

**Abstract for IAS Focused Program on Mathematical Foundations of Topological Materials
(January 6-9, 2026)**

Scattering Theory for Waveguides in Topological Insulator Models

Guillaume BAL

Departments of Statistics and Mathematics, University of Chicago, USA

Email: guillaumebal@uchicago.edu

An edge transport robust to perturbations is guaranteed along interfaces separating distinct two-dimensional topological insulators and is characterized by a topological invariant computed using bulk information via a bulk-edge correspondence. In the setting of such waveguide problems, we present and justify a scattering theory by means of a limiting absorption principle. This offers a quantitative description of the effects of perturbations in the waveguide model and an alternative means to compute the interface topological invariant.

References:

- [1] Binglu Chen and Guillaume Bal. Scattering theory of topologically protected edge transport, *Pure and Applied Analysis* 7(3):701-731, 2025
- [2] Guillaume Bal. Topological invariants for interface modes, *Communications in Partial Differential Equations*, 47(8):1636-1679, 2022