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Introduction to Inverse scattering 
problems (ISPs)
 To find unknown scatterers (permittivities, sizes, 

locations) inside the wall from scattering data
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Real-world applications ISPs

3

Through Wall Imaging Ultrasonic scanning imaging

Non-destructive evaluation

ρWATER ~ 1 Ωm

ρSED ~ 0.5 - 3 Ωm

ρSED ~ 1 - 3 Ωm

Petroleum exploration
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Introduction to ISPs
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Motivation

 Apply neural network (NN) to solve ISPs, a 
regression problem.

 How to provide guidance to deep learning? 
Find frameworks and links with mathematics 

(Optimization, Numerical differential equations, 
Control…)

Find insights from physics 
 In many real-world applications, data are collected by sensors

(optical, acoustical, microwave wave, electric current/voltage, 
heat….), automatically governed by physical laws

 Some physical laws present well-known mathematical 
properties (even analytical solutions), which do not need to be 
learnt by training with a lot of data.
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Forward problem (2D) 

 Background medium with parameters
 Distribution of permittivities
 Governing equation (single frequency): 

where 

 Lippmann-Schwinger equation:

 Scattered field
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Forward problem (2D)
 Introduce notation

 Scattering equations:

( ; , )    for     (at receiver)  
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Forward Problem (2D)
After discretization, we have 
 Data equation:

 Lippmann-Schwinger equation:

̅�̅�𝜒 is the diagonal matrix consisting of  𝑘𝑘𝑏𝑏2 𝜀𝜀𝑟𝑟 − 1 , referred to  
as the contrast (with the background) [scattering potential]. 
 Method of solving forward problem: Eliminate ̅𝐽𝐽 and obtain 

the Incidence-to-Scattering mapping

where

( )inc
DJ E G Jχ= ⋅ + ⋅

scat
SE G J= ⋅

scat inc
E P E= ⋅
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�𝑃𝑃 = �̿�𝐺𝑆𝑆 ⋅ ̿𝐼𝐼 − �̿�𝜒 ⋅ �̿�𝐺𝐷𝐷
−1
⋅ �̿�𝜒
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Inverse Scattering Problem (ISP)
scat inc

E P E= ⋅

 The relationship between �𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and �̿�𝜒 is nonlinear
 Linear approximation ISP (Born Approximation)

 Full-wave ISP (i.e., no linearization approximation is made)
 Highly nonlinear (due to �̿�𝐺𝐷𝐷)
 Ill-posed (due to �̿�𝐺𝑆𝑆)
 High-dimensional (due to the total number of pixels)

 Special case: Far-field operator
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Objective function approach

Inverse problem

Forward problem

Two approaches to inverse problems
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Learning approach

Two approaches to inverse problems

Construct an explicit inverse: 𝑥𝑥 = 𝑅𝑅𝜃𝜃(𝑦𝑦), given a training set of 
ground-truth images and their corresponding measurements 
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Lucas et.al. IEEE Signal Processing Magazine, 2018

An example of a fully connected neural network with two hidden layers
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McCann, Jin, Unser, “Convolutional Neural Networks for Inverse 
Problems in Imaging ” IEEE Signal Processing Magazine, 2017

“Central to this work will be questions of how best to 
combine CNNs with knowledge of the underlying physics 
as well as objective-function techniques”

 How to bridge the gap between objective-function 
approach and machine-learning approach forms a fertile 
ground for future investigation for the whole imaging 
community
 Unroll an iterative optimization algorithm, turning each 

iteration into a layer of network

Two approaches to inverse problems
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Learning approach to ISP
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 There is room to improve: deep learning approach has not 
yet had the profound impact on inverse problems that they 
have had for object classification

 Early stage: 
 Caorsi, TGRS, 1999; 
 Rekanos, TM, 2002; 
 Bermani, TGRS, 2003

 Shallow NN (and support vector machine (SVM)) are used
 Non-pixel representation (a few parameters, i.e., positions, 

geometries, and homogeneous dielectric properties)
 Advantage: real-time
 Limitations: requirement on prior information on scatterers; 

piecewise constant permittivity 
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Learning approach to ISP
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 More versatile pixel-based representation + Deep NN
Four categories:
 Direct learning: (x, y)

Comment: Black-box: no insight
 Hybrid approach: 
 Still use objective function approach + NN in each iteration of 

optimization [Learn gradient: Guo, TAP, 2019; Adler, IP, 2017]
Comment: Improve local efficiency, but not global non-linearity

 NN obtains initial guess + objective function approach: Sanghvi, 
TCI, 2019 (learn induced current, followed by SOM)

 New-representation: ( �𝑥𝑥, �𝑦𝑦)
New input & output [Li, TAP, 2019 (DeepNIS); Wei, TGRS, 2019 
(DIS, BPS, DCS); Sun, OE, 2018 (BP)]
Comment: need mathematical & physical insights; most promising

 Other advanced approaches 
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The U-net architecture for the proposed three CNN schemes: DIS, BPS, and DCS
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Wei, IEEE-TGRS, 2019Examples
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1. Direct Inversion Scheme (DIS)

2. Back-Propagation Scheme (BPS)

Inputs:  Scattered field �𝐸𝐸𝑠𝑠;  Output: the contrasts �̿�𝜒

Inputs: the BP contrasts �̿�𝜒𝑏𝑏;  Output: the contrasts �̿�𝜒

Three CNN schemes

17
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 Recall the two equations 

scat
SE G J= ⋅

( )inc
DJ E G Jχ= ⋅ + ⋅

SG DG Important: both the      and       operators, containing 
most data in the two equations,  are independent of 
unknown scatterers 
Motivate us to analyze the property of these two 

operators before reconstructing the contrast  ̅�̅�𝜒
The computational overhead of such analysis should not 

be large 

3. Dominant Current Scheme (DCS)
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Dominant Current Scheme (DCS)

*
SS S SG U V= ⋅Σ ⋅

Other smaller 
singular values

First L leading 
singular values
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 The vector space, CM, of the current  ̅𝐽𝐽 can be 
decomposed into subspaces.

 Singular Value Decomposition (SVD)
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 Obtain the deterministic part using the linear 
relation

𝐽𝐽+ = �𝑉𝑉𝑆𝑆+ ⋅ �̄�𝛼
+ = �

𝑗𝑗=1

𝐿𝐿

�̄�𝑣𝑗𝑗+
�̄�𝑢𝑗𝑗+∗ ⋅ 𝐸𝐸

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑗𝑗

 Dominant part current is defined as:

Dominant Current Scheme (DCS)

̅𝐽𝐽𝑑𝑑 = ̅𝐽𝐽+ + ̅𝐽𝐽 𝑙𝑙

̅𝐽𝐽 𝑙𝑙 = �𝐹𝐹 ⋅ �𝛼𝛼

Wei, IEEE-TGRS, 2019

DCS: Inputs: the dominant contrasts �̿�𝜒𝑝𝑝𝑑𝑑;  Output: the contrasts �̿�𝜒

p: index of incidence

Low-frequency Fourier components
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Computational cost

 M pixels in the domain of interest  
Nr receivers: M >> Nr

 Computational cost of SVD
2: ( )S rG O M N

 Only a thin SVD of        is needed (first L singular vectors)SG
 Computational cost of thin SVD:  

2: ( ) ( )S rG O LMN O M∝

 �𝐹𝐹 � 𝛼𝛼 can be directly calculated by fast Fourier transform 
O(M logM)
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Three steps of imaging process

S

D

 Incidence (independent of material):  �𝐸𝐸𝑖𝑖𝑛𝑛𝑠𝑠

Wave-material interaction (dependent on 
material):   ̅𝐽𝐽 = �̿�𝜒 ⋅ ( �𝐸𝐸𝑖𝑖𝑛𝑛𝑠𝑠 + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽)
Measurement of scattering data 

(independent of material):  𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= �̿�𝐺𝑆𝑆 ⋅ 𝐽𝐽
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S
D

Wave physics 
between D and 
S is known: 
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DIS v.s. BPS & DCS

No need to use 
lot of data to 
train the NN to 
learn it!

𝐺𝐺 𝐫𝐫, 𝐫𝐫′ =
𝑖𝑖
4
𝐻𝐻0

1 (𝑘𝑘|𝐫𝐫 − 𝐫𝐫′|)
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Numerical results

Example #1: One to three random circles

24

Size of Pixel: 64 x 64
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“Austria” tests: 
(a) Ground-truth profile.

Reconstructed relative permittivity for 
(b) BPS
(c) DCS
(d) iterative method (SOM) 

25

Numerical results

Example #2: Test for four circles

5%  noise 20%  noise
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Example #3: Tests with MNIST database
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Numerical results
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Use the network trained with circular-cylinders in Example #1 to test MNIST 
database in Example #3

27

Numerical results



IAS-HKUST, Hong Kong, May 2019 28

Ground truth profile: 
“FoamDielExt”, Institue Fresnel Reconstructed results

Experimental results
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Summary of BPS & DCS
 Inputs are approximate contrasts �̿�𝜒𝑠𝑠 obtained at 

low computational cost; Outputs are exact 
contrasts �̿�𝜒
A poor �̿�𝜒𝑠𝑠 increases the difficulty of the problem
A more accurate �̿�𝜒𝑠𝑠 increases computational cost 

 Motivate us to propose new models
 Reexamine Lippmann-Schwinger equation

 Input: ̅𝐽𝐽+ & �𝐸𝐸+(= �𝐸𝐸𝑖𝑖 + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽+);    Output: ̅𝐽𝐽
 𝜒𝜒 is the element-wise ratio of ̅𝐽𝐽 to ( �𝐸𝐸𝑖𝑖 + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽)
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̅𝐽𝐽 = �̿�𝜒 ⋅ ( �𝐸𝐸𝑖𝑖 + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽)

̅𝐽𝐽+ + ̅𝐽𝐽− = �̿�𝜒 ⋅ ( �𝐸𝐸𝑖𝑖 + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽+ + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽−)
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CNN architecture: Induced current 
learning method (ICLM)
 Lippmann-Schwinger equation

 Input: ̅𝐽𝐽+ & �𝐸𝐸+;    Output: ̅𝐽𝐽;   what is learnt is in fact ̅𝐽𝐽−
 Residue type: Skip connection is added

 Multiple labels are used, motivated by multi-resolution 
of ̅𝐽𝐽−
 Traditional optimization approach: low-frequency features are 

recovered at initial iterations; high-frequency features come at 
later iterations

 Some non-learning models have explicitly used basis-
expansion methods 

The s-th label is chosen as  

30

̅𝐽𝐽+ + ̅𝐽𝐽− = �̿�𝜒 ⋅ ( �𝐸𝐸+ + �̿�𝐺𝐷𝐷 ⋅ ̅𝐽𝐽−)



IAS-HKUST, Hong Kong, May 2019

Physics-Inspired Cascaded end-to-end CNN
 Z. Wei and X. Chen, "Physics-Inspired Convolutional Neural 

Network for Solving Full-Wave Inverse Scattering Problems," IEEE 
TAP, Accepted, 2019
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Numerical examples

Tests on Latin letters with the network trained by MIMIST dataset, 
with 15% Gaussian noise added
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Promising research direction
 This research work has won the Ulrich L. Rohde Innovative 

Conference Paper Award in IEEE ICCEM 2019 conference
 Desay SV Automotive Singapore Pte. Ltd.

Radar target classification in Advanced Driver-Assistance 
Systems (ADAS)
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 Applicable to inverse problems based on other 
physical principles
 Vector wave equation (Maxwell equations in 3-D)
 Transport equation
 Electrical impedance tomography (EIT)

https://iccem2019.tongji.edu.cn/Ulrich_L__Rohde_Innovative_Conference_Paper_Award.htm
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 EIT provides higher contrast at low frequency, widely used 
in biomedical applications 

Electrical impedance tomography (EIT)
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Reconstructions of agar heart and lung phantom contained in 
a saline filled tank

35

Phantom Reconstructed

 Hamilton TMI, 2018 (Deep D-Bar)
Wei, TBE, 2019
Wei, in preparation, 2019
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Take-home message
 No matter using objective function approach or 

learning approach, the key is to construct 
corresponding target function in a way such that it 
depends in a much less nonlinear way on unknowns.

 Avoid directly dealing with measurement data, where 
CNN has to spend unnecessary cost to train and 
learn underlying wave physics. Extract out as much 
as possible what people can do and leave the 
remaining to machine. 

 The above two need a fairly good understanding of 
the forward problem (physical and mathematical 
insights)
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X. Chen, 
Computational Methods for 
Electromagnetic Inverse Scattering. 
Wiley, 2018

Chapter 6:  
Reconstructing Dielectric Scatterers

Reference:
Z. Wei and X. Chen, "Deep Learning Schemes for Full-Wave Nonlinear 
Inverse Scattering Problems, " IEEE Trans. on Geoscience and Remote 
Sensing, vol. 57, pp. 1849-1860, 2019

Z. Wei and X. Chen, "Physics-Inspired Convolutional Neural Network for 
Solving Full-Wave Inverse Scattering Problems," IEEE Trans. on Antennas 
and Propagation, Accepted, 2019

37



IAS Workshop on Inverse Problems, Imaging and Partial Differential Equations 
Institute for Advanced Study, Hong Kong University of Science and Technology 

Hong Kong, May 20-24, 2019

Thank you!
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