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Calderón’s Problem

Electrical Impedance Tomography: Recover electric conductivity of an
object from voltage-to-current measurements on the boundary.

Posed by Alberto Calderón (1980).

Voltage-to-current measurements are modeled by the
Dirichlet-to-Neumann-map

Λσ : f 7→ σ∂νu|∂Ω

where u solves ∇ · (σ∇u) = 0 in Ω, u|∂Ω = f .

Inverse Problem: Determine σ from Λσ .
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Inverse Problem for Maxwell’s equations

Consider the time-harmonic Maxwell’s equations with a fixed
(non-resonance) frequency ω > 0

∇× E = iωµH and ∇× H = −iωεE in Ω ⊂ R3.

E,H : Ω→ C3 electric and magnetic fields;
ε, µ ∈ L∞(Ω;C) electromagnetic parameters with Re(ε) ≥ ε0 > 0 and
Re(µ) ≥ µ0 > 0;
Electromagnetic measurements on ∂Ω are modeled by the admittance
map

Λε,µ : ν × E|∂Ω 7→ ν × H|∂Ω.

Inverse Problem: Determine ε and µ from Λε,µ.
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Uniquness Results

Conductivity equation:
Calderón (1980) for the linearized inverse problem;
Kohn-Vogelius (1985) for piecewise real-analytic conductivities;
Sylvester-Uhlmann (1987) for smooth conductivities (n ≥ 3);
Nachman (1996) for n = 2;

Maxwell’s equations:
Somersalo-Isaacson-Cheney (1992) for the linearized inverse problem;
Ola-Päivärinta-Somersalo (1993);
Ola-Somersalo (1996) simplified proof;
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Nonlinear Conductivity Equations

Consider nonlinear conductivity equation

div(σ(x, u,∇u)∇u) = 0 in Ω ⊂ Rn.

σ(x, z,~p) : Ω× R× Rn → R is positive nonlinear conductivity;
Measurements on ∂Ω are given by the nonlinear DN map

Λσ : f 7→ σ(x, u,∇u)∂νu|∂Ω,

where u solves the above equation with u|∂Ω = f .
Inverse Problem: Recover σ from Λσ .
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Linearization Approach

Due to [Sun] (1996) following [Isakov-Sylvester] (1994). If σ = σ(x, u),
then for a fixed λ ∈ R.

lim
t→0

t−1(Λσ(λ+ tf )− Λσ(λ)) = Λσλ(f ), σλ(x) := σ(x, λ)

in an appropriate norm.

Then the uniqueness problem for the nonlinear equation is reduced to the
uniqueness in the linear case:

Λσ1 = Λσ2 ⇒ Λσλ1 = Λσλ2 for all λ ∈ R ⇒ σ1 = σ2.
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Other Uniqueness Results for Nonlinear Conductivity

For certain σ = σ(x,∇u):
[Hervas-Sun] (2002) for constant coefficient nonlinear terms and n = 2;
[Kang-Nakamura] (2002) for

σ(x,∇u)∇u replaced by γ(x)∇u +

n∑
i,j=1

cij(x)∂iu∂ju + R(x,∇u).

(∗ Higher Order Linearization.)

For p-Laplacian type equations: σ = γ(x)|∇u|p−2 with 1 < p <∞.
(∗ Linearization is not helpful.)

[Salo-Guo-Kar] (2016)
under monotonicity condition if n = 2;
under monotonicity condition for γ close to constant if n ≥ 3.
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Other Nonlinear Equations

Inverse Problems were considered for other nonlinear models:
Semilinear parabolic: Isakov (1993);
Semilinear elliptic: Isakov-Sylvester (1994), Isakov-Nachman (1995);
Elasticity: Sun-Nakamura (1994) for St. Venant-Kirchhoff model;
Hyperbolic: Lorenzi-Paparoni (1990), Denisov (2007),
Nakamura-Vashisth (2017).

** Comparing to the inverse problem of determining spacetime using
nonlinear wave interactions.
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Nonlinear Optics

No charge and current density:

∇× E = −∂tB, ∇×H = ∂tD, div D = 0, div B = 0 in Ω× R.

E(t, x) andH(t, x) are electric and magnetic fields;
D is the electric displacement and B is the magnetic induction:

D = εE + PNL(E), B = µH+MNL(H);

(∗ High energy lasers can modify the optical properties of the medium).
ε, µ ∈ L∞(Ω;C) are scalar electromagnetic parameters with

Re(ε) ≥ ε0 > 0 and Re(µ) ≥ µ0 > 0;

PNL andMNL nonlinear polarization and magnetization.
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Nonlinearity

In nonlinear optics, the polarization P(t) = χ(1)E + PNL(E)

PNL = χ(2)E2 + χ(3)E3 + · · · := P(2) + P(3) + · · ·

∗ χ(j) — j-th order nonlinear susceptibility.
Second-order polarization (Noncentrosymmetric media): incident wave
E = Ee−iωt + c.c. generates

P(2)(t) = 2χ(2)EE + χ(2)E2e−i2ωt + c.c.

Second harmonic generation
Third-order polarization: incident wave
E = E1e−iω1t + E2e−iω2t + E3e−iω3t + c.c. generates polarization with
terms of frequencies

3ω1, 3ω2, 3ω3,±ω1 ± ω2 ± ω3, 2ω1 + ω2, . . . .

Sum- and difference-frequency generation.
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Nonlinearity

Lossy media: complex valued.
Equivalence to time-domain ME:

P(2) =

∫ ∞
0

∫ ∞
0

R(2)(τ1, τ2)E(t − τ1)E(t − τ2) dτ1 dτ2.

Using Fourier transform,

χ(2)(ω1, ω2;ω1 + ω2) =

∫ ∞
0

∫ ∞
0

R(2)(τ1, τ2)eiω(τ1+τ2) dτ1 dτ2.
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Kerr-type Nonlinear Media

We are interested in time-harmonic electromagnetic fields with frequency
ω > 0:

E(x, t) = E(x)e−iωt + E(x)eiωt, H(x, t) = H(x)e−iωt + H(x)eiωt.

A model of nonlinear media of Kerr type:

PNL(x, E(x, t)) = χe

(
x,

1
T

∫ T

0
|E(x, t)|2 dt

)
E(x, t) = a(x)|E(x)|2E(x, t)

MNL(x,H(x, t)) = χm

(
x,

1
T

∫ T

0
|H(x, t)|2 dt

)
H(x, t) = b(x)|H(x)|2H(x, t).

Kerr-type electric polarization: third order susceptibility
χ

(3)
e (ω, ω, ω;ω) = a(x) common in nonlinear optics;

Kerr-type magnetization: χ(3)
m (ω, ω, ω;ω) = b(x) appears in certain

metamaterials;
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Maxwell’s Equations with the Kerr-type Nonlinearity

This leads to the nonlinear time-harmonic Maxwell’s equations{
∇× E = iωµH + iωb|H|2H

∇× H = −iωεE − iωa|E|2E.
in Ω ⊂ R3.

Electromagnetic measurements on ∂Ω are modeled by the admittance map

Λωε,µ,a,b : ν × E|∂Ω 7→ ν × H|∂Ω.

Inverse Problem: Determine ε, µ, a, b from Λωε,µ,a,b.
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Well-posedness for the Direct Problem

Let Div be the surface divergence on ∂Ω. For 1 < p <∞, define

W1−1/p,p
Div (∂Ω) := {f ∈ TW1−1/p,p(∂Ω) : Div(f ) ∈ W1−1/p,p(∂Ω)},

W1,p
Div(Ω) := {u ∈ W1,p(Ω) : ν × u|∂Ω ∈ W1−1/p,p

Div (∂Ω)}.

Theorem (Assylbekov-Z. 2017)

Let 3 < p ≤ 6. Suppose ε, µ ∈ C2(Ω) and a, b ∈ C1(Ω). If ω > 0 is
non-resonant, there is δ > 0 such that the b. v. p.

∇× E = iωµH + iωb|H|2H

∇× H = −iωεE − iωa|E|2E

ν × E|∂Ω = f ∈ W1−1/p,p
Div (∂Ω) with ‖f‖W1−1/p,p

Div (∂Ω)
< δ

has a unique solution (E,H) ∈ W1,p
Div(Ω)×W1,p

Div(Ω).

∗ The proof is based on the Sobolev embedding and the contraction mapping
argument.
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Main Result for the Inverse Problem

Theorem (Assylbekov-Z. 2017)

Let 4 ≤ p < 6. Suppose εj, µj ∈ C2(Ω) and aj, bj ∈ C1(Ω), j = 1, 2. Fix a
non-resonant ω > 0 and small enough δ > 0. If

Λωε1,µ1,a1,b1
(f ) = Λωε2,µ2,a2,b2

(f )

for all f ∈ W1−1/p,p
Div (∂Ω) with ‖f‖W1−1/p,p

Div (∂Ω)
< δ, then

ε1 = ε2, µ1 = µ2, a1 = a2, b1 = b2.
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Brief idea of the proof

Asymptotic expansion of the admittance map for s << 1:

Λωε,µ,a,b(sf ) = sΛωε,µ(f ) + s3ν × H2|∂Ω + l.o.t.

where (E2,H2) solves

∇× E2 = iωµH2 + iωb|H1|2H1

∇× H2 = −iωεE2 − iωa|E1|2E1
ν × E2|∂Ω = 0.

with

∇× E1 = iωµH1

∇× H1 = −iωεE1
ν × E1|∂Ω = f .

First order linearization gives Λωε,µ : f 7→ ν × H1|∂Ω and

Λωε1,µ1
= Λωε2,µ2

⇒ ε1 = ε2, µ1 = µ2.
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Brief idea of the proof

Third order linearization gives the map

∂3
s Λωε,µ,a,b : f = ν × E1|∂Ω 7→ ν × H2|∂Ω.

We derive an integral identity from ∂3
s Λωε,µ,a1,b1

= ∂3
s Λωε,µ,a2,b2∫

Ω

(a1 − a2)|E1|2E1 · Ẽ dx +

∫
Ω

(b1 − b2)|H1|2H1 · H̃ dx = 0

for all (E1,H1) and (Ẽ, H̃) solving

∇× E1 = iωµH1,

∇× H1 = −iωεE1,
and

∇× Ẽ = iωµH̃,

∇× H̃ = −iωεẼ,

where ε = ε1 = ε2 and µ = µ1 = µ2.

TING ZHOU Northeastern University HKUST



Introduction
Nonlinear Maxwell’s Equations

Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Construction of CGO solutions [Ola-Somersalo]

∇× E − iωµH = 0
∇ · (µH) = 0

∇× H + iωεE = 0
∇ · (εE) = 0

=⇒

Φ =
i

ωµε
∇ · (εE)

∇× E − iωµH − 1
ε
∇εΨ = 0

Ψ =
i

ωµε
∇ · (µH)

∇× H + iωεE +
1
µ
∇µΦ = 0

Set X = (µ1/2Φ, µ1/2Ht, ε1/2Ψ, ε1/2Et)t ↓ Liouville type of
↓ rescaling

(P− k + W)X = 0 an elliptic first order system
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Construction of CGO solutions

where

P = P(D) =


D·

D D×
D·

D −D×


8×8

, D = −i∇, k = ω
√
µ0ε0.

Moreover,

X = (P+k−W t)Y ⇒ (P− k + W)(P + k −W t)Y = (−∆− k2 + Q)Y = 0

• Q is a potential matrix function whose components consist of up to the second
order derivatives of µ and ε.

(P− k + W)X = 0
X := (x(1),X(2), x(3),X(4))

x(1)=x(3)=0
=⇒

(ε−1/2X(4), µ−1/2X(2))

is the solution to Maxwell.
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CGO solutions YCGO to the Schrödinger eqution

YCGO(x) = eτ(ϕ(x)+iψ(x))(A(x) + R(x)), R = oτ→∞(1)A.

Main Steps:
I Choose ϕ to be a Limiting Carleman Weight (LCW):

〈ϕ′′∇ϕ,∇ϕ〉+ 〈ϕ′′ξ, ξ〉 = 0

when |ξ|2 = |∇ϕ|2 and ξ · ∇ϕ = 0.
I Eikonal equation for ψ: |∇ψ|2 = |∇ϕ|2,∇ψ · ∇ϕ = 0.
I Then

(Lϕ+iψ + Q)R =− (Lϕ+iψ + Q)A

=(∆ + k2 − Q)A + τ [2∇(ϕ+ iψ) · ∇+ ∆(ϕ+ iψ)]A

where Lϕ+iψ := e−τ(ϕ+iψ)(−∆− k2)eτ(ϕ+iψ).

Choose A solving [2∇(ϕ+ iψ) · ∇+ ∆(ϕ+ iψ)]A = 0.
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CGO solutions to the Schrödinger equation

I Last step: Solving

(Lϕ+iψ + Q)R = (∆ + k2 − Q)A

[Sylvester-Uhlmann,1987]: τ(ϕ+ iψ) = ζ · x where ζ ∈ Cn,
ζ · ζ = −k2, |ζ| ∼ τ . A is constant. Solve

(−∆− 2ζ · ∇+ Q)R = −QA

globally using estimate ‖(−∆− 2ζ · ∇)−1‖ ∼ O(τ−1).
[Kenig-Sjöstrand-Uhlmann,2007]: Nonlinear LCW ϕ(x) = − ln |x|
[Kenig-Salo-Uhlmann,2012]: LCW ϕ(x) = −x1, ψ(x) is linear in the
transverse polar coordinate r = (x2

2 + x2
3)1/2.
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ϕ(x) = −x1 and ϕ(x) = − ln |x|

Set z = x1 + ir, where x = (x1, r, θ) denotes the cylindrical coordinate.
LCW ϕ(x) = −x1 = <(z) → ϕ+ iψ = l(z) = −z.

l′(z)
(

2∂z −
1

z− z

)
A = 0, we take A =

eiλz
√

2ir
g(θ).

LCW ϕ(x) = − ln |x| = −<(ln z) → ϕ+ iψ = l(z) = − ln z.

l′(z)
(

2∂z +
1

z− z

)
A = 0, we take A =

eiλz
√

2ir
g(θ).

I In both cases, a semi-classical Carleman estimate on a bounded domain
can be derived as an a-priori estimate for the adjoint operator L∗ϕ+iψ (see e.g.
[Kenig-Sjöstrand -Uhlmann,2007]), in order to prove both the existence and
smallness of R (relative to A) for τ large.
I g(θ) is an arbitrary 8-vector function.
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CGO solutions for Maxwell’s equations

We have

XCGO = (P + k −W t)[eτ(ϕ+iψ)(A + R)]

= eτ(ϕ+iψ) {τP(D(ϕ+ iψ))A + (P + k −W t)A

+τP(D(ϕ+ iψ))R + (P + k −W t)R}
:= eτ(ϕ+iψ)(B + S)

Recall that we need x(1) = x(3) = 0.
I Choose g(θ) such that b(1) = b(3) = 0.
I To show s(1) = s(3) = 0, use

(P + k −W t)(P− k + W)X = (−∆− k2 + Q̃)X = 0

where only Q̃11 and Q̃33 are nonzero in their corresponding rows.

=⇒ (Lϕ+iψ + Q̃kk)s(k) = 0, k = 1, 3.

?
=⇒ s(k) = 0.
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Uniqueness for Lϕ+iψ

For linear phase ζ · x, uniqueness is obtained globally assuming
decaying at infinity. (see [Sylvester-Uhlmann, 1987]);
For ϕ(x) + iψ(x) = −(x1 + ir), uniqueness is obtained on a cylinder
T = R× B(0,R) for B(0,R) ⊂ R2 assuming zero Dirichlet condition
and decaying at infinities of x1 direction. (see [Kenig-Salo-Uhlmann,
2012]);
For ϕ(x) + iψ(x) = − ln z, following [Nachman-Street, 2002], we
decompose L2(Ω) as

L∗ϕ+iψ{v ∈ S(Rn) : supp(v) ⊂ Ω.} ⊕W

Then we can show the uniqueness by choosing S as above.
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Try CGO solutions with linear phases

Recall the integral identity∫
Ω

(a1 − a2)|E1|2E1 · Ẽ dx +

∫
Ω

(b1 − b2)|H1|2H1 · H̃ dx = 0

Complex Geometrical Optics solutions with linear phases

E1(x) = ε−1/2eζ1·x
(

s0
ζ1 · α
|ζ1|

ζ1 + o|ζ1|→∞(|ζ1|)
)

H1(x) = µ−1/2eζ1·x
(

t0
ζ1 · β
|ζ1|

ζ1 + o|ζ1|→∞(|ζ1|)
) as |ζ1| → ∞.

where for ξ = (ξ1, 0, 0), ξ1 ∈ R,

ζ1 =

(
iξ1,−

√
ξ2

1/4 + τ 2, i
√
τ 2 − k2

)
⇒ ζ1 · ζ1 = k2, |ζ1| ∼ τ.

s0 = 1, t0 = 0: the leading term of |E1|2E1 · Ẽ does not provide enough
F.T. of (a1 − a2);
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Polarization

In the integral identity, we plug in

(E1,H1) = (E(1) + E(2) + E(3),H(1) + H(2) + H(3))

where (E(j),H(j)) are solutions to the linear equations. Then∫
Ω

(a1 − a2)
[
<(E(3) · E(2))(E(1) · Ẽ) + <(E(3) · E(1))(E(2) · Ẽ)

+ <(E(1) · E(2))(E(3) · Ẽ)
]

dx

+

∫
Ω

(b1 − b2)
[
<(H(3) · H(2))(H(1) · H̃) + <(H(3) · H(1))(H(2) · H̃)

+ <(H(1) · H(2))(H(3) · H̃)
]

dx = 0
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Continue the proof

s0 = 1, t0 = 0 and

E(1) = e−τ(x1+ir)
[
s0 ε
−1/2eiλ(x1+ir)η(θ)(dx1 + idr) + R(1)

]
,

E(2) = eτ(x1−ir)
[
ε−1/2eiλ(x1−ir)(dx1 − idr) + R(2)

]
,

E(3) = e−τ(x1−ir)
[
ε−1/2e−iλ(x1−ir)(dx1 − idr) + R(3)

]
,

Ẽ = eτ(x1+ir)
[
ε−1/2eiλ(x1+ir)(dx1 + idr) + R̃

]
.

Decay of the remainders (4 ≤ p < 6)

‖R(j)‖Lp(Ω), ‖R‖Lp(Ω) ≤ C
1

|τ |
6−p

2p

, j = 1, 2, 3.
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Continue the proof

Plugging in the integral identity, as τ →∞,∫ (
(a1 − a2)χΩ

|ε|2

)
e−i2λ(x1−ir)η(θ) dx1 dr dθ = 0.

Set f := (a1−a2)χΩ

|ε|2 and let η(θ) ∈ C∞(S1) vary.∫ ∞
0

e−2λr f̂ (2λ, r, θ) dr = 0, θ ∈ S1.

Attenuated geodesic ray transform on R2

⇒ f̂ = 0 ⇒ a1 = a2.
Generalization to the inverse problems on admissible transversally
anisotropic manifolds.
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Extended result

In [Cârstea, 2018], the framework is extended to prove the uniqueness in
determining

PNL =

∞∑
k=1

ak(x)|E|2kE , MNL =

∞∑
k=1

bk(x)|H|2kH.

∫
Ω

(ak − a′k)
[
(e0 · e1)(e2 · e3)k + k(e0 · e2)(e1 · e3)(e2 · e3)k−1]

− (bk − b′k)
[
(h0 · h1)(h2 · h3)k + k(h0 · h2)(h1 · h3)(h2 · h3)k−1] dx = 0.
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Nonlinearity in Second Harmonic Generation

Incident beam: E(t, x) = E0(x)e−itω + c.c.
Writing the solution to include terms at frequency ω and 2ω:

E(t, x) = 2Re
{

Eω(x)e−iωt}+ 2Re
{

E2ω(x)e−i2ωt}
H(t, x) = 2Re

{
Hω(x)e−iωt}+ 2Re

{
H2ω(x)e−i2ωt} ,

Then we obtain the system
∇× Eω − iωµHω = 0,

∇× Hω + iωεEω + iωχ(2)Eω · E2ω = 0,

∇× E2ω − i2ωµH2ω = 0,

∇× H2ω + i2ωεE2ω + i2ωχ(2)Eω · Eω = 0.

(1)

∗ One can also introduce the similar nonlinear second harmonic generation
effect for magnetic fields;

∗ Here we can also assume that µ, ε depend on the frequency.
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Applications

SHG can be so efficient that nearly all of the power in the incident
beam at frequency ω is converted to radiation at the frequency 2ω;
Second harmonic generation microscopy for noncentrosymmetric
media.
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Well-posedness for the Direct Problem

Theorem

Let 3 < p ≤ 6. Suppose that ε, µ ∈ C2(Ω;C) are complex-valued functions
with positive real parts and χ(2) ∈ C1(Ω;R3). For every ω ∈ C, outside a
discrete set Σ ⊂ C of resonant frequencies, there is δ > 0 such that for a

pair (fω, f 2ω) ∈
(

TW1−1/p,p
Div (∂M)

)2
with

∑
k=1,2

‖f kω‖TW1−1/p,p

Div (∂Ω)
< δ, the

Maxwell’s equations (1) has a unique solution

(Eω,Hω,E2ω,H2ω) ∈
(

W1,p
Div(Ω)

)4
satisfying ν × Ekω|∂Ω = f kω for

k = 1, 2 and∑
k=1,2

‖Ekω‖W1,p

Div(Ω) + ‖Hkω‖W1,p

Div(Ω) ≤ C
∑

k=1,2

‖f kω‖TW1−1/p,p

Div (∂Ω)
,

for some constant C > 0 independent of (fω, f 2ω).
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Inverse Problem

Admittance Map:

Λω,2ω
ε,µ,χ(2)(fω, f 2ω) =

(
ν × Hω|∂Ω, ν × H2ω|∂Ω

)
,

Theorem

Let 4 ≤ p < 6. Suppose that εj ∈ C3(Ω;C), µj ∈ C2(Ω;C) with positive
real parts and χ(2)

j ∈ C1(Ω;R3), j = 1, 2. Fix ω > 0 outside a discrete set of
resonant frequencies Σ ⊂ C and fix sufficiently small δ > 0. If

Λω,2ω
ε1,µ1,χ

(2)
1

(fω, f 2ω) = Λω,2ω
ε2,µ2,χ

(2)
2

(fω, f 2ω)

for all (fω, f 2ω) ∈
(

TW1−1/p,p
Div (∂Ω)

)2
with

∑
k=1,2

‖f kω‖TW1−1/p,p

Div (∂Ω)
< δ,

then ε1 = ε2, µ1 = µ2, χ(2)
1 = χ

(2)
2 in Ω.
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Brief idea of the proof

Asymptotic expansion of the admittance map for s << 1:

Λω,2ω
ε,µ,χ(2)(sfω, sf 2ω) = sΛω,2ωε,µ (fω, f 2ω)+s2(ν×Hω

2 |∂Ω, ν×H2ω
2 |∂Ω)+l.o.t.

where (Eω2 ,H
ω
2 ,E

2ω
2 ,H2ω

2 ) solves
∇× Ekω

2 − ikωµHkω
2 = 0, k = 1, 2,

∇× Hω
2 + iωεEω2 + iωχ(2)Eω1 · E

2ω
1 = 0,

∇× H2ω
2 + i2ωεE2ω

2 + iωχ(2)Eω1 · Eω1 = 0,

ν × Ekω
2 |∂Ω = 0, k = 1, 2.

with

∇× Ekω
1 − ikωµHkω

1 = 0, ∇× Hkω
1 + ikωεEkω

1 = 0,

ν × Ekω
1 |∂Ω = f kω, k = 1, 2.

Linearization gives Λω,2ωε1,µ1
= Λω,2ωε2,µ2

⇒ ε1 = ε2 and µ1 = µ2;
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Brief idea of the proof

Using the second order term, the map

(fω, f 2ω) 7→ (ν × Hω
2 |∂Ω, ν × H2ω

2 |∂Ω)

we derive a nonlinear integral identity∫
χΩ

(
χ

(2)
1 − χ

(2)
2

)
·
[ (

Eω1 · E
2ω
1

)
Ẽω + 2

(
Eω1 · Eω1

)
Ẽ2ω
]

dx = 0

for all (Eω1 ,H
ω
1 ,E

2ω
1 ,H2ω

1 ) and (Ẽω, H̃ω, Ẽ2ω, H̃2ω) solving the linear
equations with µ = µ1 = µ2 and ε = ε1 = ε2.
∗ No polarization is needed since linear equations for Eω and E2ω are

decoupled.

Plug in CGO solutions from [Ola-Päivärinta-Sommersalo],
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Continue the proof

For ξ = ξ1e1, choose

ζω1 =

 i ξ1
2

−
√

ξ2
1

4 + τ 2

i
√
τ 2 − k2

 , Eω1 = eζ
ω
1 ·x




1
1√

ξ2
1

4 +τ 2−i ξ1
2

i
√
τ 2−k2

+ Rω1



ζ2ω
1 =

 −iξ1

2
√

ξ2
1

4 + τ 2

2i
√
τ 2 − k2

 , E2ω
1 = eζ

2ω
1 ·x




1
1

iξ1−2

√
ξ2

1
4 +τ 2

2i
√
τ 2−k2

+ R2ω
1



ζ̃ω =

 i ξ1
2

−
√

ξ2
1

4 + τ 2

−i
√
τ 2 − k2

 , Ẽω = eζ̃
ω·x
[
Ãω + R̃ω

]
(
Eω1 · E

2ω
1

)
Ẽω = e−iξ·x(Ãω + l.o.t.)

Choose ζ̃2ω such that 2(Eω1 · Eω1 )Ẽ2ω decays exponentially in τ .
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Continue the proof

F
(
χΩ(χ

(2)
2 − χ

(2)
1 ) · Ã2ω

∞

)
(ξ) = 0

where Ã2ω
∞ = limτ→∞ Ã2ω .

Choose enough Ã2ω so that χΩ(χ
(2)
2 − χ

(2)
1 ) = 0.

(end of the proof.)

The higher order linearization approach can be used to reconstruct any
order harmonic generation in nonlinear optics.
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Some recent scalar case results (semi-linear equations)

[Lassas-Liimantainen-Lin-Salo], [Feizmohammadi-Oksanen]

∆u + a(x, u) = 0, x ∈ Ω

where a(x, z) satisfies
a(x, 0) = 0 and 0 is not a Dirichlet eigenvalue to ∆ + ∂za(x, 0) in Ω
a(x, 0) = ∂za(x, 0) = 0 (Using non-CGO solutions,
[Krupchyk-Uhlmann])
a(x, z) is analytic in z: a(x, z) =

∑∞
k=1 ak(x) zk

k! .

(∗ Simultaneously reconstruct inclusions/obstacles and the background
coefficients; Partial data problems)
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Future work

Implement other solutions.
Partial data problems.
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Thanks for your attention!
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