Imaging Local Perturbations in Periodic Layered Media

Fioralba Cakoni
Rutgers University

Joint work with
Houssem Haddar and Thi Phong Nguyen
Research supported by grants from AFOSR and NSF

Scattering by a periodic layer

$$
\nabla \cdot A \nabla u^{s}+k^{2} n u^{s}=f \text { for }\left(\tilde{x}, x_{d}\right) \in \mathbb{R}^{d-1} \times \mathbb{R}
$$

u^{s} satisfies Rayleigh radiation condition
A, n are \tilde{x}-periodic L^{∞}-matrix valued function and scalar function, respectively.

$$
\begin{gathered}
\operatorname{supp}(A-I) \text { and } \operatorname{supp}(n-1) \text { is included in } \mathbb{R}^{d-1} \times(-h, h) . \\
f:=\nabla \cdot(A-I) \nabla u^{i}+k^{2}(n-1) u^{i} \text { is quasi-periodic }
\end{gathered}
$$

T. Arens, G. Bao, L. Bourgeois, J. Elschner, S. Fliss, G. Hu, A. Kirsch, A. Lechleiter, J. Lin, P. Liu, T.P. Nguyen

The Problem

Reconstruct the support of a local perturbation D_{0} in a periodic inhomogeneous layered medium from a knowledge of the scattered field due to several incident plane waves.

- Our main constraint is that a model for the periodic background is not available or otherwise it is hard to compute its Green's function.
- One cell consists of a collection of inhomogeneities situated in a known homogeneous medium and we do not want to reconstruct them

The Problem

Some applications: Detection of local defects in periodic patterns!

A meta-material

Nano-grass structures

Formulation of the problem

For sake of this presentation, we assume $A \equiv I, d=2$.
Denote by n_{p} the refractive index of periodic layer and by n the refractive index of the perturbed media, i.e. $\operatorname{supp}\left(n-n_{p}\right)=D_{0}$.
The unknown perturbation with support D_{0} is located in one period which we don't know a priori. We assume to know only the period of the background.

Given measurements of the scattered wave at a fixed frequency
Recover the defect $D_{0}:=\operatorname{supp}\left(n-n_{p}\right)$ without knowing n and n_{p}

The approximate model problem

$n_{p}\left(\cdot, x_{d}\right)$ is L-periodic, $n=1$ for $\left|x_{d}\right|>h>0$ and n is $M L$-periodic.

- Consider a truncated domain of M periods, which contains the defect.
- Impose the ML-periodicity on index n.

The approximate model problem

Measurements of scattered waves

ML-periodic incident plane waves

- Reconstruct $D_{0}:=\operatorname{supp}\left(n-n_{p}\right)$ from the given measurements of the scattered wave associated with ML-periodic incident waves

Description of the data

Total field (ML-periodic): $\Delta u+k^{2} n u=0$ in $\mathbb{R}^{2}, \quad k \in \mathbb{R}$
Scattered wave: $u_{j}^{s}(x)=\sum_{\ell} \widehat{u}_{j}^{s}(\ell) e^{\mathrm{i}\left(\alpha_{\ell} x_{1}+\beta_{\ell}\left(x_{2}-h\right)\right)}, x_{2}>h$

$M L$-periodic incident plane waves: $u_{j}^{j}=\frac{1}{\beta_{j}} e^{\mathrm{i}\left(\alpha_{j} x_{1}+\overline{\beta_{j}}\left(x_{2}-h\right)\right)} \quad j \in \mathbb{Z}$

$$
\alpha_{j}:=2 \pi j /(M L), \quad \beta_{j}:=\sqrt{k^{2}-\alpha_{j}^{2}}, \quad \operatorname{Im} \beta_{j} \geq 0
$$

Scattered field: $\quad \Delta u^{s}+k^{2} n u^{s}=k^{2}(1-n) u^{i}$

+ Radiation condition

Description of the data

Data for the inverse problem:

The measurements are given by the Rayleigh sequences $\left\{\widehat{u}_{j}^{s}(\ell)_{\ell \in \mathbb{Z}}\right\}$

$$
\left[\cdots, \widehat{u}_{j}^{s}(\ell-M), \cdots, \widehat{u}_{j}^{s}(\ell-1), \widehat{u}_{j}^{s}(\ell), \widehat{u}_{j}^{s}(\ell+1), \widehat{u}_{j}^{s}(\ell+2) \cdots, \widehat{u}_{j}^{s}(\ell+M), \cdots,\right]
$$

$M L$-periodic incident plane waves: $u_{j}^{i}=\frac{1}{\beta_{j}} e^{\mathrm{i}\left(\alpha_{j} x_{1}+\overline{\beta_{j}}\left(x_{2}-h\right)\right)} \quad j \in \mathbb{Z}$

$$
\alpha_{j}:=2 \pi j /(M L), \quad \beta_{j}:=\sqrt{k^{2}-\alpha_{j}^{2}}, \quad \operatorname{Im} \beta_{j} \geq 0
$$

Scattered field: $\quad \Delta u^{s}+k^{2} n u^{s}=k^{2}(1-n) u^{i}$

+ Radiation condition

The near field operator N

From the measurements given by the Rayleigh sequence:

$$
\left[\cdots, \widehat{u}_{j}^{s}(\ell-M), \cdots, \widehat{u}_{j}^{s}(\ell-1), \widehat{u}_{j}^{s}(\ell), \widehat{u}_{j}^{s}(\ell+1), \widehat{u}_{j}^{s}(\ell+2) \cdots, \widehat{u}_{j}^{s}(\ell+M), \cdots,\right]
$$

we can define the near field operator: $N: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ defined by

$$
N(a):=\left[\sum_{j \in \mathbb{Z}} \widehat{u}_{j}^{s}(\ell) a(j)\right]_{\ell \in \mathbb{Z}}
$$

Standard ITP

Domain $D:=\operatorname{supp}(1-n)$
Factorization of the operator $N: \quad N=G H, N=H^{*} T H$

- $H: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(D)$ is the Herglotz operator defined by

$$
\begin{gathered}
H(a):=\sum_{j \in \mathbb{Z}} a(j) u_{j}^{i} \\
\overline{\mathcal{R}(H)}:=\left\{v \in L^{2}(D): \Delta v+k^{2} v=0, \text { in } D\right.
\end{gathered}
$$

- $G: \overline{\mathcal{R}(H)} \rightarrow \ell^{2}(\mathbb{Z})$ is the solution operator defined by

$$
G v:=\{\widehat{w}(\ell)\}_{\ell} \text { the Rayleigh coefficients of } w
$$

with $w: \quad \Delta w+n k^{2} w=k^{2}(1-n) v$ in $\mathbb{R}^{2}+$ Radiation condition.

Standard ITP

Domain $D:=\operatorname{supp}(1-n)$
Injectivity of the operator G is linked with the TEP
$(u, v) \in L^{2}(D) \times L^{2}(D)$ such that $w:=u-v \in H^{2}(D)$ and

$$
\left\{\begin{array}{l}
\Delta u+k^{2} n u=0 \quad \text { in } D, \\
\Delta v+k^{2} v=0 \text { in } D, \\
(u-v)=0 \quad \text { on } \partial D, \\
\frac{\partial}{\partial \nu}(u-v)=0 \quad \text { on } \partial D .
\end{array}\right.
$$

k is a transmission eigenvalue if this problem has non-trivial solution.

Standard ITP

Denote by $\phi^{z} \in \ell^{2}(\mathbb{Z})$ the Rayleigh sequence of $\Phi(\cdot, z)$ - ML periodic

$$
\Delta \Phi(\cdot, z)+k^{2} \Phi(\cdot, z)=-\delta_{z}
$$

- If k is not a transmission eigenvalue then

$$
G \text { is injective and } N=G H \text { has dense range. }
$$

- Moreover $\phi^{z} \in \operatorname{Range}(G)$ if and only if $z \in D$.

If $z \in D$ then $G\left(v_{z}\right)=\phi^{z}$ if and only if $\left(u_{z}, v_{z}\right) \in L^{2}(D) \times L^{2}(D)$ such that $u_{z}-v_{z} \in H^{2}(D)$ and satisfy the

Interior Transmission Problem (ITP):

$$
\left\{\begin{array}{l}
\Delta u_{z}+k^{2} n u_{z}=0 \quad \text { in } D, \tag{1}\\
\Delta v_{z}+k^{2} v_{z}=0 \text { in } D, \\
\left(u_{z}-v_{z}\right)=\Phi(\cdot, z) \quad \text { on } \partial D, \\
\frac{\partial}{\partial \nu}\left(u_{z}-v_{z}\right)=\frac{\partial}{\partial \nu} \Phi(\cdot, z) \quad \text { on } \partial D .
\end{array}\right.
$$

Factorization

- Define

$$
N_{\sharp}:=|\operatorname{Re} N|+|\operatorname{Im} N|
$$

- The factorization of the near field operator N_{\sharp}

Assume that $(n-1)^{-1} \in L^{\infty}(D)$ and $\operatorname{Re}(n)-1$ or $1-\operatorname{Re}(n)$ is positive definite in a neighborhood of ∂D. Then the following factorization holds:

$$
N_{\sharp}=H^{*} T_{\sharp} H,
$$

where $T_{\sharp}: L^{2}(D) \rightarrow L^{2}(D)$ is self-adjoint and coercive on $\overline{\mathcal{R}(H)}$.

- Range $\left(N_{\sharp}^{1 / 2}\right)=\operatorname{Range}(G)$

$$
\phi^{z} \in \operatorname{Range}\left(N_{\sharp}^{1 / 2}\right) \Longleftrightarrow z \in D
$$

Generalized Linear Sampling Method

Consider the functional:

$$
J_{\alpha}\left(\phi^{z} ; a\right):=\alpha\left(N_{\sharp} a, a\right)+\left\|N a-\phi^{z}\right\|^{2} \quad \forall a \in \ell^{2}(\mathbb{Z}) .
$$

Let $a^{z, \alpha} \in \ell^{2}(\mathbb{Z}), \alpha>0$, be a minimizing sequence such that

$$
J_{\alpha}\left(\phi^{z} ; a^{z, \alpha}\right) \leq \inf _{a \in \ell^{2}(\mathbb{Z})} J_{\alpha}\left(\phi^{z} ; a\right)+o(\alpha) \text { as } \alpha \rightarrow 0
$$

Then,

$$
\phi^{z} \in \operatorname{Range}(G) \text { or } z \in D \Longleftrightarrow \lim _{\alpha \rightarrow 0}\left(N_{\sharp} a^{z, \alpha}, a^{z, \alpha}\right)<\infty .
$$

Moreover, if $\phi^{z} \in \operatorname{Range}(G)$ then $H a_{z, \alpha} \rightarrow v_{z}$ as $\alpha \rightarrow 0$ such that $G(z)=\phi^{z}$.

The single Floquet-Bloch near field operator

Fix $q \in\{0, \ldots, M-1\}$. The measurements are formed by only the $q+\ell M$ Rayleigh coefficients
$\left[\cdots, \widehat{u}_{j}^{s}(q-M), \cdots, \widehat{u}_{j}^{s}(q-1), \widehat{u}_{j}^{s}(q), \widehat{u}_{j}^{s}(q+1), \widehat{u}_{j}^{s}(q+2) \cdots, \widehat{u}_{j}^{s}(q+M), \cdots\right.$,
Single Floquet-Bloch mode near field operator: $N_{q}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$:

$$
N_{q}(a):=\left[\sum_{j \in \mathbb{Z}} \widehat{U}_{q+j M}^{s}(q+\ell M) a(j)\right]_{\ell \in \mathbb{Z}}
$$

N_{q} is associated with α_{q}-quasi periodic fields where $\alpha_{q}=\frac{2 \pi}{M L} q$.

Relationship between N and N_{q}

$$
N_{q}=I_{q}^{*} N I_{q}
$$

where $\left(I_{q} a\right)(\ell)=\left\{\begin{array}{cr}a(j) & \text { if } \ell=q+j M \\ 0 & \text { otherwise }\end{array}\right.$
"sub-matrix" N_{q} in red

Properties of N_{q}

Thus $N_{q}=\left(H I_{q}\right)^{*} T\left(H I_{q}\right)=H_{q}^{*} T H_{q}=\left(H_{q}^{*} T\right) H_{q}=G_{q} H_{q}$

- $H_{q}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(D)$,

$$
\overline{\mathcal{R}\left(H_{q}\right)}:=\left\{v \in L^{2}(D): \Delta v+k^{2} v=0,\left.v\right|_{D_{p}} \text { is } \alpha_{q} \text {-quasi-periodic }\right\} .
$$

- $G_{q}:=I_{q}^{*} G: \overline{\mathcal{R}\left(H_{q}\right)} \rightarrow \ell^{2}(\mathbb{Z})$ and $G_{q}: v \mapsto I_{q}^{*}\left\{\widehat{w}_{q}(\ell)\right\}_{\ell \in \mathbb{Z}}$

$$
\Delta w_{q}+k^{2} n w_{q}=k^{2}\left(n_{p}-n\right)\left(w-w_{q}\right)+k^{2}(1-n) v \text { in } \Omega_{0},
$$

where Ω_{0} defective period w_{q} is radiating α_{q}-quasi-periodic, with w

$$
\Delta w+n k^{2} w=k^{2}(1-n) v \text { in } \mathbb{R}^{2}+\text { Radiation condition }
$$

The new TEP

Related to injectivity of G_{q}

G_{q} is injective if and only the problem: Find $w_{q} \in H_{0}^{2}(\Lambda)$ and $v \in L^{2}(\Lambda)$ such that

$$
\begin{gathered}
\Delta w_{q}+k^{2} n w_{q}=k^{2}\left(n_{p}-n\right)\left(w-w_{q}\right)+k^{2}(1-n) \vee \text { in } \Lambda \\
\Delta v+k^{2} v=0 \text { in } \Lambda
\end{gathered}
$$

and

$$
\Delta w+n k^{2} w=k^{2}(1-n) v \text { in } \mathbb{R}^{2}+\text { Radiation condition }
$$

has nontrivial solution.
This is a new transmission eigenvalue problem!
The goal is to express $w-w_{q}$ in terms of v.

The new ITP

Linked with the analysis of the operator N_{q}

Domain \wedge

$$
(u, v) \in L^{2}(\Lambda) \times L^{2}(\Lambda) \text { such that } w_{q}:=u-v \in H^{2}(\Lambda) \text { and }
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
\Delta u+k^{2} n u=k^{2}\left(n_{p}-n\right) S_{k}(v) \text { in } \Lambda, \\
\Delta v+k^{2} v=0 \text { in } \Lambda, \\
(u-v)=\varphi \text { on } \partial \Lambda, \\
\frac{\partial}{\partial \nu}(u-v)=\psi \text { on } \partial \Lambda .
\end{array}\right. \\
S_{k}: v \mapsto \int_{\Lambda} k^{2}\left(1-n_{p}\right) v(y)\left(\sum_{0 \neq m \in \mathbb{Z}_{M}} e^{i \alpha_{q} m L} \Phi\left(n_{p} ; x-m L-y\right)\right) \mathrm{d} y,
\end{gathered}
$$

$\Phi\left(n_{p} ; \cdot\right)$ is the $M L$-periodic fundamental solution given by

$$
\Delta \Phi\left(n_{p} ; \cdot\right)+k^{2} n_{p} \Phi\left(n_{p} ; \cdot\right)=-\delta_{0}
$$

Analysis of the new ITP

Property of the operator S_{k}

$$
\begin{aligned}
& u \in H_{0}^{2}(\Lambda) \text { and } f \in L^{2}(\Lambda), \\
& \begin{cases}\Delta u+k^{2} n u=(1-n) v+\left(n_{p}-n\right) S_{k}(v)+F & \text { in } \Lambda \\
\Delta v+k^{2} v=0 & \text { in } \Lambda .\end{cases}
\end{aligned}
$$

Property of the operator S_{k} : We can prove that there exists $\theta>0$ and $C>0$ such that

$$
\left\|S_{i \kappa}(v)\right\|_{L^{2}(\Lambda)} \leq C e^{-\theta \kappa}\|v\|_{L^{2}(\Lambda)}, \quad \kappa>0, \forall v \in L^{2}(\Lambda)
$$

and $S_{k}-S_{i \kappa}$ is compact.

Theorem

If $\operatorname{Re}(n-1)>0$ or $\operatorname{Re}(1-n)>0$ uniformly in a neighborhood of $\partial \Lambda$ from inside, the new interior transmission problem is Fredholm of index 0 . The new transmission eigenvalues form at most a discrete set with $+\infty$ as the only possible accumulation point.

Factorization of $N_{q, \sharp}$

Let $N_{q, \sharp}=\left|\operatorname{Re} N_{q}\right|+\left|\operatorname{Im} N_{q}\right|$.

- Then $N_{q, \sharp}=H_{q}^{*} T_{\sharp} H_{q}$ where $T_{\sharp}: L^{2}(D) \rightarrow L^{2}(D)$ is self-adjoint and coercive on Range $\left(H_{q}\right)$.
- Range $\left(N_{q, \sharp}^{1 / 2}\right)=\operatorname{Range}\left(G_{q}\right)$.
- Let $\phi_{q}^{z} \in \ell^{2}(\mathbb{Z})$ be the Rayleigh sequence associated with $\Phi_{q}(\cdot, z)$ α_{q}-quasi-periodic solution of $\Delta \Phi(\cdot, z)+k^{2} \Phi(\cdot, z)=-\delta_{z}$. Then

$$
I_{q}^{*} \phi_{q}^{z} \in \operatorname{Range}\left(G_{q}\right) \Longleftrightarrow z \in \widehat{D}_{p}
$$

Description of the Algorithm

The algorithm uses:

- $N_{\sharp}:=|\operatorname{Re}(N)|+|\operatorname{Im}(N)|, \quad N_{q, \sharp}:=\left|\operatorname{Re}\left(N_{q}\right)\right|+\left|\operatorname{Im}\left(N_{q}\right)\right|$
- $\phi^{z} \in \ell^{2}(\mathbb{Z})$ the Rayleigh sequence associated with the $\Phi(\cdot, z)$ - $M L$ periodic solution of

$$
\begin{equation*}
\Delta \Phi(\cdot, z)+k^{2} \Phi(\cdot, z)=-\delta_{z} \tag{*}
\end{equation*}
$$

- $\phi_{q}^{z} \in \ell^{2}(\mathbb{Z})$ the Rayleigh sequence associated with $\Phi_{q}(\cdot, z)$ -α_{q}-quasi-periodic solution of (*)
Define

$$
\begin{gathered}
J_{\alpha}(\phi ; a):=\alpha\left(N_{\sharp} a, a\right)+\|N a-\phi\|^{2} \\
J_{q \alpha}(\phi ; a):=\alpha\left(N_{q, \sharp} a, a\right)+\left\|N_{q} a-\phi\right\|^{2}
\end{gathered}
$$

$$
\begin{gathered}
a^{z, \alpha} \in \ell^{2}(\mathbb{Z}) \text { minimizing sequence for } J_{\alpha}\left(\phi^{z} ; a\right) \\
a_{q}^{z, \alpha} \in \ell^{2}(\mathbb{Z}) \text { minimizing sequence for } J_{\alpha}\left(\phi_{q}^{z} ; a\right) \\
\tilde{a}^{z, \alpha} \in \ell^{2}(\mathbb{Z}) \text { minimizing sequence for } J_{\alpha, q}\left(I_{q}^{*} \phi_{q}^{z} ; a\right)
\end{gathered}
$$

Indicator function

If the standard ITP is well-posed then:

- $z \in D$ iff $\lim _{\alpha \rightarrow 0}\left(N_{\sharp} a^{\alpha, z}, a^{\alpha, z}\right)<\infty$,
$D=\operatorname{supp}(n-1)$

Indicator function

If the standard ITP is well-posed then:

- $z \in D$ iff $\lim _{\alpha \rightarrow 0}\left(N_{\sharp} a^{\alpha, z}, a^{\alpha, z}\right)<\infty, \quad D=\operatorname{supp}(n-1)$
- $z \in D_{p}$ iff $\lim _{\alpha \rightarrow 0}\left(N_{\sharp} a_{q}^{\alpha, z}, a_{q}^{\alpha, z}\right)<\infty, \quad D_{p}=\operatorname{supp}\left(n_{p}-1\right)$

Indicator function

If the standard ITP is well-posed then:

- $z \in D$ iff $\lim _{\alpha \rightarrow 0}\left(N_{\sharp} a^{\alpha, z}, a^{\alpha, z}\right)<\infty, \quad D=\operatorname{supp}(n-1)$
- $z \in D_{p}$ iff $\lim _{\alpha \rightarrow 0}\left(N_{\sharp} a_{q}^{\alpha, z}, a_{q}^{\alpha, z}\right)<\infty, \quad D_{p}=\operatorname{supp}\left(n_{p}-1\right)$

If the new ITP is well-posed then:

- $z \in \widehat{D}_{p}$ iff $\lim _{\alpha \rightarrow 0}\left(N_{q, \sharp} I_{q} \tilde{a}_{q}^{\alpha, z}, I_{q} \tilde{a}_{q}^{\alpha, z}\right)<\infty$
where $z \in \widehat{D}_{p}$ is the support of L-periodic extension of defective cell.

Indicator function

Theorem: (Reconstruction of defect): Define

$$
\begin{aligned}
& \mathcal{I}_{\alpha}(z)=\left(N_{\sharp} a^{\alpha, z}, a^{\alpha, z}\right)\left(1+\frac{\left(N_{\sharp} a^{\alpha, z}, a^{\alpha, z}\right)}{D_{\alpha}(z)}\right) . \\
& D_{\alpha}(z)=\left(N_{\sharp}\left(a_{q}^{\alpha, z}-I_{q} \tilde{a}_{q}^{\alpha, z}\right),\left(a_{q}^{\alpha, z}-I_{q} \tilde{a}_{q}^{\alpha, z}\right)\right) .
\end{aligned}
$$

Then $z \in D_{0} \cup \mathcal{O}_{p}$ iff $\lim _{\alpha \rightarrow 0} \mathcal{I}_{\alpha}(z)<\infty$.
provided the forward problem, the standard and the new ITP are well-posed. (Note that $\left.D_{\alpha}(z) \leq\left\|T_{\sharp}\right\|\left\|H a_{q}^{\alpha, z}-H_{q} a_{q}^{\alpha, z}\right\|_{L^{2}(D)}^{2}\right)$

Some numerical results

- The parameters of periodic background:
- $k=\pi / 3.14, \quad n_{p}=2$ inside the discs of radii r_{1} and $r_{2}, n_{p}=$ 1 otherwise
- $L=2 \pi, h=1.5 L / k, \quad r_{1}=0.3 L / k, \quad r_{2}=0.4 L / k$

Exact geometry

- $n=4$ inside $r_{w}:=0.25 L / k$.
- Index of incident plane waves:

$$
j=q+\ell M,-\frac{M}{2}+1 \leq q \leq \frac{M}{2}, N_{\min } \leq \ell \leq N_{\max }
$$

- $M=3, \quad N_{\min }=-5, \quad N_{\max }=5$
- 1% added multiplicative random noise

Some numerical results

- The parameters of periodic background:
- $k=\pi / 3.14, \quad n_{p}=2$ inside the discs of radii r_{1} and $r_{2}, n_{p}=$ 1 otherwise
- $L=2 \pi, h=1.5 L / k, \quad r_{1}=0.3 L / k, \quad r_{2}=0.4 L / k$

Exact geometry

Indicator function $z \mapsto \mathcal{I}_{\alpha}(z)$

Some numerical results

- The parameters of periodic background:
- $k=\pi / 3.14, \quad n_{p}=2$ inside the discs of radii r_{1} and $r_{2}, n_{p}=$ 1 otherwise
- $L=2 \pi, h=1.5 L / k, \quad r_{1}=0.3 L / k, \quad r_{2}=0.4 L / k$

Exact geometry

- $n=4$ inside $r_{w}:=0.25 L / k$.
- Index of incident plane waves:

$$
j=q+\ell M,-\frac{M}{2}+1 \leq q \leq \frac{M}{2}, N_{\min } \leq \ell \leq N_{\max }
$$

- $M=3, \quad N_{\min }=-5, \quad N_{\max }=5$
- 1% added multiplicative random noise

Some numerical results

- The parameters of periodic background:
- $k=\pi / 3.14, \quad n_{\rho}=2$ inside the discs of radii r_{1} and $r_{2}, n_{\rho}=$ 1 otherwise
- $L=2 \pi, h=1.5 L / k, \quad r_{1}=0.3 L / k, \quad r_{2}=0.4 L / k$

Exact geometry

Indicator function $z \mapsto \mathcal{I}_{\alpha}(z)$

Some numerical results

- The parameters of periodic background:
- $k=\pi / 3.14, \quad n_{p}=2$ inside the discs of radii r_{1} and $r_{2}, n_{p}=$ 1 otherwise
- $L=2 \pi, h=1.5 L / k, \quad r_{1}=0.3 L / k, \quad r_{2}=0.4 L / k$

Exact geometry

Indicator function $z \mapsto \mathcal{I}_{\alpha}(z)$

Some numerical results

Some numerical results

Where to go next

With T. Arens we are looking at the scattering by an almost periodic anisotropic layer.

$$
\nabla \cdot A \nabla u^{s}+k^{2} n u^{s}=f \text { for }\left(\tilde{x}, x_{d}\right) \in \mathbb{R}^{d-1} \times \mathbb{R}
$$

u^{s} satisfies Rayleigh radiation condition

$$
\operatorname{supp}(A), \operatorname{supp}(n) \text { and } \operatorname{supp}(f) \text { are included in } \Omega_{h}:=\mathbb{R}^{d-1} \times(-h, h)
$$

$\left.A\right|_{\Omega_{h}},\left.n\right|_{\Omega_{h}}$ are in the space of Besicovitch-almost periodic bounded function

$$
L_{a p}^{\infty}\left(\Omega_{h}\right)=\overline{P\left(L^{\infty}([-h, h])\right.}\|\cdot\|_{\infty}
$$

where for a Banach space X

$$
P(X)=\left\{\sum_{j=1}^{n} u_{j} e^{\lambda_{n_{j}} \cdot \tilde{x}}: u_{j} \in X, n_{j} \in \mathbb{N}, j=1, \ldots, n\right\}
$$

with given countable set of frequencies $\mathcal{S}=\left\{\lambda_{1}, \lambda_{2}, \ldots \mid \lambda_{j} \in \mathbb{R}^{d-1}\right\}$ which forms a semigroup.

References

围 F. Cakoni, H. Haddar, T.P. Nguyen (2019) New interior transmission problem applied to a single Floquet-Bloch mode imaging of local perturbations in periodic media, Inverse Problems, 35, 015009.
T.P. Nguyen (2019) Differential Imaging of Local Perturbations in Anisotropic Periodic media, Inverse Problems (to appear).
T.Arens, F. Cakoni (2019) Scattering by an almost periodic structure, (preprint).

