of the model.

A better understanding of the functions Ci(U j) (1.3) as well as
the distributions of the flux parameters will lead to a better de-
termination of the likely values of Λ. It will be very interesting to
find out what the statistical preference of Λ will be when addi-
tional interactions are incorporated into the model (1.2), or when
other stringy scenarios are considered. The present work opens the
door for further fruitful studies.

To conclude, let us make a few general optimistic remarks:

• Our analysis shows that most meta-stable vacuum solu-
tions are crowding around Λ = 0 (at least in the corner of
the landscape described by Type IIB). When positive non-
supersymmetric vacua are included, the peaking at Λ = 0 be-
havior of P (Λ) happens on both the positive and the negative
sides of Λ. This property has to do with statistics rather than
with energetics, since the latter would prefer more negative
values of Λ. That our universe sits on the positive side may
be historical. During the inflationary epoch, the universe has a
relatively large positive vacuum energy density that drives in-
flation. As it rolls down the potential towards Λ = 0, it may
get trapped at the positive side of Λ = 0 before it has a chance
to reach the negative side of Λ = 0.

• Since the number of positive Λ vacua away from Λ = 0 are
relatively very few, the universe may not get trapped in a rela-
tively large Λ de-Sitter vacuum, so eternal inflation is avoided.

• As we see that field theory itself has so far failed to provide an
explanation of the smallness of Λ without fine-tuning while
string theory seems able to provide at least a statistical ex-
planation, we like to boldly suggest that the very small but
non-zero value of Λ may be treated an experimental evidence
for string theory.
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