Manifold learning with random errors and inverse problems

Matti Lassas
in collaboration with
Charles Fefferman, Sergei Ivanov,
Hariharan Narayanan

Finnish Centre of Excellence in Inverse Modelling and Imaging

Outline:

- Manifold learning problems and inverse problems
- Learning a manifold from distances with small noise
- Learning a manifold from distances with large random noise

Construction of a manifold from discrete data.

Let $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ be a (discrete) metric space. We want to approximate it by a Riemannian manifold $\left(M^{*}, g^{*}\right)$ so that

- $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ and $\left(M^{*}, d_{g^{*}}\right)$ are almost isometric,
- the curvature and the injectivity radius of M^{*} are bounded.

Note that \mathcal{X} is an "abstract metric space" and not a set of points in \mathbb{R}^{d}, and we want to learn the intrinsic metric of the manifold.

Example 1: Non-Euclidean metric in data sets

Consider a data set $\mathcal{X}=\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$.
The ISOMAP face data set contains $N=2370$ images of faces with $d=2914$ pixels.

Question: Define $d_{\mathcal{X}}\left(x_{j}, x_{k}\right)$ using Wasserstein distance related to optimal transport. Does $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ approximate a manifold and how this manifold can be constructed?

Example 2: Travel time distances of points

Surface waves produced by earthquakes travel near the boundary of the Earth. The observations of several earthquakes give information on travel times $d_{T}(x, y)$ between the points $x, y \in \mathbb{S}^{2}$.

Question: Can one determine the Riemannian metric associated to surface waves from the travel times having measurement errors?

Figure by Su-Woodward-Dziewonski, 1994

Example 3: An inverse problem for a manifold

Consider the eigenvalues λ_{j} and eigenfunctions φ_{j} satisfying

$$
-\Delta_{g} \varphi_{j}=\lambda_{j} \varphi_{j} \quad \text { on } M
$$

In the inverse interior spectral problem one is given

$$
\begin{aligned}
& \text { a ball } B=B_{M}(p, r) \subset M \\
& \text { eigenvalues } \lambda_{j}, \quad j=1,2,3, \ldots, \\
& \text { restrictions of eigenfunctions, }\left.\varphi_{j}\right|_{B}, \quad j=1,2,3, \ldots
\end{aligned}
$$

and the goal is to determine the isometry type of (M, g).

Theorem (Bosi-Kurylev-L. 2017)
Let $n \in \mathbb{Z}_{+}$and $K, D, i_{0}, r_{0}>0$.
There are $\theta, C_{0}, \delta_{0}$ such that for all $\delta<\delta_{0}$ the following is true:
Let (M, g) be a Riemannnian manifold such that
$\|\operatorname{Ric}(M)\|_{C^{3}(M)} \leq K, \operatorname{diam}(M) \leq D, \operatorname{inj}(M) \geq i_{0}$.
Identify the ball $B_{M}\left(p, r_{0}\right)$ with $B\left(r_{0}\right) \subset \mathbb{R}^{n}$ in normal coordinates.
Assume that we are given g^{a}, φ_{j}^{a} and λ_{j}^{a} such that
i) The metric tensor satisfies $\left\|g^{a}-g\right\|_{L^{\infty}\left(B\left(r_{0}\right)\right)}<\delta$,
ii) $\left|\lambda_{j}^{a}-\lambda_{j}\right|<\delta$ and $\left\|\varphi_{j}^{a}-\varphi_{j}\right\|_{L^{2}\left(B\left(r_{0}\right)\right)}<\delta$ when $\lambda_{j}<\frac{1}{\delta}$.

Then we can construct a metric space $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ such that

$$
d_{G H}(M, \mathcal{X}) \leq \frac{C_{0}}{\left(\ln \left(\ln \frac{1}{\delta}\right)\right)^{\theta}}=\varepsilon
$$

that is, there is an ε-dense subset $\left\{p_{j}: j=1, \ldots, N\right\} \subset M$ and $\mathcal{X}=\left\{x_{j}: j=1, \ldots, N\right\}$ such that $\left|d_{M}\left(p_{j}, p_{k}\right)-d_{\mathcal{X}}\left(x_{j}, x_{k}\right)\right| \leq \varepsilon$.

Some earlier methods for manifold learning

Let $\left\{x_{j}\right\}_{j=1}^{J} \subset \mathbb{R}^{d}$ be points on submanifold $M \subset \mathbb{R}^{d}, d>n$.

- 'Multi Dimensional Scaling' (MDS) finds an embedding of data points into $\mathbb{R}^{m}, n<m<d$ by minimising a cost function

$$
\min _{y_{1}, \ldots, y \in y_{\mathbb{R}^{m}}} \sum_{j, k=1}^{J}\left|\left\|y_{j}-y_{k}\right\|_{\mathbb{R}^{m}}-d_{j k}\right|^{2}, \quad d_{j k}=\left\|x_{j}-x_{k}\right\|_{\mathbb{R}^{d}}
$$

- 'Isomap' makes a graph of K nearest neighbours and computes graph distances $d_{j k}^{G}$ that approximate distances $d_{M}\left(x_{j}, x_{k}\right)$ along the surface. Then MDS is applied. Note that if there is $F: M \rightarrow \mathbb{R}^{m}$ such that $\left|F(x)-F\left(x^{\prime}\right)\right|=d_{M}\left(x, x^{\prime}\right)$, then the curvature of M is zero.

Figure by Tenenbaum et al., Science 2000

Outline:

- Manifold learning problems and inverse problems
- Learning a manifold from distances with small noise
- Learning a manifold from distances with large random noise

Theorem (Fefferman, Ivanov, Kurylev, L., Narayanan 2015)
Let $0<\delta<c_{1}(n, K)$ and M be a compact n-dimensional manifold with $|\operatorname{Sec}(M)| \leq K$ and $\operatorname{inj}(M)>2(\delta / K)^{1 / 3}$. Let $\mathcal{X}=\left\{x_{j}\right\}_{j=1}^{N}$ be δ-dense in M and $\widetilde{d}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+} \cup\{0\}$ satisfy

$$
\left|\widetilde{d}(x, y)-d_{M}(x, y)\right| \leq \delta, \quad x, y \in \mathcal{X}
$$

Given the values $\widetilde{d}\left(x_{j}, x_{k}\right), j, k=1, \ldots, N$, one can construct a compact n-dimensional Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that:

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for } x, y \in M^{*}, L=1+C_{n} K^{1 / 3} \delta^{2 / 3}
$$

2. $\left|\operatorname{Sec}\left(M^{*}\right)\right| \leq C_{n} K$.
3. The injectivity radius $\operatorname{inj}\left(M^{*}\right)$ of M^{*} satisfies

$$
\operatorname{inj}\left(M^{*}\right) \geq \min \left\{\left(C_{n} K\right)^{-1 / 2},\left(1-C_{n} K^{1 / 3} \delta^{2 / 3}\right) \operatorname{inj}(M)\right\}
$$

Outline:

- Manifold learning problems and inverse problems
- Learning a manifold from distances with small noise
- Learning a manifold from distances with large random noise

Random sample points and random errors

Manifolds with bounded geometry:
Let $n \geq 2$ be an integer, $K>0, D>0, i_{0}>0$. Let (M, g) be a compact Riemannian manifold of dimension n such that

$$
\begin{align*}
& \text { i) }\left\|\operatorname{Sec}_{M}\right\|_{L^{\infty}(M)} \leq K, \tag{1}\\
& \text { ii) } \operatorname{diam}(M) \leq D, \\
& \text { iii) } \operatorname{inj}(M) \geq i_{0},
\end{align*}
$$

We consider measurements in randomly sampled points: Let $X_{j}, j=1,2, \ldots, N$ be independently samples from probability distribution μ on M such that

$$
0<c_{\min } \leq \frac{d \mu}{d \mathrm{Vol}_{g}} \leq c_{\max }
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 2, D, K, i_{0}, c_{\min }, c_{\max }, \sigma, \beta>0$ be given. Then there are δ_{0}, C_{0} and C_{1} such that the following holds: Let $\delta \in\left(0, \delta_{0}\right)$,
$\theta \in\left(0, \frac{1}{2}\right)$ and (M, g) be a compact manifold satisfying bounds (1).
Then with a probability $1-\theta, \sigma^{2}$ and the noisy distances
$D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}, j, k \leq N$ of N randomly chosen points, where

$$
N \geq C_{0} \frac{1}{\delta^{3 n}}\left(\log ^{2}\left(\frac{1}{\theta}\right)+\log ^{8}\left(\frac{1}{\delta}\right)\right)
$$

determine a Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for all } x, y \in M^{*}
$$

where $L=1+C_{1} \delta$.
2. The sectional curvature $\operatorname{Sec}_{M^{*}}$ of M^{*} satisfies $\left|\operatorname{Sec}_{M^{*}}\right| \leq C_{1} K$.
3. The injectivity radius inj $\left(M^{*}\right)$ of M^{*} is close to $\operatorname{inj}(M)$.

Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 2, D, K, i_{0}, c_{\min }, c_{\max }, \sigma, \beta>0$ be given. Then there are δ_{0}, C_{0} and C_{1} such that the following holds: Let $\delta \in\left(0, \delta_{0}\right)$,
$\theta \in\left(0, \frac{1}{2}\right)$ and (M, g) be a compact manifold satisfying bounds (1).
Then with a probability $1-\theta, \sigma^{2}$ and the noisy distances
$D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}, j, k \leq N$ of N randomly chosen points, where

$$
N \geq C_{0} \frac{1}{\delta^{3 n}}\left(\log ^{2}\left(\frac{1}{\theta}\right)+\log ^{8}\left(\frac{1}{\delta}\right)\right)
$$

determine a Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for all } x, y \in M^{*}
$$

where $L=1+C_{1} \delta$.
2. The sectional curvature $\operatorname{Sec}_{M^{*}}$ of M^{*} satisfies $\left|\operatorname{Sec}_{M^{*}}\right| \leq C_{1} K$.
3. The injectivity radius inj $\left(M^{*}\right)$ of M^{*} is close to $\operatorname{inj}(M)$.

Generalization with missing data

Recall that $D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}$.
We can assume that we are given

$$
D_{j k}^{(\text {partial data) }}=\left\{\begin{array}{cl}
D_{j k} & \text { if } Y_{j k}=1, \\
\text { 'missing' } & \text { if } Y_{j k}=0,
\end{array}\right.
$$

where $Y_{j k} \in\{0,1\}$ are independent random variables,

$$
\begin{equation*}
\mathbb{P}\left(Y_{j k}=1 \mid X_{j}, X_{k}\right)=\Phi\left(X_{j}, X_{k}\right) \tag{2}
\end{equation*}
$$

and there is a smooth non-increasing function $h:[0, \infty) \rightarrow[0,1]$ so that

$$
\begin{equation*}
c_{1} h\left(d_{M}(x, y)\right) \leq \Phi(x, y) \leq c_{2} h\left(d_{M}(x, y)\right) \tag{3}
\end{equation*}
$$

For $z \in M$, let $r_{z}: M \rightarrow \mathbb{R}$ be the distance function from z,

$$
r_{z}(x)=d_{M}(z, x), \quad x \in M
$$

For $y, z \in M$, we consider the "rough distance function"

$$
\kappa(y, z)=\left\|r_{y}-r_{z}\right\|_{L^{2}(M)}^{2}=\int_{M}\left|d_{M}(y, x)-d_{M}(z, x)\right|^{2} d \mu(x) .
$$

Lemma

There is a constant $c_{0} \in(0,1)$ such that

$$
c_{0}^{2} d_{M}(y, z)^{2} \leq\left\|r_{y}-r_{z}\right\|_{L^{2}(M, d \mu)}^{2} \leq d_{M}(y, z)^{2}, \quad y, z \in M .
$$

We consider three sets $S_{1}, S_{2}, S_{3} \subset\left\{X_{j}\right\}$, where $N_{i}=\# S_{i}$ satisfy $N_{1}>N_{2}>N_{3}$. We call $S_{1}=\left\{X_{1}, \ldots, X_{N_{1}}\right\}$ the densest net, S_{2} the medium dense net and S_{3} the coarse net.

We give an algorithm to construct $\left(M^{*}, g^{*}\right)$ from noisy data.
Step 1: For $X_{j}, X_{k} \in S_{2}$ are in the "medium dense net", we compute

$$
\kappa_{a p p}\left(X_{j}, X_{k}\right)=\frac{1}{N_{1}} \sum_{\ell=1}^{N_{1}}\left|D_{j \ell}-D_{k \ell}\right|^{2}-2 \sigma^{2}
$$

where we take a sum over the "densest net" S_{1}.

Let $y, z \in M, X$ be a random point on M having the distribution μ, and η, η^{\prime} be independent random variables with variance σ^{2}. Then

$$
\begin{aligned}
& \mathbb{E}\left(\left(d_{M}(y, X)+\eta\right)-\left(d_{M}(z, X)+\eta^{\prime}\right)\right)^{2} \\
& \quad=\mathbb{E}\left|d_{M}(y, X)-d_{M}(z, X)\right|^{2}+\mathbb{E}\left|\eta-\eta^{\prime}\right|^{2} \\
& \quad=\int_{M}\left|d_{M}(y, x)-d_{M}(z, x)\right|^{2} d \mu(x)+2 \sigma^{2} \\
& \quad=\left\|r_{y}-r_{z}\right\|_{L^{2}(M)}^{2}+2 \sigma^{2}
\end{aligned}
$$

This yields for $r_{y}(x)=d_{M}(y, x)$ and $D_{j \ell}=d_{M}\left(X_{j}, X_{\ell}\right)+\eta_{j \ell}$ the following:

Lemma

Under the condition that X_{j} and X_{k} are known, we have

$$
\mathbb{E}\left(\left|D_{j \ell}-D_{k \ell}\right|^{2} \mid X_{j}, X_{k}\right)=\left\|r x_{j}-r X_{k}\right\|_{L^{2}(M)}^{2}+2 \sigma^{2}
$$

We recall that for $X_{j}, X_{k} \in S_{2}$,

$$
\kappa_{a p p}\left(X_{j}, X_{k}\right)=\frac{1}{N_{1}} \sum_{\ell=1}^{N_{1}}\left|D_{j \ell}-D_{k \ell}\right|^{2}-2 \sigma^{2}
$$

and
$\mathbb{E}\left(\left|D_{j \ell}-D_{k \ell}\right|^{2} \mid X_{j}, X_{k}\right)-2 \sigma^{2}=\left\|r X_{j}-r X_{k}\right\|_{L^{2}(M)}^{2}=\kappa\left(X_{j}, X_{k}\right)$.
Hoeffding's inequality yields the following:
Lemma
Let $L>D+1$ and $\varepsilon>0$. If $\left|\eta_{j k}\right|<L$ almost surely, then
$\mathbb{P}\left[\left|\kappa_{\text {app }}\left(X_{j}, X_{k}\right)-\kappa\left(X_{j}, X_{k}\right)\right| \leq \varepsilon\right] \geq 1-2 \exp \left(-\frac{1}{8} N_{1} L^{-4} \varepsilon^{2}\right)$.

Lemma (Hoeffding's inequality)

Let Z_{1}, \ldots, Z_{N} be N i.i.d. copies of the random variable Z whose range is $[0,1]$. Then, for $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|\frac{1}{N}\left(\sum_{j=1}^{N} Z_{j}\right)-\mathbb{E} Z\right| \leq \varepsilon\right] \geq 1-2 \exp \left(-2 N \varepsilon^{2}\right)
$$

This is a generalization of tail estimates for Gaussian variables:
For independent Gaussian random variables $Y_{j} \sim N(0,1)$,

$$
S=\frac{1}{N} \sum_{j=1}^{N} Y_{j}, \quad \text { satisfies } \mathbb{E} S^{2}=\frac{1}{N}
$$

For $N>\varepsilon^{-2}, \mathbb{P}(S<\varepsilon)=\mathbb{P}\left(Y<N^{1 / 2} \varepsilon\right) \geq 1-e^{-N \varepsilon^{2} / 2}$ as
$\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} d t \leq \frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} \frac{t}{x} d t=\frac{1}{\sqrt{2 \pi}} \frac{1}{x} e^{-x^{2} / 2}, \quad x>1$.

Recall that function $\kappa(y, z)$ is a rough distance function:

$$
c_{0}^{2} d_{M}(y, z)^{2} \leq \kappa(y, z) \leq d_{M}(y, z)^{2} .
$$

Let $W(y, \rho)$ be the set

$$
W(y, \rho)=\left\{z \in M: \kappa(y, z)<\rho^{2}\right\} .
$$

We have $B_{M}\left(y, \frac{1}{c_{0}} \rho\right) \subset W(y, \rho) \subset B_{M}(y, \rho)$.

For $y_{1}, y_{2} \in M$, we define the avaraged distances

$$
d_{\rho}\left(y_{1}, y_{2}\right)=\frac{1}{\mu\left(W\left(y_{1}, \rho\right)\right)} \int_{W\left(y_{1}, \rho\right)} d_{M}\left(z, y_{2}\right) d \mu(z)
$$

Step 2: For $X_{j}, X_{j^{\prime}} \in S_{3}$, where S_{3} is the coarse net, compute

$$
d_{\rho}^{a p p}\left(X_{j}, X_{j^{\prime}}\right)=\frac{1}{\#\left(S_{2} \cap W\left(X_{j}, \rho\right)\right)} \sum_{X_{k} \in S_{2} \cap W\left(X_{j}, \rho\right)} D_{k j^{\prime}}
$$

There is $\delta_{1}=\delta_{1}(\rho, \theta)$ such that

$$
\mathbb{P}\left[\forall X_{j}, X_{j^{\prime}} \in S_{3}:\left|d_{\rho}^{a p p}\left(X_{j}, X_{j^{\prime}}\right)-d_{M}\left(X_{j}, X_{j^{\prime}}\right)\right|<\delta_{1}\right] \geq 1-\theta
$$

Summarizing, for points $S_{3}=\left\{y_{1}, y_{2}, \ldots, y_{N_{3}}\right\}$ we find $d_{\rho}^{a p p}\left(y_{j}, y_{j^{\prime}}\right)$ such that

$$
\left|d_{\rho}^{a p p}\left(y_{j}, y_{j^{\prime}}\right)-d_{M}\left(y_{j}, y_{j^{\prime}}\right)\right|<\delta_{1}
$$

with a large probability.
Step 3: We find a smooth manifold $\left(M^{*}, g^{*}\right)$ using the net S_{3} and the approximate distance $d_{\rho}^{a p p}\left(y_{1}, y_{2}\right)$ of $y_{1}, y_{2} \in S_{3}$.

Theorem (Fefferman, Ivanov, Kurylev, L., Narayanan 2015)
Let $0<\delta<c_{1}(n, K)$ and M be a compact n-dimensional manifold with $|\operatorname{Sec}(M)| \leq K$ and $\operatorname{inj}(M)>2(\delta / K)^{1 / 3}$. Let $X=\left\{x_{j}\right\}_{j=1}^{N}$ be δ-dense in M and $\widetilde{d}: X \times X \rightarrow \mathbb{R}_{+} \cup\{0\}$ satisfy

$$
\left|\widetilde{d}(x, y)-d_{M}(x, y)\right| \leq \delta, \quad x, y \in X
$$

Given the values $\widetilde{d}\left(x_{j}, x_{k}\right), j, k=1, \ldots, N$, one can construct a compact n-dimensional Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that:

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for } x, y \in M^{*}, L=1+C_{n} K^{1 / 3} \delta^{2 / 3}
$$

2. $\left|\operatorname{Sec}\left(M^{*}\right)\right| \leq C_{n} K$.
3. The injectivity radius $\operatorname{inj}\left(M^{*}\right)$ of M^{*} satisfies

$$
\operatorname{inj}\left(M^{*}\right) \geq \min \left\{\left(C_{n} K\right)^{-1 / 2},\left(1-C_{n} K^{1 / 3} \delta^{2 / 3}\right) \operatorname{inj}(M)\right\}
$$

Rough idea of the proof of manifold interpolation

Assume that we are given a finite metric space (X, d). Let $r=(\delta / K)^{1 / 3}$ and do following steps:

1. Select a maximal $\frac{r}{100}$-separated set $X_{0}=\left\{q_{i}\right\}_{i=1}^{J} \subset X$.
2. Choose disjoint balls $D_{i}=B_{r}\left(p_{i}\right) \subset \mathbb{R}^{n}$ for $i=1,2, \ldots, J$ and construct a δ-isometry $f_{i}: B_{1}^{X}\left(q_{i}\right) \rightarrow D_{i}$.
3. For all $q_{i}, q_{j} \in X_{0}$ such that $d\left(q_{i}, q_{j}\right)<1$, find affine transition maps $A_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that $A_{i j}\left(p_{i}+y\right)=p_{j}+L_{i j} y$ and

$$
\left|A_{i j}\left(f_{i}(x)\right)-f_{j}(x)\right|<C \delta, \quad \text { for } x \in B_{1}^{X}\left(q_{i}\right) \cap B_{1}^{X}\left(q_{j}\right)
$$

4. Let $\Phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be 1 near zero, and $\Omega=\bigcup_{i} D_{i}$.

Define a map $F_{j}: \Omega \rightarrow \mathbb{R}^{n+1}$ as follows: For $x \in D_{i}$, put

$$
F_{j}(y)=\left\{\begin{array}{cl}
\left(\varphi_{i j}(y) \cdot L_{i j}(y), \varphi_{i j}(y)\right), & \text { if } d\left(q_{i}, q_{j}\right)<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\varphi_{i j}(y)=\Phi\left(L_{i j}(y)\right)$.
5. Denote $E=\mathbb{R}^{m}, m=(n+1) J$ and define an embedding

$$
F: \Omega \rightarrow E, \quad F(y)=\left(F_{j}(y)\right)_{j=1}^{J}
$$

6. Construct the local patches $\Sigma_{i}=F\left(D_{i}\right)$.
7. Apply algorithm SurfaceInterpolation for the set $\bigcup_{i} \Sigma_{i}$ to construct a surface $M \subset E$.
8. Let P_{M} be the normal projection on M.
9. Construct metric tensor on M by pushing forward the Euclidean metric g^{e} on D_{i} in the maps $P_{M} \circ F$ and compute a weighted average of the obtained metric tensors.

The output is the surface $M \subset E$ and the metric g on it.

Interpolation of surface in \mathbb{R}^{m} from data points

Surface interpolation

Theorem
Let E be a separable Hilbert space, $n \in \mathbb{Z}_{+}, \delta<\delta_{0}(n)$, and $r=K \delta^{1 / 2}$
Suppose that $X \subset E$ and for all $x \in X$, there is an n-dimensional affine plane A_{x} such that

$$
\operatorname{dist}_{H}\left(X \cap B^{E}(x, r), A_{x} \cap B^{E}(x, r)\right)<\delta
$$

Then there exists a closed n-dimensional smooth submanifold $M \subset E$ such that:

1. $d_{H}(X, M) \leq 5 \delta$.
2. The second fundamental form of M at every point is bounded by $C_{n} K$.
3. The normal injectivity radius of M is at least $r / 3$.

Algorithm SurfaceInterpolation: Let $X \subset E=\mathbb{R}^{d}$ is finite and $r=K \delta^{1 / 2}$. We implement the following steps:

1. Construct a maximal $\frac{r}{100}$-separated set $X_{0}=\left\{q_{i}\right\}_{i=1}^{k} \subset X$.
2. For every point $q_{i} \in X_{0}$, let $A_{i} \subset E$ be an affine subspace that approximates $X \cap B_{r}\left(q_{i}\right)$ near q_{i}. Let $P_{i}: E \rightarrow E$ be orthogonal projectors onto A_{i}.
3. Let $\psi \in C_{0}^{\infty}\left(\left[-\frac{r}{2}, \frac{r}{2}\right]\right)$ be 1 in $\left[0, \frac{r}{3}\right]$ and $\varphi_{i}: E \rightarrow E$ be $\varphi_{i}(x)=\mu_{i}(x) P_{i}(x)+\left(1-\mu_{i}(x)\right) x, \quad \mu_{i}(x)=\psi\left(\left|x-q_{i}\right|\right)$. Define $f: E \rightarrow E$ by

$$
f=\varphi_{k} \circ \varphi_{k-1} \circ \ldots \circ \varphi_{1} .
$$

4. Construct the image $M=f\left(U_{\delta}(X)\right)$.

The output is the n-dimensional surface $M \subset E$.

Thank you for your attention!

