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Setting

- (M, g) is a compact Riemannian surface with boundary OM.
- SM = {(x,v) € TM : |v| = 1} is the unit sphere bundle with
boundary 9(SM).

0+(SM) = {(x,v) € O(SM) : £(v,v) <0}, where v is the
the outer unit normal vector.

- We will assume OM is strictly convex (positive definite second
fundamental form).

N,




We let 7(x, v) be the first time when a geodesic starting at (x, v)
leaves M.

Definition. We say (M, g) is non-trapping if 7(x, v) < oo for all
(x,v) € SM.

We will assume that our surface is : there is non-trapping
and there no conjugate points.

Strictly convex domains in the plane and small C?
perturbations of them.



Let ® € C.(M,C"*") be a matrix field.

Given a unit-speed geodesic v : [0, 7] — M with endpoints
7(0),v(7) € M, we consider the matrix ODE

U+ o(y(t)U=0,  U0)=Id

We define the scattering data of ® on 7 to be Co(7) := U(7).

When & is scalar, we obtain log U(7 —fo ) dt, the
classical X-ray/Radon transform of <D along the curve ’y



- The collection of all such data makes up the scattering data or
of ®, viewed as a map

Co: 0+SM — GL(n,C).

= recover ® from Ce.



The state of the art on injectivity is:

Theorem 1 (P-Salo-Uhlmann 2012, P-Salo 2018)

Let (M, g) be a simple surface. The map ® — Co is injective in
the following cases:

(a) ® : M — u(n), where u(n) in the set of skew-hermitian
matrices (Lie algebra of U(n)).

(b) M has negative curvature.

Early work on this problem for Euclidean domains by Vertgeim
(1992), R. Novikov (2002) and G. Eskin (2004).



The non-abelian X-ray transform arises naturally when trying to
reconstruct a magnetic field from spin measurements of neutrons.

In this case
0 Bs —B
d(x)=|-B3 0 B | €50(3)
B —-B; 0

where B(x) = (Bi, Bz, B3) is the magnetic field.
The scatteting data takes values Co : 0+ SM — SO(3).

Cf. [Desai, Lionheart et al., Nature Sc. Rep. 2018] and [Hilger et
al., Nature Comm. 2018].
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Spin-flipper  Detector

Fig. 1 Tensor tomography. a Schematic drawing of the setup sed for tensor tomography with spin-polarized neutrons, comprising spin polarizers ¢, spin
flippers () and a detector (D), b Selected magnetic field lines around an electric coil (calculation, see text and Methods)

From Hilger et al., Nature Comm. 2018.

- Data produced: Co(x,v) € SO(3).

- This is done with an ingenious sequence of spin flippers and
rotators placed before and after the magnetic field being
measured.

- The material containing the magnetic field can also be rotated
so as to produce parallel beams from different angles.




But we face the usual problems:

- No explicit reconstruction formula.

- Measurements are noisy.

Thus we have observations (X;, V;) € 9+ SM and

Yi=Co(Xi, Vi) +ei, 1<i<N, (&)~ N(0,02).

We will assume (X;, V;) ~4 X, where X is the probability measure
given by the standard area form of 9, SM (independent of ¢;).

We let PY be the joint probability law of (Y;, (Xi, Vi)V ;.



First a word from a magician (1988 paper):

BAYESIAN NUMERICAL ANALYSIS

PERSI DIACONIS
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1. INTRODUCTION

Consider a given function f:[0,1] — R such as

exp {cosh (-:‘;2:2%) } - 1)

If you require [] f(z)dz, a formula such as (1) isn’t of much use and leads
to questions like “What does it mean to ‘know’ a function?” The formula
says some things (e.g. f is smooth, positive, and bounded by 20 on [0,1]) but
there are many other facts about f that we don’t know (e.g., is f monotone,
unimodal, or convex?).

Once we allow that we don’t know f, but do know some things, it becomes
natural to take a Bayesian approach to the quadrature problem:

« Put a prior on continuous functions C[0,1]
» Calculate f at z),23,...,Zn

+ Compute a posterior

« Estimate [ f by the Bayes rule

Most people, even Bayesians, think this sounds crazy when they first hear
about it. The following examples may help.




We adopt the same magical approach.

- We put a Gaussian process prior 1 on ®; more details on this
later. The use of Gaussian process priors for inverse problems
has been advocated by A. Stuart.

- Using the observations we compute the posterior
A(-|(Yi, (Xi, Vi)M,)) using Bayes rule;

- From the posterior we extract the mean ®y. This is a
somewhat formidable object given by a Bochner integral

By = / & dN(®|(Yi, (X, Vi)L.p)).



In more detail:

- We have

I e(®) dn(o)

N(A[(Y:, (X, V:),Nzl)) = Wa

where the log-likelihood is

N
1
U®) == —— DIV — Co(X;, Vi)
20
fi=1l

- And the posterior mean is

[ ) dn(o)
[l dn(o)

iy



The magician will tell you:

"as N — oo, ®y will approach the true ®g you so much desire to
reconstruct; | have performed this trick many times".

Can this magic be debunked? No, this actually

Theorem 2 (Version |, Monard-Nickl-P 2019)
The estimator ®p is consistent in the sense that in P(Q’O -probability

||(T>N = ¢0HL2 — 0

as the sample size N — oo.



Let « > 8 > 2. The prior I is a centred Gaussian Borel probability
measure on the Banach space C(M) that is supported in a
separable linear subspace of C#(M), and assume its RKHS

(H, | - |l2) is continuously imbedded into the Sobolev space
H*(M).

An example:

Consider a Matérn kernel k : R? — R with associated (centered)
Gaussian process G with covariance E[G(x)G(y)] = k(x — y),
x,y € R2.



Explicitly

= QF(;) (‘/ij’”) K, (v2ur/b),

where K, is a modified Bessel function and r = |x — y|. The
parameter v controls the Sobolev regularity.

Consider M C R? and restrict the process to M to obtain a prior I
satisfying the required conditions as longas a =v >+ 1 > 3.
For this process H = H*(M).

This assumption on the prior describes a class.

Note: we put independent scalar valued processes on each entry of
o.



There is one further trick that has to be performed on the prior
before we can state in detail the consistency theorem.

Given 1 as above, we “temper" it by introducing a new prior MN¢emp
by setting
Ntemp(A) := N(PA/V NI/(at1))

where A is a Borel subset of C(M) and 1) is a cut-off function
which equals 1 on My C M and is compactly supported in M,

Theorem 3 (Full Version, Monard-Nickl-P 2019)

With Memp as above, assume ®q belongs to H and is supported in
My. Then we have, for some n > 0

Pd/;/o(H&’N — ®oll2(my > N_") —0 as N — oo.



We show first that the Bayesian algorithm recovers the
“regression function" Cg consistently in a natural statistical
distance function. This uses ideas from Bayesian
nonparametrics (van der Vaart and van Zanten, 2008).

This statistical distance function is equivalent to the
L2-distance in our case, since Ce takes values in a compact Lie
group.

We combine this with a new quantitative version of the
injectivity result of [P-Salo-Uhlmann 2012] (stability estimate).

This blending requires a careful use of fine properties of
Gaussian measures in infinite dimensions.



The new stability estimate can be stated as follows:

Theorem 4 (Monard-Nickl-P 2019)

Let (M, g) be a simple surface. Given two matrix fields ® and V in
CH(M,u(n)) we have

1P — Wl 12(m) < c(@,¥)[|Co Gy — 1d]| 1125, 5m),
where
(W) = Gi(L+ ([llca V [[W]|c2))2ePervIVIeo)

and the constants Cy, C, only depend on (M, g).



Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens
rigidity) :

Co Cy = Id + lg(o w)(V — @),

where lg(e,v) is an attenuated X-ray transform with matrix
attenuation ©(®, V), an endomorphism on C"*" with pointwise
action

QP V) U=dU— UV,  UeC™.

Thus the proof is reduced to a stability estimate for an attenuated
X-ray transform where the weight depends on ® and W. This uses
scalar holomorphic integrating factors, whose existence is
guaranteed by the surjectivity of /j (Pestov-Uhlmann 2005).



We use MCMC averages of the pre-conditioned Crank-Nicholson
algorithm to approximate the posterior mean.

Hairer, Stuart, Vollmer (2014) proved dimension-free spectral gaps
for the chain, so we have very good mixing properties towards the
posterior.

We use a Matérn kernel as described before for v = 3.

Various parameters need to be fine-tuned.

Left to right: two Matérn prior samples with ¢ = 0.1, 0.2 and 0.3.



This is the true field ®g.

We generate synthetic data Cg, from ®g and then we add noise.



Top to bottom: The posterior mean field for sample sizes
N = 200, 400, 800. The number of Monte-Carlo iterations is
100000.




The consistency theorem is a potent tranquilizer if you suffer
anxiety about Bayesian approaches to inverse problems. You
can now relax and use the pCN algorithm with confidence.

The ultimate tranquilizer is a Bernstein-von-Mises theorem
which describes a dream scenario for the posterior as the
sample limit N — oo.

This is within reach for PNT. It requires a fine understanding
of the inverse Fisher information operator, something of
independent interest eventually leading to a complete
understanding of boundary behaviour.

There is a beautiful interplay here between problems
motiviated by statistical thinking and geometric inverse
problems. Lots more to be done!



We use the preconditioned Crank-Nicholson (pCN) method to
sample from the posterior distribution.

Recall that the log-likelihood function given the data
(Yla(Xla VI)): 1 is

N
1
UP) = —== D _|IYi = Co(X;, Vi)
20 T

We approximate the posterior mean by a Monte Carlo average
¢ = 15 ZnNSOCD of a Markov chain (®,) of length N;.



Let I be a Gaussian prior for ®; initialise ®, = 0 for n = 0, then
repeat:

1. Draw W ~ 1 and for § > 0 define the proposal
po, ‘=1 —26 b, +/20 V.

2. Set

po,, with probability 1 A exp(4(pe,) — £(Pn)),
¢n+1 = .
®,, otherwise.

The algorithm is terminated at n = N and requires evaluation of
¢(®,) and thus of the scattering data Co,(Xj, V;) for every &, and
(Xi, Vi)

® — Co is non-linear and non convex so optimization methods are
challenging.



