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Fractional Laplacian

Definition via Fourier transform:

(−∆)su = F−1{|ξ|2s û(ξ)};

Definition via Heat equation:

(−∆)su(x) =
1

Γ(−s)

∫ ∞
0

U(x , t)− u(x)

t1+s
dt

where U solves the heat equation:

∂tU −∆U = 0 in Rn × (0,∞), U |t=0 = u on Rn.

This operator is nonlocal: it does not preserve supports, and
computing (−∆)su(x) involves values of u far away from x .



Fractional Laplacian

Different models for diffusion:

∂tu −∆u = 0 normal diffusion

∂tu + (−∆)su = 0 superdiffusion/Lévy flight

∂αt u −∆u = 0 subdiffusion/CTRW

The fractional Laplacian is related to

I anomalous diffusion involving long range interactions
(turbulent media, population dynamics)

I Lévy processes in probability theory

I financial modelling with jump processes



Fractional Schrödonger equation

Let Ω ⊂ Rn bounded, q ∈ L∞(Ω). Since (−∆)s is nonlocal,
the Dirichlet problem becomes{

((−∆)s + q)u = 0 in Ω,
u = f in Ωe

(∗)

where Ωe = Rn \ Ω is the exterior domain.

Direct problem : Given f ∈ H s(Ωe), look for a solution
u ∈ H s(Rn).



Cauchy data
Neumann data:

N su(x)|Ωe = cn,s

∫
Ω

u(x)− u(y)

|x − y |n+2s
dy .

It satisfies the following limiting relation: [Dipierro, Ros-Oton,

Valdinoci 2012]:

lim
s→1

∫
Ωe

N su ψ =

∫
∂Ω

∂u

∂ν
ψ, ∀ψ ∈ S(Rn).

Cauchy data:
Cq = {u|Ωe , N su|Ωe}.

DN Map: If 0 is not the eigenvalue of (∗)

Λq : f 7→ N suf .



Inverse problem & integral identity

Inverse problem: Given Λq, determine q.

Partial data problem: Let
supp u1 ∩ Ωe = supp u2 ∩ Ωe = W̃ b Ωe and

u1 = u2 in W̃ , Λq1u1|W = Λq2u2|W , W b Ωe .

Integral identity: ∫
Ω

(q1 − q2)u1 u2 = 0.



Main result

Theorem (G-Salo-Uhlmann)
Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ L∞(Ω). If W , W̃ ⊂ Ωe are any non-empty open sets,
and if

Λq1f |W = Λq2f |W , f ∈ C∞c (W̃ ),

then q1 = q2 in Ω.

Main features:

I local data result for arbitrary W ⊂ Ωe

I the same method works for all n ≥ 1

I new mechanism for solving (nonlocal) inverse problems



Runge approximation

Classical Runge property (for ∂u = 0):

analytic functions in simply connected U ⊂ C
can be approximated by complex polynomials.

General Runge property (for elliptic PDE):

any solution in U , where U ⊂ Ω ⊂ Rn, can
be approximated using solutions in Ω.

Main tool: Reduces by duality to the unique continuation
principle [Lax, Malgrange 1956].



Runge approximation: fractional case

Theorem (G-Salo-Uhlmann)
Any f ∈ L2(Ω) can be approximated in L2(Ω) by solutions u|Ω,
where

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω ∪W . (∗)

Higher order approximation:

If everything is C∞, any f ∈ C k(Ω) can be approximated in
C k(Ω) by functions d(x)−su|Ω with u as in (∗).

(approximate control in all of Ω, this could never hold for ∆).



Main tool: uniqueness

The fractional equation has strong uniqueness properties:

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if both u and (−∆)su
vanish in some open set, then u ≡ 0.

Such a result could never hold for the Laplacian:
if u ∈ C∞c (Rn), then both u and ∆u vanish in a large set.



Main tool: uniqueness property

Proof (sketch). If u is nice enough, then

(−∆)su ∼ lim
y→0

y 1−2s∂yw( · , y)

where w(x , y) is the Caffarelli-Silvestre extension of u:{
divx ,y (y 1−2s∇x ,yw) = 0 in Rn × {y > 0},

w |y=0 = u.

Thus (−∆)su is obtained from a local equation, which is
degenerate elliptic with A2 weight y 1−2s . Carleman estimates
[Rüland 2015] and u|W = (−∆)su|W = 0 imply uniqueness.



Single measurement

Theorem (G-Rüland-Salo-Uhlmann)

Let Ω ⊂ Rn be a bounded open set, let 1
4
< s < 1, and let

q1, q2 ∈ L∞(Ω). Let also W , W̃ ⊂ Ωe be non-empty open
sets. If the DN maps for the equations ((−∆)s + qj)u = 0 in
Ω satisfy

Λq1f |W = Λq2f |W for a single f ∈ C∞c (W̃ ),

then q1 = q2 in Ω.
For, s ∈ (0, 1

4
], we recover only continuous bounded potential

q ∈ C (Ω) ∩ L∞.



Reconstruction from a single-measurement

Theorem (G-Rüland-Salo-Uhlmann)

Let Ω ⊂ Rn, n ≥ 1, be a bounded open set, let 0 < s < 1, and
let W be an open set with Ω ∩W = ∅. Any function
v ∈ H s(Rn) with supp(v) ⊂ Ω is uniquely determined by the
knowledge of (−∆)sv |W .

Reconstruction algorithm: By writing u = f + v where
v ∈ H̃ s(Ω), and then find v |Ω from (−∆)sv |W . So we know
u|Ω and determine q a.e. in Ω as

q := −(−∆)su

u

∣∣∣
Ω
.

Here we use that u can only vanish in a set of measure zero in
Ω, and the fact that f 6≡ 0.



Anisotropic fractional Calderón problem
Let A(x) is a C∞-smooth, elliptic, bounded n × n matrix
defined in Rn. We consider the second order elliptic operator
(−div(A(x)∇ ) in Rn and its fractional power.

I Model problem:{
((−div(A(x)∇ ))s + q) u = 0 in Ω,

u = f in Ωe ,

Theorem (G-Lin-Xiao)

Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ C (Ω). Let also W1,W2 ⊂ Ωe be non-empty open
sets. If the DN maps for the equations
((−div(A(x)∇ ))s + qj) uj = 0 in Ω satisfy

Λq1f |W2 = Λq2f |W2 for a single f ∈ C∞c (W1),

then q1 = q2 in Ω.



Thank you for your attention!


