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D
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Inverse scattering

Invisibility

Question: ∃ {[D;uin]},

s.t. usc ≡ 0 in Dc (or equiv., u∞ ≡ 0) ?
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Introduction

A resulting problem

D

uin(x)

∆uin + k2uin = 0
usc(x) = 0

Interior Transmission Eigenvalue Problem

∇ · a∇u+ k2cu = 0, ∆v + k2v = 0, in D,

u = v, a∂νu = ∂νv, on ∂D.

Equivalence?
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Introduction

Some known result

Certain shapes: invisible under certain probing waves:

Spherically stratified media: [Colton-Monk ’88]

Media with corners/edges:

∆ + k2q: [Bl̊asten-Päivärinta-Sylvester ’14,
Päivärinta-Salo-Vesalainen ’17, Elschner-Hu ’15&’18,
Hu-Salo-Vesalainen ’16, Bl̊asten-Vesalainen ’18, etc.]
Source problem: [Bl̊asten ’18]

Maxwell’s equations: [Liu-X. ’17 (Right corner)]

Cloaking: invisible for all probing fields

Anisotropic and singular medium [Greenleaf-Lassas-Uhlmann ’03, etc.]
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Corner of Media Scatters

The scattering problem

Consider the scattering problem

∇ · a∇u+ k2cu = 0 in Rn,

∆uin + k2uin = 0 in Rn,

x̂ · ∇usc − ikusc = o(|x|
n−1
2 ), |x| → ∞.

where a, c ∈ L∞(Rn), a = (aij) symm. and positive definite, and a− I
and c− 1 compactly supported,

Corner scattering:

Convex corner(s) at the support of a− I or/and that of c− 1;

Around the corner, a is locally W 3,1+ε and scalar, and/or c is locally
W 1,1+ε.
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Corner of Media Scatters

Corner Scatters

Theorem 1 ([Cakoni-X ’19 ])

(Roughly) Corners of c with a jump across the corner always scatter any
incident wave, when a− 1 vanishes to the second order at the same corner.

Figure: dotted: supp(c− 1); colored: supp(a− I).

(ρ(x)− 1)γ−1/2(x) = ρ0 +O(|x− x0|σ), (γ(x)− 1) γ−1/2(x) = O(|x− x0|2+σ),

where ρ0 = const 6= 0, (γ, ρ)|Cε(x0) = (a, c)|Cε(x0) in W 3,1+ε ×W 1,1+ε.

Generalization of the previous results concerning the operator ∆ + k2q.
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Corner of Media Scatters

Corner Scatters

Other cases:

Corners of c− 1 with a jump across the corner (ρ0 6= 0).

If a− 1 vanishes to the first order at the same corner, i.e.,
(γ(x)− 1) γ−1/2(x) = O(|x− x0|1+σ), then the corner scatters all
incident fields uin for which NTu

in = NT∇uin.

If a− 1 vanishes at the corner, i.e.,
(γ(x)− 1) γ−1/2(x) = O(|x− x0|σ), then the corner scatters all
incident fields uin satisfying uin(x0) 6= 0 and ∇uin(x0) = 0.

Corners of a− 1 with a jump across the corner, i.e.,

(γ(x)− 1) γ−1/2(x) = γ0 +O(|x− x0|σ) with γ0 = const 6= 0. If the
corner is of aperture κπ, κ ∈ (0, 1), then it scatters all incident fields
uin for which NT∇uin 6= κl − 1 with some l ∈ N+.
e.g.: ∇uin(x0) 6= 0.
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Applications Shape Determination

Shape Determination

Recall: forward scattering:

∇ · a∇u+ k2cu = 0 in Rn,

where a− I and c− 1 are compactly supported and u = uin + usc with
uin the incident field and usc the scattered field.

usc(x)|BeR ←→ u∞(x̂)

The inverse problem: To uniquely determine the convex hull of c− 1
or/and a− 1 from the far-field measurement u∞ or from
the near-field (scattered) measurement usc|∂B2R

.
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Applications Shape Determination

Unique determination from a single measurement

Assumptions (roughly):
1 The convex hull D of supp(c− 1) is a bounded polygon,

supp(a− I) j D.
2 Local regularity of c and a (W 1,1+ε and W 3,1+ε) around corners of D.
3 c− 1 has a jump while a− 1 vanishes to the second order at each

corner.

Theorem 2 (Cakoni-X ’19)

D can be uniquely determined from the far-field (or scattered) data u∞

corresponding to a single incident field.

Figure: dotted: supp(c− 1); colored: supp(a− I).
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Applications Approximation by Herglotz Wave Functions

ITEP and Herglotz functions

Interior transmission eigenvalue problem:

∇ · a∇u+ k2cu = 0, ∆v + k2v = 0, in D,

u = v, a∂νu = ∂νv, on ∂D.

Herglotz wave functions:

vg(x) =

∫
Sn−1

g(d)eikx·ddsd, g ∈ L2(Sn−1).

Fact ([Cakoni-Colton-Haddar ’16 (Book), etc.]): the set of Herglotz wave
functions is dense in

{v ∈ H1(Ω) : ∆v + k2v = 0 in Ω}.
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Applications Approximation by Herglotz Wave Functions

Blow-up of the kernel

To approximate v (eigenfunctions) by vg.

Question: Do the Herglotz kernels gε keep bounded when vgε → v?

Lemma 1 (Cakoni-X. ’19)

When the support of c− 1 or/and a− I has a corner, and a and c satisfies
(roughly) the local conditions at the corner, then

lim sup ‖gε‖L2(S1) =∞

14 / 27
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Sketch of the Proof

If non-scattering happens

∇ · a∇u+ k2cu = 0, ∆uin + k2uin = 0, in D,

u = uin, a∂νu = ∂νu
in, on ∂D.

A resulting local problem at the corner:

∇ · γ∇u+ k2ρu = 0, ∆v + k2v = 0, in Cε,
u = v, γ∂νu = ∂νv, on ∂Cε \ Kε.

An integral identity:∫
Cε

(γ−1)∇v·∇w−k2(ρ−1)vw dx =

∫
Kε
γ∂νw(v−u)−w (∂νv − γ∂νu) ds

for any solution w to

∇ · γ∇w + k2ρw = 0, in Cε.

Later: asymptotic analysis of the integrals.
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Sketch of the Proof

CGO solutions

∇ · γ∇w + k2ρw = 0 in Rn.

Solutions of the form
w = wτ = γ−1/2(1 + r(x))eη·x, (4.1)

with η = −τ
(
d+ id⊥

)
and d, d⊥ ∈ Sn−1 satisfying d · d⊥ = 0.

Proposition 1 (Cakoni-X, ’19)

(In short) Given n = 2, s ∈ {0, 1}, ε > 0, there exist p > 3 and σ > 0
such that for any γ ∈ H3,1+ε(Rn), ρ ∈ H1,1+ε(Rn), d, d⊥ ∈ Sn−1 and
τ > 0, there is a CGO solution w as in (4.1) with

‖r‖Hs,p = O(
1

τn/p−s+σ
).

Remarks:

Proven for n = 2, 3, s ∈ R, and γ, ρ with regularity depending on n, s.

Based on a result from [Päivärinta-Salo-Vesalainen ’17].
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Sketch of the Proof

Asymptotic analysis (τ →∞)∫
Cε
(γ − 1)∇v · ∇w − k2(ρ− 1)vw dx =

∫
Kε
γ∂νw(v − u)− w (∂νv − γ∂νu) ds

∣∣∣∣∫
Kε
γ∂νw(v − u)− w (∂νv − γ∂νu) ds

∣∣∣∣ = O(τe−δτε).

∣∣∣∣∫
Cε

[
(γ(x)− 1)∇v(x) · ∇w(x)− γβ(x̂)V (x̂) · η|x|α+βeη·x

]
dx

∣∣∣∣
= ‖γβV ‖L∞(K)O

( 1

τn+β+α
)
+O

( 1

τn+β+α−1+σ

)
,

if (γ(x)− 1)γ−1/2(x) = γβ(x̂)|x|β +O(|x|β+σ) and
∇v(x) = V (x̂)|x|α +O(|x|α+σ).∣∣∣∣∫

Cε

[
(ρ− 1)vw − ρ0(x̂)ṽ(x̂)|x|α0+β0eη·x

]
dx

∣∣∣∣
=‖ρ0ṽ‖L∞(K)O

( 1

τn+β0+α0+σ

)
+O

( 1

τn+β0+α0+σ

)
,

if (ρ(x)− 1)γ−1/2(x) = ρ0(x̂)|x|β0 +O(|x|β0+σ) and v(x) = ṽ(x̂)|x|α0 +O(|x|α0+σ)

18 / 27
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= ‖γβV ‖L∞(K)O

( 1

τn+β+α
)
+O

( 1
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)
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∣∣∣∣
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Sketch of the Proof

A Contradiction

Lemma 2

Let n = 2 (β0 = 0 and α0 = N0). There exist d ∈ Sn−1 and C1,N0 6= 0 such that∫
Cε
vN0

(x)eη·x dx = C1,N0
τ−n−N0 + o

(
τe−ετ/2

)
.

Let n = 2 (β = 0 and α = N). Given d ∈ Sn−1 we have∫
Cε
eη·xṼN · η dx = C0τ

1−n−N + o
(
τe−ετ/2

)
,

where C0 6= 0 unless ψ0 = lπ
1+N ∈ (0, π), i.e., N = π

ψ0
l − 1 ∈ N, for some l ∈ N.

Example: Corners of c− 1 with a jump while a− 1 vanish to the second order
locally: β = 2, γβ ≡ 0, α = N , β0 = 0, α0 = N0,∣∣∣∣∫
Cε

(γ − 1)∇v · ∇w − k2(ρ− 1)vw dx

∣∣∣∣ = O
( 1

τn+N+1+σ

)
−k2ρ0

∫
Cε
vN0

(x)eη·x dx
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Corner of Sources Scatter - EM case

A local problem

Given a convex polyhedral cone Cεx0 with finitely many edges, consider
∇∧E− iωµ0H = F1 in Cεx0 ,
∇∧H + iωε0E = F2 in Cεx0 ,
ν ∧E = ν ∧H = 0 on ∂Cεx0 \ ∂Bε(x0),

(5.1)

Theorem 3 (Bl̊asten-Liu-X. ’19)

For any given Fj ∈ Cα(Bε
x0)3, j = 1, 2, with α ∈ (0, 1), suppose there

exists a solution (E,H) ∈
(
H(curl, Cεx0)

)2
to (5.1). Then

F1(x0) = F2(x0) = 0. (5.2)
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Corner of Sources Scatter - EM case

Sketch of the proof

To show F0 = 0, where F2(x) = F0 + F̃(x) with |F̃(x)| ≤ C|x|α, x ∈ Cε.

An integral identity, ∇∧V − iωµ0W = 0, ∇∧W + iωε0V = 0 in Cε,∫
Cε

(F1 ·W + F2 ·V) =

∫
∂Cε

(W · (ν ∧E) + V · (ν ∧H)) .

Take V(x) = peρ·x and W(x) = 1
iωµ0

ρ∧ peρ·x with

ρ/τ = d+ i
√

1 + k2/τ2d⊥ and p = d⊥ − i
√

1 + k2/τ2d.

Asymptotics:∫
Cε

(
F1 ·W + F̃ ·V

)
+

∫
C\Cε

F0 ·V = O
(
τ−(3+α)

)
.

Lemma 3

There exist C > 0, and d, d⊥ ∈ S2 such that limτ→∞F0 · p 6= 0 and∣∣∣∣∫
C
eρ·xdx

∣∣∣∣ ≥ Cτ−3, any τ ≥ k.
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Corner of Sources Scatter - EM case

Applications – sourse scattering

EM source scattering:

∇∧E(x)− iωµ0H(x) = J1(x), x ∈ R3,

∇∧H(x) + iωε0E(x) = J2(x), x ∈ R3,

lim
|x|→∞

|x|
(
√
µ0H×

x

|x|
−
√
ε0E

)
= 0.

Theorem 4 (Non-radiating sources with corners)

Let J1 or/and J2 be a radiationless source with a corner (x0, Cεx0) at its
support. If J1|Cεx0 = F|Cεx0 with some F ∈ Cα(Bε

x0) and α > 0, then

J1(x0) = 0.
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Corner of Sources Scatter - EM case

Other applications

Shape determination of sources: Uniqueness in determining the polyhedral
convex hull of the source by a single measurement.

EM medium problem:
∇∧Et − iωµHt = 0, ∇∧Ht + iωγEt = 0 in Ω,

∇∧E0 − iωµ0H
0 = 0, ∇∧H0 + iωε0E

0 = 0 in Ω,

ν ∧Et = ν ∧E0, ν ∧Ht = ν ∧H0 on ∂Ω.

Set (Ê, Ĥ) := (Et,Ht)− (E0,H0) −→ Source problem.

Corner scattering;

Interior transmission eigenfunctions.
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Concluding remarks

Further

Concave corners;

Anisotropic materials at the corner;

Incident fields where no conclusion is made yet;

Other dimensions;

“Other shapes” scattering.
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Concluding remarks

Thank you!
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