

**Abstract for IAS Focused Program on Mathematical Foundations of Topological Materials
(January 6-9, 2026)**

Photonics Topology in Semiconductor Platforms: Basics and Applications

Xiao HU

Institute for Quantum Science and Technology, and Department of Physics

Shanghai University, P. R. China

Email: hu_xiao@shu.edu.cn

Transforming the concept of band topology fostered in electron systems to electromagnetic waves opens a completely new direction for harnessing propagation of light. It is observed that electromagnetic modes in honeycomb photonic crystals exhibit Dirac-type frequency dispersions, which are accompanied by emergent spin degree of freedom, and that deforming the honeycomb structure in a designed way gives birth to a photonic analogue of quantum spin Hall effect. In this talk I will first show that the main physics can be captured phenomenologically by the $k \cdot p$ theory, and discuss that the photonic topology can be characterized in terms of the Wilson loops based on the $C_2 T$ symmetry. Then I will introduce examples to demonstrate how the recipe can be exploited for harnessing light and deriving advanced optic properties.