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Introduction

Calderon’s Problem

Electrical Impedance Tomography: Recover electric conductivity of an
object from voltage-to-current measurements on the boundary.

Posed by Alberto Calderon (1980).

@ Voltage-to-current measurements are modeled by the
Dirichlet-to-Neumann-map

Ay i f = 00,ulon
where u solves V - (cVu) = 01in Q, u|pq = f.

@ Inverse Problem: Determine o from A, .
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Introduction

Inverse Problem for Maxwell’s equations

Consider the time-harmonic Maxwell’s equations with a fixed
(non-resonance) frequency w > 0

V XE=iwpuH and V x H= —iweE in QcR.

e E,H :Q — C electric and magnetic fields;

o &, /1 € L=(f; C) electromagnetic parameters with Re(e) > €y > 0 and
Re() > po > 0;

@ Electromagnetic measurements on 0S2 are modeled by the admittance
map
Aa,u VX E|aQ = UV X H‘@Q.

o Inverse Problem: Determine ¢ and y from A, ,,.
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Introduction

Uniquness Results

Conductivity equation:
@ Calderdn (1980) for the linearized inverse problem;
@ Kohn-Vogelius (1985) for piecewise real-analytic conductivities;
@ Sylvester-Uhlmann (1987) for smooth conductivities (n > 3);
@ Nachman (1996) forn = 2;

Maxwell’s equations:
@ Somersalo-Isaacson-Cheney (1992) for the linearized inverse problem;
@ Ola-Pdivirinta-Somersalo (1993);

@ Ola-Somersalo (1996) simplified proof;
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Introduction

Nonlinear Conductivity Equations

Consider nonlinear conductivity equation

div(o(x,u, Vu)Vu) =0 in QCR.

@ o(x,z,p) : © x R x R" — R is positive nonlinear conductivity;

@ Measurements on 0 are given by the nonlinear DN map
Ay i f = o(x,u, Vu)d,u|sq,

where u solves the above equation with u|sq = f.

@ Inverse Problem: Recover o from A,.
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Introduction

Linearization Approach

Due to [Sun] (1996) following [Isakov-Sylvester] (1994). If o = o(x, u),
then for a fixed A € R.

lim i~ (A A+ 1) = A (V) = A (), () == 0(x, )
—
in an appropriate norm.

Then the uniqueness problem for the nonlinear equation is reduced to the
uniqueness in the linear case:

Ay, = Ay, = AUIA :AU? forall Ae R = o0y =os.
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Other Uniqueness Results for Nonlinear Conductivity

For certain o = o (x, Vu):
@ [Hervas-Sun] (2002) for constant coefficient nonlinear terms and n = 2;
o [Kang-Nakamura] (2002) for

o(x,Vu)Vu replaced by ~(x)Vu + Z cij(x)Oudu + R(x, Vu).

ij=1

(x Higher Order Linearization.)

For p-Laplacian type equations: o = ~(x)|Vu|P~2 with 1 < p < co.
(* Linearization is not helpful.)
@ [Salo-Guo-Kar] (2016)

o under monotonicity condition if n = 2;
o under monotonicity condition for y close to constant if n > 3.
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Introduction

Other Nonlinear Equations

Inverse Problems were considered for other nonlinear models:
@ Semilinear parabolic: Isakov (1993);
@ Semilinear elliptic: Isakov-Sylvester (1994), Isakov-Nachman (1995);
o Elasticity: Sun-Nakamura (1994) for St. Venant-Kirchhoff model;

@ Hyperbolic: Lorenzi-Paparoni (1990), Denisov (2007),
Nakamura-Vashisth (2017).

** Comparing to the inverse problem of determining spacetime using
nonlinear wave interactions.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Nonlinear Optics

No charge and current density:

VxE=-0B, VxH=09D, divD=0, divB=0 in QxR.

e &(t,x) and H (¢, x) are electric and magnetic fields;

@ D is the electric displacement and B is the magnetic induction:
'D=E(€+’PNL(5), B:/LH+MNL(H);

(x High energy lasers can modify the optical properties of the medium).
@ ¢, € L*(Q; C) are scalar electromagnetic parameters with

Re(e) > €9 >0 and Re(u) > po > 0;

@ Py and My, nonlinear polarization and magnetization.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Nonlinearity

o In nonlinear optics, the polarization P(t) = Y€ + Pri(E)
P = xPE + P 4. = P@ L PO 4

s x) — j-th order nonlinear susceptibility.
e Second-order polarization (Noncentrosymmetric media): incident wave
E = Ee™™" + c.c. generates

PO (1) = 2xPEE + y\PEe ™ + c.c.

Second harmonic generation
o Third-order polarization: incident wave
E =Eje ™V 4 Eye™ 2 4 F3e ™3 4 c.c. generates polarization with
terms of frequencies

3w, 3wz, 3ws, +wi £+ wr :tw3,2w1 +wa, ...

o Sum- and difference-frequency generation.
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Kerr-type Nonlinearity
Construction of CGO solutions

Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Introductior
Nonlinear Maxwell’s Equations

Nonlinearity

o Lossy media: complex valued.
o Equivalence to time-domain ME:

oo (o9}
PO _ / / RO (71, 1) E(t — 1)E(t — 1) d7y d».
0 0

Using Fourier transform,

X(Z)(wl’wz;wl +wy) = / / R(z)(Tl,Tz)eiw(Tl+Tz) dr dm,.
0 0
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue th 0of ase of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Kerr-type Nonlinear Media

We are interested in time-harmonic electromagnetic fields with frequency
w > 0:

E(x, 1) = E(x)e™ " + E(x)e™", H(x,1) = H(x)e ™" + H(x)e™".

A model of nonlinear media of Kerr type:

Prr (o, E(5, 1) = xe (x, % /0 1E(x, )2 dt> E(x,1) = a(x)|EW)RE(x, 1)

Mt (5,1, 1)) = o <x, % /0 H(x, )P dt) H(x, 1) = () [ H ) [PH(x, 1),

o Kerr-type electric polarization: third order susceptibility
(3)

Xe ' (w,w,w;w) = a(x) common in nonlinear optics;
o Kerr-type magnetization: X,(,f’ )(w7 w,w;w) = b(x) appears in certain
metamaterials;
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Maxwell’s Equations with the Kerr-type Nonlinearity

This leads to the nonlinear time-harmonic Maxwell’s equations

V x E = iwuH + iwb|H|*H _ R
5 in QCR’.
V x H = —iweE — iwa|E|°E.

Electromagnetic measurements on 92 are modeled by the admittance map
v X E|aQ — UV X H|3Q.

w .
€,1,ab

. 1 w
Inverse Problem: Determine ¢, y1,a,b from A? | .
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Well-posedness for the Direct Problem

Let Div be the surface divergence on 0€2. For 1 < p < oo, define
Wi PP (09) = {f € TW'='/PP(5Q) : Div(f) € W'=1/P7(0Q)},
WP (Q) = {u € W'P(Q) : v x ulpg € W77 (00)}.

Theorem (Assylbekov-Z. 2017)

Let3 < p < 6. Suppose e, i € C*(Q) and a,b € C'(Q). Ifw > 0is
non-resonant, there is § > 0 such that the b. v. p.

V x E = iwpH + iwb|H|*H
V x H = —iweE — iwa|E|*E
v x Elog =f € Wh-'PP(0Q)  with Ifllyi=vrn oy < 6

has a unique solution (E,H) € Wé’ﬁ(@) X Wll)’f;(Q),

* The proof is based on the Sobolev embedding and the contraction mapping

argument.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Main Result for the Inverse Problem

Theorem (Assylbekov-Z. 2017)

Let 4 < p < 6. Suppose ¢j, i; € C2(Q) and aj,b; € C'(), j=1,2. Fixa
non-resonant w > 0 and small enough 6 > 0. If

A(;)] SH1,a1,b1 (f) - Ag)z,#z,az,bz (f)
forallf € Wh-1PP(09) with [

€1 =€, M1 = [y, a1 =a, by=bh.

TING ZHOU Northeastern University HKUST



Kerr-type Nonlinearity
Introductior Construction of CGO solutions
Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Brief idea of the proof

o Asymptotic expansion of the admittance map for s << 1:
A2 b (Sf) = sAE (f) + v x Hay|aq + Lot
where (E,, H,) solves

V x E2 = iw,qu + iwb|H1|2H1

v X Egn =0.
V x Hy = —iweE; — iwalE, |*E, |
with

V x E1 = iwqu

vXE =f.
V x Hy = —iweE, tlon = f

@ First order linearization gives A;’, ptf e v X H loq and

AY =AY = €1 = &2, 41 = Mp.

E1,M1 €2, 142
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Brief idea of the proof

@ Third order linearization gives the map

3
8 auab f:VXE1|5QD—)Z/XH2|QQ.
3 —
@ We derive an integral identity from 0;AZ, , , = RAY e fasibn

/(al 7(12)|E1‘2E1 .de+ / (bl 7b2)‘H1|2H1 .ﬁdx:O
JQ JQ

for all (E,, H;) and (E, H) solving

V X E; = iwpH,, d VXE:iwuﬁ,
an ~ ~
V x Hy = —iweE}, V x H = —iweE,

where e = ¢; =gy and pu = py = po.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Construction of CGO solutions [Ola-Somersalo]

o= v.(E)

WHE
V X E—iwuH =0 1
V X E—iwpH — =VeU =0
V- (uH) =0
(1H) — €
V><H+iwsE:0 U = l V(,LLH)
V- (eE)=0 whHe

1
V><H+iw5E+;Vu<I>:0

Set X = (u!?®, u'/?H', e'/>W, /2B | Liouville type of
4 rescaling

‘ (P—k+ W)X =0 an elliptic first order system
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Construction of CGO solutions

where
i
P=P(D) = = b_Dx . D=—iV, k=uw\/fic0.
D —Dx ex8
Moreover,

X=(P+k—W)Y = |(P—k+W)(P+k—W)Y=(-A-kK+Q)Y=0

e () is a potential matrix function whose components consist of up to the second
order derivatives of p and e.

(P—k+W)X=0 "m;‘?:" (=12 @, = 1/2x @)
X = (xD, x@ 5 x@) is the solution to Maxwell.

TING ZHOU Northeastern University HKUST



Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

CGO solutions Yo to the Schrodinger eqution

Yego(x) = e™POFVO) (A(x) + R(x)), R =0r00(1)A.
Main Steps:
» Choose ¢ to be a Limiting Carleman Weight (LCW):
(@"Ve, Vo) + (97,6) =0

when [£]> = |Vp|?> and € - Vip = 0.
» Eikonal equation for ¢: |V1|? = |Vp|?, Vi) - Vi = 0.
» Then

(Lotip + QR =~ (Lotip + Q)A

=(A+ K — QA+ T[2V(p +ith) - V + Ap + i) |A
where L4y == e—f(w+iw)(_A _ k2)e7'(<p+iw).
Choose A solving 2V (¢ + i) - V + A(p + ith)]A = 0.
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

CGO solutions to the Schrodinger equation

» Last step: Solving

(Losiv + QR = (A+K — QA

o [Sylvester-Uhlmann,1987]: 7(¢ + iv)) = ¢ - x where ¢ € C",
¢-¢=—k*|¢| ~ 7. Ais constant. Solve

(—A—-2¢-V+QO)R=-0A

globally using estimate ||(—A —2¢ - V)71 ~ o(r71).

o [Kenig-Sjostrand-Uhlmann,2007]: Nonlinear LCW ¢(x) = — In |x|

o [Kenig-Salo-Uhlmann,2012]: LCW ¢(x) = —x1, t(x) is linear in the
transverse polar coordinate r = (x3 + x3)'/2.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

o(x) = —x; and p(x) = — In|x|

Set z = x; + ir, where x = (x1, r, §) denotes the cylindrical coordinate.
0 LCW p(x) = —x; =R(z) — ¢+ip=1z) =z

I'(z) <28§ - ) A=0, wetake A=

e LCWp(x) = —In|x] = =R(Inz) — ¢+ =107 =—InZ

iAZ
—g(0).
it ®)
» In both cases, a semi-classical Carleman estimate on a bounded domain
can be derived as an a-priori estimate for the adjoint operator E;‘; +ip (seCe.g.
[Kenig-Sjostrand -Uhlmann,2007]), in order to prove both the existence and
smallness of R (relative to A) for 7 large.
» ¢(0) is an arbitrary 8-vector function.

1
') <2(’9z + Z—Z) A=0, wetake A=
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

CGO solutions for Maxwell’s equations

We have
Xcgo = (P +k— W)[e™#T¥) (A 4+ R)]
= ") L2P(D(p + ip))A + (P + k — WA
+7P(D(p + it)))R+ (P +k — W')R}
= T (P tiY) (B+5S)
Recall that we need x(!) = x(®) = 0.

» Choose g(#) such that b(!) = p3) = 0.
» To show s(!) = sG) =0, use

(P+k—W)P—k+W)X=(-A—kK+Q)X=0
where only é” and é33 are nonzero in their corresponding rows.
=  (Lotip + Ou)s® =0, k=1,3.

0 =,

TING ZHOU Northeastern University HKUST



Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Uniqueness for £,

@ For linear phase ( - x, uniqueness is obtained globally assuming
decaying at infinity. (see [Sylvester-Uhlmann, 1987]);

@ For ¢(x) + itp(x) = —(x; + ir), uniqueness is obtained on a cylinder
T =R x B(0,R) for B(0,R) C R? assuming zero Dirichlet condition
and decaying at infinities of x; direction. (see [Kenig-Salo-Uhlmann,
2012));

@ For p(x) + itp(x) = — InZz, following [Nachman-Street, 2002], we
decompose L*(Q2) as

L {v € S(RY) i supp(v) C Qe W

Then we can show the uniqueness by choosing S as above.
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

Try CGO solutions with linear phases

@ Recall the integral identity

/(Cl] —a2)|E|\2E| de—F /(b] —bz)‘H1|2H| ~ITIdx= 0
JQ JQ

@ Complex Geometrical Optics solutions with linear phases

Ei(x) = o120 ( g owmum)

0 =2 (0826 v o el

as [(1] — oo.

where for £ = (£,0,0), & € R,

G = (ifla_\/maim> = GG =k G~

e so = 1,1 = 0: the leading term of |E;|”E; - E does not provide enough
ET. of (a1 — a);
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

Polarization

In the integral identity, we plug in
(Ev, Hi) = (Eq) + E@) + Eg), Hay + He) + He)

where (E(j), Hj)) are solutions to the linear equations. Then

[ @ =@ [RiEq) Ee) 0 B+ REw B Ee - B)

+ §R(E(1) . E(g))(E(3) . E)} dx

b [ (61 = b2 Rty Hop)Hoy - ) + Rty - Ho) ety - )
Q

+ %(H(l) -ﬁ(z))<H(3) ;])] dx=20
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Kerr-type Nonlinearity
Construction of CGO solutions

Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Introductior
Nonlinear Maxwell’s Equations

Continue the proof

o so= 1,1 =0and
Eq = o= TCn+ir) [s eV 2NN (0) (dxy + idr) +R(1)],
Epy = g™ M=) [E_l/zei’\(x‘_i’) (dxy —idr) + R(z)} ,
Eg = ) [571/267»\():17”) (dxy — idr) +R(3)},
E = ") [eil/zei)‘(x‘“’) (dxy + idr) + k]
@ Decay of the remainders (4 < p < 6)

j=1,2,3.

1
IR 2> IR () £ C—= =

Nk
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Continue the proof

o Plugging in the integral identity, as 7 — oo,

/ ((m—@)xg) e~ A=Y (0) dxy dr d = 0

lel*
o Setf:= |”|22)XQ and let n(0) € C°°(S!) vary.
/ 672/\’]%(2)\, r,0)dr=0, 0¢cS'.
0
Attenuated geodesic ray transform on R?
:>f =0 = da|; = ap.

@ Generalization to the inverse problems on admissible transversally
anisotropic manifolds.
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

Extended result

In [Carstea, 2018], the framework is extended to prove the uniqueness in

determining

Pa = D a)EPE, My =Y bil)|HH.

k=1 k=1

/Q(ak —a) [(eo-er)(ea- @) +k(eo - e2)(er - 23)(ea - 23) ]

— (b — ) [(ho - 1) (ho - h3)* + k(ho - ho) (hy - h3)(ha - h3)*™'] dx = 0.
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

Nonlinearity in Second Harmonic Generation

e Incident beam: E(t,x) = Eo(x)e™ ™ + c.c.
@ Writing the solution to include terms at frequency w and 2w:
E(t,x) = 2Re {E¥(x)e ™'} + 2Re { E*(x)e ™'}
H(t,x) = 2Re {H¥(x)e ™'} + 2Re { H* (x)e '} |
@ Then we obtain the system
V x EY —iwpH® =0,
V x H* + iweE* + iwxPEY - E* =0, 0
V x E* — RuuH* =0,
V x H* + 2weE* + 2wyPEY . E¥ = 0.

* One can also introduce the similar nonlinear second harmonic generation

effect for magnetic fields;
x Here we can also assume that 1, € depend on the frequency.
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Kerr-type Nonlinearity
Construction of CGO solutions
Continue the proof for the case of Kerr-type nonlinearity

Nonlinear Maxwell’s Equations
Second Harmonic Generation (SHG)

Applications

@ SHG can be so efficient that nearly all of the power in the incident

beam at frequency w is converted to radiation at the frequency 2w;
@ Second harmonic generation microscopy for noncentrosymmetric

media.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Well-posedness for the Direct Problem

Theorem

Let 3 < p < 6. Suppose that €, i € C*(Q; C) are complex-valued functions
with positive real parts and x? € C! (2;R3). For every w € C, outside a
discrete set ¥ C C of resonant frequencies there is 6 > 0 such that for a

pair (f*,f2) € (TWID::)/””’(aM)) with 3 || Irissres oy < 0. the
k=1,2
Maxwell’s equations (1) has a unique solution

4
(E¥,H*,E*™ H>) ¢ (Wll)’;v(Q)> satisfying v x E*|s0 = f* for
k=1,2and

3 IE e @+ I lyts. ) < € 3 I yicvins oy
k=1,2 k=1,2

for some constant C > 0 independent of (f*,f*).
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Inverse Problem

o Admittance Map:

A2 (P90 ) = (v x HY o, v x H*|aq) |

Theorem

Let 4 < p < 6. Suppose that €; € C*(Q; C), p; € C*(; C) with positive
real parts and X,@ € CY(Q;R?), j = 1,2. Fix w > 0 outside a discrete set of
resonant frequencies Y. C C and fix sufficiently small § > 0. If

Aw 2w (2)(fw7 Zw) :Aw 2w )(fw 2w)

115X 627H27X

forall (f*,f>) € (TWDll/p’p(aﬁ)) with Z Vit ”TW“”””’(BQ) <0,

k=1,2

then € = €3, ) = o, ng) = ng) in €.
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Brief idea of the proof

o Asymptotic expansion of the admittance map for s << 1:

A;’_ﬁ’f‘x o (8, 5%) = A7 (f9, ) 45" (v HS | o, v X H3¥ |aq) +lo.t.

where (EY, HY , E3*, H3*) solves
V x B\ —ikwpHN =0, k=1,2,
V X HY + iweEs + iwxPVE? - B =0,
V x H¥ + i2weE3* + iwxPEY - E¥ =0,
v X E¥oa =0, k=1,2.
with
V x EX¥ —ikwpHY =0, V x HY 4 ikweEX = 0,

v X EX g0 = k=1,2.

@ Linearization gives A?{,z;f] = A?fl‘fz = g =¢erand 1 = py;
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Kerr-type Nonlinearity
Construction of CGO solutions

Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Brief idea of the proof

@ Using the second order term, the map
(F“.f%) = (v x H5 |oa, v x H3|o0)

we derive a nonlinear integral identity

/ X (xﬁz) - xf)) : [(@ CE2)E* 4 2(EY ~ET)EZ’“} dx =0

for all (EY, H¥, E3*, H?*) and (E¥, H*, E**, H**) solving the linear
equations with 4 = ) = pp and € = ¢; = 5.
s« No polarization is needed since linear equations for E* and E** are
decoupled.

@ Plug in CGO solutions from [Ola-Pdivérinta-Sommersalo],
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Nonlinear Maxwell’s Equations

Continue the proof

Kerr-type Nonlinearity
Construction of CGO solutions

Continue the proof for the case of Kerr-type nonlinearity

Second Harmonic Generation (SHG)

@ For & = &€y, choose

¢

2w
1

P e
E2w _ e(f“"x
i& -2
B =f

e EN(AY + Lo

.1.)

e Choose (2~ such that 2(E% - E¥)E2 decays exponentially in 7.
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Kerr-type Nonlinearity
Construction of CGO solutions

Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Introductior
Nonlinear Maxwell’s Equations

Continue the proof

F (xald? = x) - A%) () =0

where A2 = lim,_, ., A%
Choose enough A2 so that yo (x> — x\?) = 0.
(end of the proof.)

o The higher order linearization approach can be used to reconstruct any
order harmonic generation in nonlinear optics.
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Nonlinear Maxwell’s Equations Continue the proof for the case of Kerr-type nonlinearity
Second Harmonic Generation (SHG)

Some recent scalar case results (semi-linear equations)

@ [Lassas-Liimantainen-Lin-Salo], [Feizmohammadi-Oksanen]
Au+ a(x,u) =0, x€eN

where a(x, z) satisfies
e a(x,0) = 0 and 0 is not a Dirichlet eigenvalue to A + J.a(x,0) in
e a(x,0) = d.a(x,0) = 0 (Using non-CGO solutions,
[Krupchyk-Uhlmann])
o a(x,z)is analytic in z: a(x,z) = > ;2 ak(x)%.
(x Simultaneously reconstruct inclusions/obstacles and the background
coefficients; Partial data problems)
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Future work

o Implement other solutions.
@ Partial data problems.
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Thanks for your attention!
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