Angular momentum and chirality of phonons

Takuya SATOH

Department of Physics, Institute of Science Tokyo, Japan

Email: satoh@phys.titech.ac.jp

The concept that lattice vibrations can carry angular momentum has recently gained renewed attention, particularly in the context of two-dimensional materials, leading to the introduction of the term chiral phonons [1]. Since then, the study of chiral phonons has rapidly expanded into diverse research areas such as transport phenomena, nonlinear optics, ultrafast dynamics, and magnetism, forming a new interdisciplinary field [2]. Understanding the origins of these phenomena requires a systematic and cross-disciplinary framework.

In this talk, we present our recent experimental observations of chiral phonons in chiral crystals such as α -HgS and tellurium using circularly polarized Raman spectroscopy [3,4]. We also demonstrate Raman optical activity in the ferroaxial compound NiTiO₃, which possesses centrosymmetry [5]. These results provide direct evidence of phonon angular momentum and offer new insights into the coupling between lattice vibrations and other degrees of freedom in solids.

- [1] L. Zhang and Q. Niu, Phys. Rev. Lett. **115**, 115502 (2015).
- [2] D. M. Juraschek, T. Satoh et al., Nature Phys. **21**, 1532 (2025).
- [3] K. Ishito, H. Mao, Y. Kousaka, Y. Togawa, S. Iwasaki, T. Zhang, S. Murakami, J. Kishine, and T. Satoh, Nature Phys. **19**, 35 (2023).
- [4] K. Ishito, H. Mao, K. Kobayashi, Y. Kousaka, Y. Togawa, H. Kusunose, J. Kishine, and T. Satoh, Chirality **35**, 338 (2023).
- [5] G. Kusuno, T. Hayashida, T. Nagai, H. Watanabe, R. Oiwa, T. Kimura, and T. Satoh, arXiv:2505.22488 (2025).