Consistent inversion of noisy non-abelian X-ray transforms

Gabriel P. Paternain

IAS Workshop on IP, Imaging and PDEs, May 23rd 2019 Joint work with François Monard and Richard Nickl

Setting

- (M, g) is a compact Riemannian surface with boundary ∂M.
- $S M=\{(x, v) \in T M:|v|=1\}$ is the unit sphere bundle with boundary $\partial(S M)$.
- $\partial_{ \pm}(S M)=\{(x, v) \in \partial(S M): \pm\langle v, \nu\rangle \leq 0\}$, where ν is the the outer unit normal vector.
- We will assume ∂M is strictly convex (positive definite second fundamental form).

We let $\tau(x, v)$ be the first time when a geodesic starting at (x, v) leaves M.

Definition. We say (M, g) is non-trapping if $\tau(x, v)<\infty$ for all $(x, v) \in S M$.

We will assume that our surface is simple: there is non-trapping and there no conjugate points.

Examples: Strictly convex domains in the plane and small C^{2} perturbations of them.

Non-abelian X-ray

Let $\Phi \in C_{c}\left(M, \mathbb{C}^{n \times n}\right)$ be a matrix field.
Given a unit-speed geodesic $\gamma:[0, \tau] \rightarrow M$ with endpoints $\gamma(0), \gamma(\tau) \in \partial M$, we consider the matrix ODE

$$
\dot{U}+\Phi(\gamma(t)) U=0, \quad U(0)=I d
$$

We define the scattering data of Φ on γ to be $C_{\Phi}(\gamma):=U(\tau)$.
When Φ is scalar, we obtain $\log U(\tau)=-\int_{0}^{\tau} \Phi(\gamma(t)) d t$, the classical X-ray/Radon transform of ϕ along the curve γ.

- The collection of all such data makes up the scattering data or non-Abelian X-ray transform of ϕ, viewed as a map

$$
C_{\Phi}: \partial_{+} S M \rightarrow G L(n, \mathbb{C})
$$

- Inverse Problem: recover ϕ from C_{Φ}.

Injectivity

The state of the art on injectivity is:
Theorem 1 (P-Salo-Uhlmann 2012, P-Salo 2018)
Let (M, g) be a simple surface. The map $\Phi \mapsto C_{\Phi}$ is injective in the following cases:
(a) $\Phi: M \rightarrow \mathfrak{u}(n)$, where $\mathfrak{u}(n)$ in the set of skew-hermitian matrices (Lie algebra of $U(n)$).
(b) M has negative curvature.

Early work on this problem for Euclidean domains by Vertgeim (1992), R. Novikov (2002) and G. Eskin (2004).

Polarimetric Neutron Tomography (PNT)

The non-abelian X-ray transform arises naturally when trying to reconstruct a magnetic field from spin measurements of neutrons.

In this case

$$
\Phi(x)=\left[\begin{array}{ccc}
0 & B_{3} & -B_{2} \\
-B_{3} & 0 & B_{1} \\
B_{2} & -B_{1} & 0
\end{array}\right] \in \mathfrak{s o}(3)
$$

where $B(x)=\left(B_{1}, B_{2}, B_{3}\right)$ is the magnetic field.
The scatteting data takes values $C_{\Phi}: \partial_{+} S M \rightarrow S O(3)$.
Cf. [Desai, Lionheart et al., Nature Sc. Rep. 2018] and [Hilger et al., Nature Comm. 2018].

The experiment

Fig. 1 Tensor tomography. a Schematic drawing of the setup used for tensor tomography with spin-polarized neutrons, comprising spin polarizers (P), spin flippers (F) and a detector (D), b Selected magnetic field lines around an electric coil (calculation, see text and Methods)

From Hilger et al., Nature Comm. 2018.

- Data produced: $C_{\Phi}(x, v) \in S O(3)$.
- This is done with an ingenious sequence of spin flippers and rotators placed before and after the magnetic field being measured.
- The material containing the magnetic field can also be rotated so as to produce parallel beams from different angles.

But we face the usual problems:

- No explicit reconstruction formula.
- Measurements are noisy.

Thus we have observations $\left(X_{i}, V_{i}\right) \in \partial_{+} S M$ and

$$
Y_{i}=C_{\Phi}\left(X_{i}, V_{i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq N, \quad\left(\varepsilon_{i}\right)_{j k} \sim^{\text {i.i.d. }} \mathcal{N}\left(0, \sigma^{2}\right) .
$$

We will assume $\left(X_{i}, V_{i}\right) \sim^{\text {i.i.d }} \lambda$, where λ is the probability measure given by the standard area form of $\partial_{+} S M$ (independent of ε_{i}). We let P_{Φ}^{N} be the joint probability law of $\left(Y_{i},\left(X_{i}, V_{i}\right)\right)_{i=1}^{N}$.

Bayesian numerics magic

First a word from a magician (1988 paper):

BAYESIAN NUMERICAL ANALYSIS

PERSI DIACONIS

Department of Statistics
Stanford University
Stanford, California 94305, U.S.A.

1. INTRODUCTION

Consider a given function $f:[0,1] \rightarrow \mathbf{R}$ such as

$$
\begin{equation*}
f(x)=\exp \left\{\cosh \left(\frac{x+2 x^{2}+\cos x}{3+\sin x^{3}}\right)\right\} . \tag{1}
\end{equation*}
$$

If you require $\int_{0}^{1} f(x) d x$, a formula such as (1) isn't of much use and leads to questions like "What does it mean to 'know' a function?" The formula says some things (e.g. f is smooth, positive, and bounded by 20 on $[0,1]$) but there are many other facts about f that we don't know (e.g., is f monotone, unimodal, or convex?).

Once we allow that we don't know f, but do know some things, it becomes natural to take a Bayesian approach to the quadrature problem:

- Put a prior on continuous functions $C[0,1]$
- Calculate f at $x_{1}, x_{2}, \ldots, x_{n}$
- Compute a posterior
- Estimate $\int_{0}^{1} f$ by the Bayes rule

Most people, even Bayesians, think this sounds crazy when they first hear about it. The following examples may help.

We adopt the same magical approach.

- We put a Gaussian process prior Π on Φ; more details on this later. The use of Gaussian process priors for inverse problems has been advocated by A. Stuart.
- Using the observations we compute the posterior $\Pi\left(\cdot \mid\left(Y_{i},\left(X_{i}, V_{i}\right)_{i=1}^{N}\right)\right)$ using Bayes rule;
- From the posterior we extract the mean $\bar{\Phi}_{N}$. This is a somewhat formidable object given by a Bochner integral

$$
\bar{\Phi}_{N}=\int \Phi d \Pi\left(\Phi \mid\left(Y_{i},\left(X_{i}, V_{i}\right)_{i=1}^{N}\right)\right) .
$$

In more detail:

- We have

$$
\Pi\left(A \mid\left(Y_{i},\left(X_{i}, V_{i}\right)_{i=1}^{N}\right)\right)=\frac{\int_{A} e^{\ell(\Phi)} d \Pi(\Phi)}{\int e^{\ell(\Phi)} d \Pi(\Phi)},
$$

where the log-likelihood is

$$
\ell(\Phi):=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left\|Y_{i}-C_{\Phi}\left(X_{i}, V_{i}\right)\right\|^{2} .
$$

- And the posterior mean is

$$
\bar{\Phi}_{N}=\frac{\int \Phi e^{\ell(\Phi)} d \Pi(\Phi)}{\int e^{\ell(\Phi)} d \Pi(\Phi)} .
$$

The magician will tell you:
"as $N \rightarrow \infty, \bar{\Phi}_{N}$ will approach the true Φ_{0} you so much desire to reconstruct; I have performed this trick many times".

Can this magic be debunked? No, this actually works.

Theorem 2 (Version I, Monard-Nickl-P 2019)
The estimator $\bar{\Phi}_{N}$ is consistent in the sense that in $P_{\Phi_{0}}^{N}$-probability

$$
\left\|\bar{\Phi}_{N}-\Phi_{0}\right\|_{L^{2}} \rightarrow 0
$$

as the sample size $N \rightarrow \infty$.

Assumptions on the prior:

Let $\alpha>\beta>2$. The prior Π is a centred Gaussian Borel probability measure on the Banach space $C(M)$ that is supported in a separable linear subspace of $C^{\beta}(M)$, and assume its RKHS $\left(\mathcal{H},\|\cdot\|_{\mathcal{H}}\right)$ is continuously imbedded into the Sobolev space $H^{\alpha}(M)$.

An example:
Consider a Matérn kernel $k: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with associated (centered) Gaussian process G with covariance $E[G(x) G(y)]=k(x-y)$, $x, y \in \mathbb{R}^{2}$.

Explicitly

$$
k(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{\nu}(\sqrt{2 \nu} r / \ell),
$$

where K_{ν} is a modified Bessel function and $r=|x-y|$. The parameter ν controls the Sobolev regularity.

Consider $M \subset \mathbb{R}^{2}$ and restrict the process to M to obtain a prior Π satisfying the required conditions as long as $\alpha=\nu>\beta+1>3$. For this process $\mathcal{H}=H^{\alpha}(M)$.

This assumption on the prior describes a very flexible class.

Note: we put independent scalar valued processes on each entry of Ф.

Consistency: full version

There is one further trick that has to be performed on the prior before we can state in detail the consistency theorem.
Given Π as above, we "temper" it by introducing a new prior $\Pi_{\text {temp }}$ by setting

$$
\Pi_{\text {temp }}(A):=\Pi\left(\psi A / \sqrt{N^{1 /(\alpha+1)}}\right)
$$

where A is a Borel subset of $C(M)$ and ψ is a cut-off function which equals 1 on $M_{0} \subset M$ and is compactly supported in $M^{\text {int }}$.

Theorem 3 (Full Version, Monard-Nickl-P 2019)
With $\Pi_{\text {temp }}$ as above, assume Φ_{0} belongs to \mathcal{H} and is supported in M_{0}. Then we have, for some $\eta>0$

$$
P_{\Phi_{0}}^{N}\left(\left\|\bar{\Phi}_{N}-\Phi_{0}\right\|_{L^{2}(M)}>N^{-\eta}\right) \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Ingredients for the proof of consistency

- We show first that the Bayesian algorithm recovers the "regression function" C_{Φ} consistently in a natural statistical distance function. This uses ideas from Bayesian nonparametrics (van der Vaart and van Zanten, 2008).
- This statistical distance function is equivalent to the L^{2}-distance in our case, since C_{Φ} takes values in a compact Lie group.
- We combine this with a new quantitative version of the injectivity result of [P-Salo-Uhlmann 2012] (stability estimate).
- This blending requires a careful use of fine properties of Gaussian measures in infinite dimensions.

The new stability estimate can be stated as follows:
Theorem 4 (Monard-Nickl-P 2019)
Let (M, g) be a simple surface. Given two matrix fields ϕ and ψ in $C_{c}^{1}(M, u(n))$ we have

$$
\|\Phi-\Psi\|_{L^{2}(M)} \leq c(\Phi, \Psi)\left\|C_{\Phi} C_{\Psi}^{-1}-\mathrm{Id}\right\|_{H^{1}\left(\partial_{+} S M\right)}
$$

where

$$
c(\Phi, \Psi)=C_{1}\left(1+\left(\|\Phi\|_{C^{1}} \vee\|\Psi\|_{C^{1}}\right)\right)^{1 / 2} e^{C_{2}\left(\|\Phi\|_{C^{1}} V\|\Psi\|_{C^{1}}\right)},
$$

and the constants C_{1}, C_{2} only depend on (M, g).

Relation between linear and non-linear

Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens rigidity) :

$$
C_{\Phi}^{-1} C_{\psi}=I d+l_{\Theta(\Phi, \psi)}(\Psi-\Phi)
$$

where $I_{\Theta(\Phi, \Psi)}$ is an attenuated X -ray transform with matrix attenuation $\Theta(\Phi, \Psi)$, an endomorphism on $\mathbb{C}^{n \times n}$ with pointwise action

$$
\Theta(\Phi, \Psi) \cdot U=\Phi U-U \Psi, \quad U \in \mathbb{C}^{n \times n}
$$

Thus the proof is reduced to a stability estimate for an attenuated X-ray transform where the weight depends on Φ and Ψ. This uses scalar holomorphic integrating factors, whose existence is guaranteed by the surjectivity of I_{0}^{*} (Pestov-Uhlmann 2005).

Implementation

We use MCMC averages of the pre-conditioned Crank-Nicholson algorithm to approximate the posterior mean.

Hairer, Stuart, Vollmer (2014) proved dimension-free spectral gaps for the chain, so we have very good mixing properties towards the posterior.

We use a Matérn kernel as described before for $\nu=3$.
Various parameters need to be fine-tuned.

Left to right: two Matérn prior samples with $\ell=0.1,0.2$ and 0.3 .

This is the true field Φ_{0}.
We generate synthetic data $C_{\Phi_{0}}$ from Φ_{0} and then we add noise.

Top to bottom: The posterior mean field for sample sizes $N=200,400,800$. The number of Monte-Carlo iterations is 100000.

Main message

- The consistency theorem is a potent tranquilizer if you suffer anxiety about Bayesian approaches to inverse problems. You can now relax and use the pCN algorithm with confidence.
- The ultimate tranquilizer is a Bernstein-von-Mises theorem which describes a dream scenario for the posterior as the sample limit $N \rightarrow \infty$.
- This is within reach for PNT. It requires a fine understanding of the inverse Fisher information operator, something of independent interest eventually leading to a complete understanding of boundary behaviour.
- There is a beautiful interplay here between problems motiviated by statistical thinking and geometric inverse problems. Lots more to be done!

pCN algorithm

We use the preconditioned Crank-Nicholson (pCN) method to sample from the posterior distribution.

Recall that the log-likelihood function given the data $\left(Y_{i},\left(X_{i}, V_{i}\right)\right)_{i=1}^{N}$ is

$$
\ell(\Phi)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left\|Y_{i}-C_{\Phi}\left(X_{i}, V_{i}\right)\right\|^{2}
$$

We approximate the posterior mean by a Monte Carlo average $\widehat{\phi}=\frac{1}{N_{s}} \sum_{n=0}^{N_{s}} \Phi_{n}$ of a Markov chain $\left(\Phi_{n}\right)$ of length N_{s}.

Let Π be a Gaussian prior for Φ; initialise $\Phi_{n}=0$ for $n=0$, then repeat:

1. Draw $\Psi \sim \Pi$ and for $\delta>0$ define the proposal $p_{\Phi_{n}}:=\sqrt{1-2 \delta} \Phi_{n}+\sqrt{2 \delta} \Psi$.
2. Set

$$
\Phi_{n+1}= \begin{cases}p_{\Phi_{n}}, & \text { with probability } 1 \wedge \exp \left(\ell\left(p_{\Phi_{n}}\right)-\ell\left(\Phi_{n}\right)\right), \\ \Phi_{n}, & \text { otherwise } .\end{cases}
$$

The algorithm is terminated at $n=N_{s}$ and requires evaluation of $\ell\left(\Phi_{n}\right)$ and thus of the scattering data $C_{\Phi_{n}}\left(X_{i}, V_{i}\right)$ for every Φ_{n} and $\left(X_{i}, V_{i}\right)$
$\Phi \mapsto C_{\Phi}$ is non-linear and non convex so optimization methods are challenging.

