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Setting
- (M, g) is a compact Riemannian surface with boundary ∂M.
- SM = {(x , v) ∈ TM : |v | = 1} is the unit sphere bundle with
boundary ∂(SM).

- ∂±(SM) = {(x , v) ∈ ∂(SM) : ±〈v , ν〉 ≤ 0}, where ν is the
the outer unit normal vector.

- We will assume ∂M is strictly convex (positive definite second
fundamental form).



We let τ(x , v) be the first time when a geodesic starting at (x , v)
leaves M.

Definition. We say (M, g) is non-trapping if τ(x , v) <∞ for all
(x , v) ∈ SM.

We will assume that our surface is simple: there is non-trapping
and there no conjugate points.

Examples: Strictly convex domains in the plane and small C 2

perturbations of them.



Non-abelian X-ray

Let Φ ∈ Cc(M,Cn×n) be a matrix field.

Given a unit-speed geodesic γ : [0, τ ]→ M with endpoints
γ(0), γ(τ) ∈ ∂M, we consider the matrix ODE

U̇ + Φ(γ(t))U = 0, U(0) = Id.

We define the scattering data of Φ on γ to be CΦ(γ) := U(τ).

When Φ is scalar, we obtain logU(τ) = −
∫ τ
0 Φ(γ(t)) dt, the

classical X-ray/Radon transform of Φ along the curve γ.



- The collection of all such data makes up the scattering data or
non-Abelian X-ray transform of Φ, viewed as a map

CΦ : ∂+SM → GL(n,C).

- Inverse Problem: recover Φ from CΦ.



Injectivity

The state of the art on injectivity is:

Theorem 1 (P-Salo-Uhlmann 2012, P-Salo 2018)
Let (M, g) be a simple surface. The map Φ 7→ CΦ is injective in
the following cases:
(a) Φ : M → u(n), where u(n) in the set of skew-hermitian
matrices (Lie algebra of U(n)).
(b) M has negative curvature.

Early work on this problem for Euclidean domains by Vertgeim
(1992), R. Novikov (2002) and G. Eskin (2004).



Polarimetric Neutron Tomography (PNT)

The non-abelian X-ray transform arises naturally when trying to
reconstruct a magnetic field from spin measurements of neutrons.

In this case

Φ(x) =

 0 B3 −B2
−B3 0 B1
B2 −B1 0

 ∈ so(3)

where B(x) = (B1,B2,B3) is the magnetic field.

The scatteting data takes values CΦ : ∂+SM → SO(3).

Cf. [Desai, Lionheart et al., Nature Sc. Rep. 2018] and [Hilger et
al., Nature Comm. 2018].



The experiment

From Hilger et al., Nature Comm. 2018.

- Data produced: CΦ(x , v) ∈ SO(3).
- This is done with an ingenious sequence of spin flippers and
rotators placed before and after the magnetic field being
measured.

- The material containing the magnetic field can also be rotated
so as to produce parallel beams from different angles.



But we face the usual problems:

- No explicit reconstruction formula.
- Measurements are noisy.

Thus we have observations (Xi ,Vi ) ∈ ∂+SM and

Yi = CΦ(Xi ,Vi ) + εi , 1 ≤ i ≤ N, (εi )jk ∼i.i.d. N (0, σ2).

We will assume (Xi ,Vi ) ∼i.i.d λ, where λ is the probability measure
given by the standard area form of ∂+SM (independent of εi ).

We let PN
Φ be the joint probability law of (Yi , (Xi ,Vi ))Ni=1.



Bayesian numerics magic
First a word from a magician (1988 paper):



We adopt the same magical approach.

- We put a Gaussian process prior Π on Φ; more details on this
later. The use of Gaussian process priors for inverse problems
has been advocated by A. Stuart.

- Using the observations we compute the posterior
Π(·|(Yi , (Xi ,Vi )

N
i=1)) using Bayes rule;

- From the posterior we extract the mean Φ̄N . This is a
somewhat formidable object given by a Bochner integral

Φ̄N =

∫
Φ dΠ(Φ|(Yi , (Xi ,Vi )

N
i=1)).



In more detail:

- We have

Π(A|(Yi , (Xi ,Vi )
N
i=1)) =

∫
A e`(Φ) dΠ(Φ)∫
e`(Φ) dΠ(Φ)

,

where the log-likelihood is

`(Φ) := − 1
2σ2

N∑
i=1

‖Yi − CΦ(Xi ,Vi )‖2.

- And the posterior mean is

Φ̄N =

∫
Φe`(Φ) dΠ(Φ)∫
e`(Φ) dΠ(Φ)

.



The magician will tell you:

"as N →∞, Φ̄N will approach the true Φ0 you so much desire to
reconstruct; I have performed this trick many times".

Can this magic be debunked? No, this actually works.

Theorem 2 (Version I, Monard-Nickl-P 2019)
The estimator Φ̄N is consistent in the sense that in PN

Φ0
-probability

‖Φ̄N − Φ0‖L2 → 0

as the sample size N →∞.



Assumptions on the prior:
Let α > β > 2. The prior Π is a centred Gaussian Borel probability
measure on the Banach space C (M) that is supported in a
separable linear subspace of Cβ(M), and assume its RKHS
(H, ‖ · ‖H) is continuously imbedded into the Sobolev space
Hα(M).

An example:
Consider a Matérn kernel k : R2 → R with associated (centered)
Gaussian process G with covariance E [G (x)G (y)] = k(x − y),
x , y ∈ R2.



Explicitly

k(r) =
21−ν

Γ(ν)

(√
2νr
`

)ν
Kν(
√
2νr/`),

where Kν is a modified Bessel function and r = |x − y |. The
parameter ν controls the Sobolev regularity.

Consider M ⊂ R2 and restrict the process to M to obtain a prior Π
satisfying the required conditions as long as α = ν > β + 1 > 3.
For this process H = Hα(M).

This assumption on the prior describes a very flexible class.

Note: we put independent scalar valued processes on each entry of
Φ.



Consistency: full version
There is one further trick that has to be performed on the prior
before we can state in detail the consistency theorem.

Given Π as above, we “temper" it by introducing a new prior Πtemp

by setting

Πtemp(A) := Π(ψA/
√

N1/(α+1))

where A is a Borel subset of C (M) and ψ is a cut-off function
which equals 1 on M0 ⊂ M and is compactly supported in M int .

Theorem 3 (Full Version, Monard-Nickl-P 2019)
With Πtemp as above, assume Φ0 belongs to H and is supported in
M0. Then we have, for some η > 0

PN
Φ0

(
‖Φ̄N − Φ0‖L2(M) > N−η

)
→ 0 as N →∞.



Ingredients for the proof of consistency

- We show first that the Bayesian algorithm recovers the
“regression function" CΦ consistently in a natural statistical
distance function. This uses ideas from Bayesian
nonparametrics (van der Vaart and van Zanten, 2008).

- This statistical distance function is equivalent to the
L2-distance in our case, since CΦ takes values in a compact Lie
group.

- We combine this with a new quantitative version of the
injectivity result of [P-Salo-Uhlmann 2012] (stability estimate).

- This blending requires a careful use of fine properties of
Gaussian measures in infinite dimensions.



The new stability estimate can be stated as follows:

Theorem 4 (Monard-Nickl-P 2019)
Let (M, g) be a simple surface. Given two matrix fields Φ and Ψ in
C 1
c (M, u(n)) we have

‖Φ−Ψ‖L2(M) ≤ c(Φ,Ψ)‖CΦC
−1
Ψ − Id‖H1(∂+SM),

where

c(Φ,Ψ) = C1(1 + (‖Φ‖C1 ∨ ‖Ψ‖C1))1/2eC2(‖Φ‖C1∨‖Ψ‖C1 ),

and the constants C1,C2 only depend on (M, g).



Relation between linear and non-linear

Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens
rigidity) :

C−1
Φ CΨ = Id + IΘ(Φ,Ψ)(Ψ− Φ),

where IΘ(Φ,Ψ) is an attenuated X-ray transform with matrix
attenuation Θ(Φ,Ψ), an endomorphism on Cn×n with pointwise
action

Θ(Φ,Ψ) · U = ΦU − UΨ, U ∈ Cn×n.

Thus the proof is reduced to a stability estimate for an attenuated
X-ray transform where the weight depends on Φ and Ψ. This uses
scalar holomorphic integrating factors, whose existence is
guaranteed by the surjectivity of I ∗0 (Pestov-Uhlmann 2005).



Implementation

We use MCMC averages of the pre-conditioned Crank-Nicholson
algorithm to approximate the posterior mean.

Hairer, Stuart, Vollmer (2014) proved dimension-free spectral gaps
for the chain, so we have very good mixing properties towards the
posterior.

We use a Matérn kernel as described before for ν = 3.

Various parameters need to be fine-tuned.

Left to right: two Matérn prior samples with ` = 0.1, 0.2 and 0.3.



This is the true field Φ0.

We generate synthetic data CΦ0 from Φ0 and then we add noise.



Top to bottom: The posterior mean field for sample sizes
N = 200, 400, 800. The number of Monte-Carlo iterations is

100000.



Main message

- The consistency theorem is a potent tranquilizer if you suffer
anxiety about Bayesian approaches to inverse problems. You
can now relax and use the pCN algorithm with confidence.

- The ultimate tranquilizer is a Bernstein-von-Mises theorem
which describes a dream scenario for the posterior as the
sample limit N →∞.

- This is within reach for PNT. It requires a fine understanding
of the inverse Fisher information operator, something of
independent interest eventually leading to a complete
understanding of boundary behaviour.

- There is a beautiful interplay here between problems
motiviated by statistical thinking and geometric inverse
problems. Lots more to be done!



pCN algorithm

We use the preconditioned Crank-Nicholson (pCN) method to
sample from the posterior distribution.

Recall that the log-likelihood function given the data
(Yi , (Xi ,Vi ))Ni=1 is

`(Φ) = − 1
2σ2

N∑
i=1

‖Yi − CΦ(Xi ,Vi )‖2.

We approximate the posterior mean by a Monte Carlo average
Φ̂ = 1

Ns

∑Ns
n=0 Φn of a Markov chain (Φn) of length Ns .



Let Π be a Gaussian prior for Φ; initialise Φn = 0 for n = 0, then
repeat:
1. Draw Ψ ∼ Π and for δ > 0 define the proposal

pΦn :=
√
1− 2δ Φn +

√
2δ Ψ.

2. Set

Φn+1 =

{
pΦn , with probability 1 ∧ exp(`(pΦn)− `(Φn)),
Φn, otherwise.

The algorithm is terminated at n = Ns and requires evaluation of
`(Φn) and thus of the scattering data CΦn(Xi ,Vi ) for every Φn and
(Xi ,Vi )

Φ 7→ CΦ is non-linear and non convex so optimization methods are
challenging.


