Mechanism of α-carboxysomes Formation

Tao Ni

School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China

Email: taoni@hku.hk

<u>Tao Ni</u>^{1,3#*}, Qiuyao Jiang^{2#}, Pei Cing Ng², Juan Shen³, Hao Dou³, Yanan Zhu³, Julika Radecke³, Gregory F. Dykes², Fang Huang², Lu-Ning Liu^{2*}, Peijun Zhang^{3*}

¹School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.

²Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.

³Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK

Carboxysomes are a family of bacterial microcompartments in cyanobacteria and chemoautotrophs. They encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase catalyzing carbon fixation inside a proteinaceous shell. An intrinsically disordered linker protein CsoS2 plays a central role in driving carboxysomes assembly, however, the underlying molecular mechanism is obscure. Here we used cryoelectron microscopy and tomography to study α -carboxysomes from a chemoautotrophic bacterium Halothiobacillus neapolitanus. By cryo-ET, we identify that Rubiscos form highorder intertwining spiral assembly inside the carboxysomes and further resolve the structures of native Rubisco at near-atomic resolutions by subtomogram averaging. Surprisingly, CsoS2 interacts only with the Rubiscos close to the shell using its N-terminal region. In addition, highresolution cryo-EM structures of recombinant shell assemblies revealed that CsoS2 Cterminus interacts with the inner surface of shell, acting as a "molecular thread" stitching through multiple shell protein interfaces with a remarkable highly-conserved repeating motif. Taken together, our findings provide critical knowledge of the assembly principles of α carboxysomes, which may aid in the rational design and repurposing of carboxysome structures for new functions.