<u>Theory of Chiral Topological Superconductivity and Pair Density Wave Superconductivity in</u>
Twisted Bilayer WSe2

Hong YAO

Tsinghua University

Email: yaohong@tsinghua.edu.cn

We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe2) in the presence of an out-of-plane electric field [1, 2]. Using renormalization group analysis, we predict that topological chiral superconducting states with Chern number \mathcal{N} =1, 2, 4 (namely, p +ip, d +id, and g +ig) can appear over a large parameter region with a moiré filling factor around v=1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman field, spinpolarized pair-density-wave (PDW) superconductivity can emerge [1]. For very recent discovery of unconventional superconductivity in twisted WSe2 homobilayers at filling v = -1, considerable interest has arisen in revealing its mechanism. We developed a three-band tight-binding model with non-trivial band topology. Incorporating both onsite Hubbard repulsion and next-nearestneighbor attraction, we then performed a mean-field analysis of the microscopic model and obtained a phase diagram qualitatively consistent with the experiment results. For zero or weak displacement field, the ground state is a Chern number ± 2 topological superconductors in the Altland-Zirnbauer A-class (breaking time-reversal but preserving total Sz symmetry) with intervalley pairing dominant dxy \pm idx2-y2-wave (mixing with a subdominant px \mp ipy-wave) component [2].

References:

[1] Yi-Ming Wu, Zhengzhi Wu, and Hong Yao, Phys. Rev. Lett. 130, 126001 (2023)

[2] Chuyi Tuo, Ming-Rui Li, Zhengzhi Wu, Wen Sun, and Hong Yao, Nature Communications 16, 9525 (2025)