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The classical Shannon sampling theorem says that if f(x) has a Fourier
transform f supported in the box [—B,B]" (i.e., it is band-limited), then
f(x) is uniquely and stably determined by its samples f(sk), k € Z™ if the

sampling rate s satisfies 0 < s < m/B.
More precisely,

FE) =) flskox <§ (x - sk>), 16 = | [ sinc)

KEZ™ j

and (unitarity)

117 = 5™ > If .

keZn

The proof is simple. Think of f as the inverse FT of f Then the samples

f(sk) are the Fourier coefficients of f, more precisely of its periodic
extension over the lattice BZ™.
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The red curve is the function reconstructed, indistinguishable from the
original. The blue curve is a cubic spline interpolation. Note that the
reconstruction has a global character. Here s = 0.95 * Nyquist.




In the frequency domain, things look like this: Nyquist condition satisfied (no
aliasing). Since [—B, B] c /s, m/s],
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Take the 2m/s-periodic extension fext of f,’ then the samples are its Fourier
coefficients:

foxt@) = 5" ) f(sk)e™5%.
Multiply that extension by 1_p /s /5 (§) to get f back:
f(f) - 1[—n/s,n/s] (E)Snzkf(Sk)e_ifk-

Take F~1. The effect of the multiplication is the appearance of F~lof
1;_p () in a convolution, which is the sinc function.

If we have oversampling (supp(f) strictly in (—B,B)), we can choose ¥
smooth, hence y will be in the Schwartz class unlike the sinc function.



Aliasing: If the Nyquist condition is not satisfied:

1/_p5

/_\f<
—B B

—3B 3B

The 2B-periodic extension has overlapping segments.

If we restrict back to [—B, B], we get f truncated plus other stuff, i.e., we
get f modulo 2B. Its inverse FT is not f anymore.

This creates aliasing. Frequencies get shifted. If we have a smooth ¥
instead of 1|_p 5|, we get an FIO, actually (in the sense below).



Aliasing in WT_\

Oversampled Undersampled | A| The FT of the
on 81x81 grid on 41x41 grid f undersampled f

The original consist of two patterns: one higher frequency than the other.
First, we sample and reconstruct properly.

Next, we undersample the higher frequency pattern but still sample properly
the lower frequency one. The reconstruction changes the direction and the
frequency of the undersampled pattern.

The Fourier transforms demonstrate the shifting (folding) of the frequencies.



We are interested in sampling the data g = Af with A linear, g given, f =? We
assume that A is an FIO, which is true very often: in integral geometry, thermo-
acoustic tomography, etc.

(i) Sampling Af: Having an estimate of supp f (the smallest detail of f), how
dense should we sample Af?

(ii) Resolution limit on f, given the sampling rate of Af.
(iii) Aliasing: if we undersample Af, what kind of aliasing we get for f?
(iv) Averaged measurements/anti-aliasing: if we blur the data (either because

the detectors are not points and average already or because we want to avoid
aliasing), what do we get for f?

To answer (i), one may say — estimate supp Z? knowing supp f and apply the
sampling theorem, we are done. The problem is that this is not
straightforward. Af may not be even band limited if f is.




We look at the problem as an asymptotic one. The “smallest detail” is a small
parameter tending to 0. Rescale ¢ to {/h (i.e., ¢ = n/h) with 0 < h K 1. This
makes it a semi-classical problem!

If |¢] < B/h, then for the rescaled & we have |¢| < B. We want to work in the

phase space, i.e., to account for the x dependence as well. So band limited
now means that f3,(x) has a compact WF;, (f).

This brings us to the first problem we need to study:

(v) Semi-classical sampling. How to sample f},(x) with a compact WF;,(f)?

* Uniform sampling on rectangular or non-rectangular lattices?
* Non-uniform sampling?
 How many sampling points are enough?




(v) Semi-classical sampling

Theorem (semi-classical sampling):
Let f;, € C5° (Q) with WF,(f) € Q X [—B, B]™. Then for s < /B,

T

ful) =) flshix (Sh (x - shk>) +05(h),

where y is a product of sinc functions. Parseval’s equality holds, too, up to
0(h*).

Just a rescaled classical version, with error estimates. The condition on
WF;,(f) is a condition on Fy, f modulo O(h™).

The step size is sh with s < m/B.

As above, if WF, (f) € Q X (—B, B)™ (oversampling), ¥ can be made
rapidly decreasing.

We call the projection Z, (f) of WF; (f) onto ¢ the frequency set of f.




(v) Semi-classical sampling
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The sampling lattice The Fourier domain



(v) Semi-classical sampling
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The sampling lattice The Fourier domain

The lattice could be rectangular



(v) Semi-classical sampling
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The sampling lattice The Fourier domain

The previous sampling lattice (rescaled by 2) works for Z;, (f) supported like
this. The reason is that we can tile the plane with (non-intersecting) shifts
generated by the vectors (B/2,0) and (0, B). Then ¥ has to be supported there.



(v) Semi-classical sampling

One can use linear transformations. If shifts of Z,(f) under the
translations & » &+ 2r(W*)™! do not intersect, where detW # 0,
then we can sample over the lattice x;, = shWk, k € Z™ withs < 1.

This is a periodic but not a rectangular lattice (a parallelogram one).

One can reduce the number of samples by taking some partition of unity
x; and in each one, sampling according to X, (x;f). This gets us closer to

the important question of non-uniform sampling.

In the classical case, there is a well cited (780 google scholar citations)
paper by LANDAU in Acta, saying, among the rest, that if we can sample
uniquely and L?- stably some f over a possibly non-uniform set of points
then the density of that set must have a Weyl type of lower bound
proportional to the Lebesgue measure of supp f This links sampling to
spectral theory.



(v) Semi-classical sampling

We have the following microlocal analog of this result.

Theorem. Let {x;(h)}, j = 1, ... N(h) be a set of points in R". Let K C
T*R™ be a compact set. If

N(h)
I < 56 2, Vi ()] + 00
for every f;, with WF,(f) c K, then

N(h) = (2rh)"Vol(K'™) (1 + o(h)).

The main novelty here, besides the semi-classical setting, is that we
relate the number of points needed to the phase volume of f;, i.e., to

Vol(WF,(f)) instead of Vol(supp £) (multiplied by Vol(supp f) ).

The proof uses the spectral asymptotics (DiMASSI & SIOSTRAND) for the
smoothened version of the semiclassical YDO 1(x,¢).

In the uniform cases above, we have equality.



(i) Sampling FIOs
(i) How to sample Af when A is an FIO and WF, (f) c Q X {|¢| < B} (for
example)?

In other words, we know an a priori bound of the smallest detail f has. How
to sample Af?

We need to fit WF,(Af) in the smallest product Q' X K with K a box or a
parallelogram or a domain satisfying the tiling property w.r.t. some lattice.
Then we sample on the reciprocal one.

Now, if A is a semi-classical FIO or if WF; (Af) was the classical WF set, then
WF}, (Af) is related by WF;, (f) by the canonical relation C of A. It turns out
that, aside from the zero section, this is also true in this case

WFL(Af)\ 0 c C o WF,(f) \ 0.

Then the sampling of Af is determined by the geometry of

Co (2 x{[¢] < B).



(ii) Resolution limit on f, given the sampling rate of Af.

(ii) Let us say we sample Af at same (limited) rate. This is what is done in
practice. What is the smallest detail of f we can possibly recover?

The way this is asked, it depends on whether A is invertible, microlocally or
not, in the first place.

Let us say we sample Af on Q' at a rate sh. Then if

/

WF,(f) c C™ 1o (@' x [-B,B']")

we captured all “detail” of Af and did not lose any resolution about f is A is
microlocally invertible in the first place. If A is elliptic, then we can actually
recover all the detail of f. If the above inclusion fails, there is aliasing.

Note that the set on the right is not necessarily a product. This means
resolution changing with location and direction.



(i) Aliasing

(iii) Let us say that Af is undersampled. How would that affect f?

From now on, we assume a reconstruction with y(§) smooth (so it is a s.c.
symbol); then y € S. An inspection of the reconstruction formula says that
instead of f;, we get

Gfi= ) Gifa.

kezn
with G a semi-classical FIO with a canonical relation

Skt (x,8) = (x,§ + 21k /s)
(and amplitude y(s&/m) when the phaseis ¢ = (x —y) - & — 2mik - y/s).

The aliasing leaves x in place but shifts the frequencies around (and changes
their directions) as we saw above.



(i) Aliasing
This characterizes aliasing as an h-FIO. The question however is what does

aliasing of Af doto f (not Af)?

Let us say that A is elliptic and associated to a local diffeo. Then aliasing of the
data gives us the following reconstruction

Z A1GLAf
k

instead of f (if there is no aliasing, only k = 0 is there and G, = 1d). The
result is a sum of h-FIOs with canonical relations

CloS,oC.

Si are frequency shifts but the composition is not, in general! We can expect
shifts in the x variable as well!



(iv) Averaged measurements

(iv) What if we sample ¢, * Af;, with ¢, (x) = e "p(x/€)?

Let’s say that A is associated with a local diffeo C. The operator g = ¢, * g is
an h-¥WDO with a principal symbol qS Then by Egorov’s theorem,

¢ * Afn, = APpfp + O(h®)fp,

where P;, is an h-WDO with a principal symbol g5 o C. Depending on q§, this
could blur f, so we are back to the problem (i) but we recover a blurred
version Py fj, of fp,.

This works if ¢o;, changes from a sampling point to another; then the samples
became samples of @, Afy, with @, an h-PDO. We can still apply Egorov’s
theorem.

Finally, we can solve the inverse problem within the inverse problem: choose
Qp, so that P;, becomes what we want, say convolution with a fixed kernel.



Example: The Radon transform in “parallel geometry”

We present some applications. Let R, be the weighted Radon transform in 2D

Rif (w,p) = j k(x, w)f (x)dS,.

X-wW=p

Write w(@) = (cos ¢, sin @). It is well known that R, is an FIO with canonical
relation C = C_ U C,, where

C+(x,§) = (arg(df) , £x - §/I¢], —x - £, £[¢]).
% p

2 p ¢

Each C; is a diffeo, with inverse (x,§) = C£1(<p, p, 9, D) given by

x =pw(p) — (@/Pw(p), =P wp).



Radon transform: (i) Sampling

Sampling R (with k = 1) was studied by BRACEWELL, RATTEY & LINDGREN and NATTERER.
The proofs are not complete because they require two-parameter asymptotics of
Bessel functions. The results are actually asymptotic even though they are not
stated as such. We will prove them for the weighted R,,.

Assume WF, (f) c {|x| < R,|¢| < B}. Take C of that and project it to the ({, p)
variables. We get

This is an elementary calculation knowing C. It is the same set obtained by the
authors above.



Radon transform: (i) Sampling

The smallest bounding box is

[-RB,RB] x [-B, B]. | Blp
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The sampling points are 8/ times twice the phase volume of f (since C
is a double cover, “twice” is the right target).

To get a more efficient sampling set, notice that the plane can be tiled by
translations by (RB, B) and (0,2B).

Thus we can sample on the parallelogram grid shW Z™ with any s < 1 and

w=25( &)

Those are 4 /m times the phase volume x2. Ideally, it would be equal to it.



Radon transform: (i) Sampling

Remember, 25, (R, f) is just a projection of WF;,(R,f). We can do better than
this. Here is Rf (with k = 0) for f consisting of 6 small Gaussians. Then we
superimpose WF;, (Rf) (the projection) on it over each point.

p

We see that the cone shape of X, (Rf) above is the union of all those cones, and
it is also what happens at p = 0. If we sum up (integrate) the areas of those
“cones”, we get the sharp sampling count = 2x that for f. To get close to that, we

need to split the rectangle into small horizontal strips and sample differently in
each one of them.



Radon transform: (ii) Resolution

Let s, and s, be fixed. How would that affect f? From C, we have

Circular lines well
Ix - &t < m/sy, | | 1€l S m/sy. resolved. Radial not.

The first one tells us that s_¢ does not restrict resolution much in the cente
(x = 0) or when ¢ || x. On the other hand, s, restricts resolution uniformly

. . . . . o . 2
(which is consistent with the intertwining property of dj and Ay). | ot resolution
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Radon transform: (iii) Aliasing
There were a lot of artifacts in those images due to aliasing of the data. As we
discovered, the reconstructed image is an h-FIO of the original (a sum of such).

Assume we undersample angularly. The canonical relation on the data in this
case is

Sk (@,@) = (D@ +2mk/sy).

No aliasing corresponds to k = 0; and typically, in addition, we will see k =
+ 1 only. This affects f as a sum of h-FIOs with canonical relations

2wk &L
(6,6) & CiloSyoCy(x,) = (xshifted ==x—ii2,€>
s, 1€

when the projection of Xgpifteq to €7 is in (—m/sy ,7/Sp). SO we see that x

shifts along £ but &€ does not! This is in some sense the opposite to what
happens in classical aliasing.



Radon transform: (iii) Aliasing

recamiginakion undersampl&q (aliased) Rf

In other words, the data Rf is aliased as usual: the effect is local and
the frequencies are shifted. The reconstructed f is affected differently:
the frequencies are preserved but the phantom is shifted!

The Fourier transform of Rf
and of the aliased Rf.

The frequencies of Rf shift left and right.




Radon transform: (iii) Aliasing

Assume we undersample in the p variable . A similar computations shows that both
x and ¢ shift.

N

—
—
—

recamiginakion Rf under®gmpled in p

The higher frequency pattern disappears! It actually shifts out of the
computational domain.



Radon transform: (iii) Averaged data

Blur the data: Q,R,.f with Q; an h-¥DO with a compact support and principal
symbol g, (x, &). Egorov’s thm: f is blurred by

1 1

Po(x,§) =2qo°Cs +5q0°C_.
If Q}, is a convolution, i.e., g = Y (a|®|? + b|p|?), then

po(x, &) = Y(alé]* + blx - E4?).

The blur is uniform iff b = 0, i.e., we average w.r.t. p only. Well known.
If a = 0, the blur is position and direction dependent.
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Example: The Radon transform in “fan-beam geometry”

Lines parameterized by initial point Rw(a)
on the circle |x| = R and direction making

w(a+ B)
angle  with the radial ray.

This is diffeomorphic to the parallel geometry
case.

One can compute C = C_ U C, as before. Assume as before
WF(f) c {Ix| <R, [§] < B}.

Then £, (R, f) for all such f can be computed as before. There is a new twist
here: C_(x, &) may be aliased, C,(x, &) may be not!




Fan-beam geometry: (i) Sampling

13 12RB

Zh(Rf) Example: f Computed |Rf]

The double rectangle above determines the sampling requirements on a

rectangular grid:
I8 I8

< —.
~RB’ “P=72RB
This is m X the parallel case (on a rectangular grid), and 8 X more than the
Weyl optimum.

We can tile the plane with translations by (RB, 0) and (0,2RB) as we showed
above. This doubles the step sizes. We still have twice the optimum number.



Fan-beam geometry: (i) Sampling

A better representation of WF, (Rf):

B T | o
Pl ¢ ; ; ; ; ; ; ; ; ; s |
TR D » Vi~ Tl s
- 7 / 7 V4 {/:rc g Y. i
== sl
# # # # f Zh(Rf)

s e e O

Rf with WF, (Rf)| (4 p) at a few points.

The figure we got earlier is the “worst scenario case”: the union of all those.
The greatest sampling requirements are near f = 0. One can sample over
small parallel strips with different steps. This would bring us asymptotically
close to the Weyl minimum.



Fan-beam geometry: (ii) Resolution

Assume we sample R, f with relative rates s, and sz. What does this imply for f?
We need to understand

-1 _TMopl < |p T
e {@p elozm <[5 lal < X, || < Sﬁ}.

cu

] =1

The diagram is rotationally symmetric.

The red bars represent the frequency cutoff caused by s,,.

The black circles correspond to sg. The frequencies in the intersection of the

circles are the non-aliased ones. The reason: C~1 is 2-to-1. As a result: there is
more resolution in the data, if extracted properly!



Fan-beam geometry: (iii) Aliasing

If the sampling rates s, and sg are not small enough, aliasing occurs a

before. A direct computation shows that x shifts along the direction of &+
and ¢ changes magnitude but not direction.



Fan-beam geometry: (iv) averaged data

Blur the data: Q,R,.f with Q; an h-¥DO with a compact support and principal
symbol g, (x, &). Egorov’s thm: f is blurred by

1 1
Po(x,$) =2qo°Cy +5qo° C_.
If Q}, is a convolution, i.e., g = Y (a|®|? + b|p|?), then

1
Po(x,$) = ki (alx EH2 4 b [x - EEPVR2[E? — (x - §)2 2)

1
b2 (abe £ 4 b |x- EOVRIRE -~ G 07| ).

The levels sets are as in the resolution analysis. Unlike in the parallel geometry
case, those terms are different! They blur differently and then the results are
added.



Fan-beam geometry: (iv) averaged da
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(a) original (b) f with Rf (c) f with Rf
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(b) Radial blur. Corresponds to the red bars.
(c) Sum of two blurs. Corresponds to the circles.

(d) Source restricted to the right semi-circle. We
get better resolution near the source (direction

dependent). Corresponds to one of the circles
only.

Rf averagedin
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The resolution diagram



Fan-beam geometry: (iv) averaged data

To understand better the effect we see in (c) above, here is another test
function: a 5 X 5 array of almost delta-like Gaussians.

- . \
. -
A magnified crop A density plot of the
computed symbol at
(0.88R,0)

=1 &L 21812 — (y . &£)2 ?
Reconstructed f with Rf Pl £) 21/)(|x £+ RS = (- ©) | )

averaged in f3, 1 L&l — (x - ?
i.e., data: Y(B) * Rf +21,b(|x £~ VR2EI? — (x §)2|)




Fan-beam geometry: anti-aliasing

Bluring R,.f can be used to avoid aliasing.
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original f with
Rf undersampled in

A lot of aliasing artifacts
spreading everywhere

f with Rf blurred in
f, then sampled

The anti-aliasing removes
most of the artifacts but
softens the image a bit more.



Thermo-acoustic Tomography

Uy — c?(x)Au =0 inR x R",

Model:

Uli=o = f(x),

ut|t=0 = O;

where u(t, x) is the sound pressure, c(x) is the sound speed equal to 1

outside ().

We measure Af = uljor)xa0-

There is no actual boundary, the waves
propagate to the whole space.

Clearly, A is a classical FIO.

Another studied model is when there

are Neumann b.c. and the waves reflect.

A is still a classical FIO.

— N
"~

u(t,x)



Thermo-acoustic Tomography
Canonical relation C = C_ U C,.

~ A

If C+ (.X', 5)

 * & J oo |

For every (t,x) € (0,T) x 9Q, the range of the possible Ci(x,¢&) (when
|€] < B) is the characteristic cone projected there. Their union gives
Zn(Af), which is the cone above. Here, M = maxc because we have
M = 1 if we use the metric c2dx? on T*Q but we have |¢| < B with |¢]
Euclidean (as determined by the sampling rate).

C-(x,¢)

The induced metric on 9 would results in another constant M’ but when
0Q is piecewise flat, M’ = 1.



It turns out that the geometry plays
no role! Only max ¢ and the shape
of () matter!

f

Compute Afin the model
with reflections. The r.h.s.
shown.

Thermo-acoustic Tomography

1 (4

t
Slow region inside, caustics. Waves focus
on d(). Low sampling/ discretization
requirements.

Fast region inside, no caustics
(before reflections). Much higher
frequencies, needs finer sampling.



