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Construction of a manifold from discrete data.

Let (X , dX ) be a (discrete) metric space. We want to approximate
it by a Riemannian manifold (M∗, g∗) so that

I (X , dX ) and (M∗, dg∗) are almost isometric,
I the curvature and the injectivity radius of M∗ are bounded.

Note that X is an “abstract metric space” and not a set of points in
Rd , and we want to learn the intrinsic metric of the manifold.



Example 1: Non-Euclidean metric in data sets

Consider a data set X = {xj}Nj=1 ⊂ Rd .
The ISOMAP face data set contains N = 2370 images of faces
with d = 2914 pixels.

Question: Define dX (xj , xk) using Wasserstein distance related to
optimal transport. Does (X , dX ) approximate a manifold and how
this manifold can be constructed?



Example 2: Travel time distances of points

Surface waves produced by earthquakes travel near the boundary of
the Earth. The observations of several earthquakes give information
on travel times dT (x , y) between the points x , y ∈ S2.

Question: Can one determine the Riemannian metric associated to
surface waves from the travel times having measurement errors?

Figure by Su-Woodward-Dziewonski, 1994



Example 3: An inverse problem for a manifold

Consider the eigenvalues λj and eigenfunctions ϕj satisfying

−∆gϕj = λjϕj on M.

In the inverse interior spectral problem one is given

a ball B = BM(p, r) ⊂ M,

eigenvalues λj , j = 1, 2, 3, . . . ,
restrictions of eigenfunctions, ϕj |B , j = 1, 2, 3, . . .

and the goal is to determine the isometry type of (M, g).



Theorem (Bosi-Kurylev-L. 2017)
Let n ∈ Z+ and K ,D, i0, r0 > 0.
There are θ,C0, δ0 such that for all δ < δ0 the following is true:

Let (M, g) be a Riemannnian manifold such that
‖Ric(M)‖C3(M) ≤ K , diam (M) ≤ D, inj(M) ≥ i0.

Identify the ball BM(p, r0) with B(r0) ⊂ Rn in normal coordinates.

Assume that we are given ga, ϕa
j and λaj such that

i) The metric tensor satisfies ‖ga − g‖L∞(B(r0)) < δ,

ii) |λaj − λj | < δ and ‖ϕa
j − ϕj‖L2(B(r0)) < δ when λj < 1

δ .

Then we can construct a metric space (X , dX ) such that

dGH(M, X ) ≤ C0(
ln
(

ln 1
δ

))θ = ε,

that is, there is an ε-dense subset {pj : j = 1, . . . ,N} ⊂ M and
X = {xj : j = 1, . . . ,N} such that |dM(pj , pk)− dX (xj , xk)| ≤ ε.



Some earlier methods for manifold learning
Let {xj}Jj=1 ⊂ Rd be points on submanifold M ⊂ Rd , d > n.

I ‘Multi Dimensional Scaling’ (MDS) finds an embedding of
data points into Rm, n < m < d by minimising a cost function

min
y1,...,yJ∈Rm

J∑
j ,k=1

∣∣∣∣‖yj − yk‖Rm − djk

∣∣∣∣2, djk = ‖xj − xk‖Rd

I ‘Isomap’ makes a graph of K nearest neighbours and computes
graph distances dG

jk that approximate distances dM(xj , xk)
along the surface. Then MDS is applied.
Note that if there is F : M → Rm such that
|F (x)− F (x ′)| = dM(x , x ′), then the curvature of M is zero.

Figure by Tenenbaum et al., Science 2000
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Theorem (Fefferman, Ivanov, Kurylev, L., Narayanan 2015)
Let 0 < δ < c1(n,K ) and M be a compact n-dimensional manifold
with |Sec(M)| ≤ K and inj(M) > 2(δ/K )1/3. Let X = {xj}Nj=1 be
δ-dense in M and d̃ : X × X → R+ ∪ {0} satisfy

|d̃(x , y)− dM(x , y)| ≤ δ, x , y ∈ X .

Given the values d̃(xj , xk), j , k = 1, . . . ,N, one can construct a
compact n-dimensional Riemannian manifold (M∗, g∗) such that:

1. There is a diffeomorphism F : M∗ → M satisfying

1
L
≤ dM(F (x),F (y))

dM∗(x , y)
≤ L, for x , y ∈ M∗, L = 1 + CnK

1/3δ 2/3.

2. |Sec(M∗)| ≤ CnK .
3. The injectivity radius inj(M∗) of M∗ satisfies

inj(M∗) ≥ min{(CnK )−1/2, (1− CnK
1/3δ 2/3) inj(M)}.
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Random sample points and random errors
Manifolds with bounded geometry:
Let n ≥ 2 be an integer, K > 0, D > 0, i0 > 0. Let (M, g) be a
compact Riemannian manifold of dimension n such that

i) ‖SecM‖L∞(M) ≤ K , (1)
ii) diam (M) ≤ D,

iii) inj (M) ≥ i0,

We consider measurements in randomly sampled points:
Let Xj , j = 1, 2, . . . ,N be independently samples from probability
distribution µ on M such that

0 < cmin ≤
dµ

dVolg
≤ cmax .



Definition
Let Xj , j = 1, 2, . . . ,N be independent, identically distributed
(i.i.d.) random variables having distribution µ.
Let σ > 0, β > 1 and ηjk be i.i.d. random variables satisfying

Eηjk = 0, E(η2
jk) = σ2, Ee |ηjk | = β.

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables ηjk and Xj are independent.
We consider noisy measurements

Djk = dM(Xj ,Xk) + ηjk .
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Theorem (Fefferman, Ivanov, L., Narayanan 2019)
Let n ≥ 2, D,K , i0, cmin, cmax , σ, β > 0 be given. Then there are
δ0,C0 and C1 such that the following holds: Let δ ∈ (0, δ0),
θ ∈ (0, 1

2) and (M, g) be a compact manifold satisfying bounds (1).
Then with a probability 1− θ, σ2 and the noisy distances
Djk = dM(Xj ,Xk) + ηjk , j , k ≤ N of N randomly chosen points,
where

N ≥ C0
1
δ3n

(
log2(

1
θ

) + log8(
1
δ

)

)
,

determine a Riemannian manifold (M∗, g∗) such that
1. There is a diffeomorphism F : M∗ → M satisfying

1
L
≤ dM(F (x),F (y))

dM∗(x , y)
≤ L, for all x , y ∈ M∗,

where L = 1 + C1δ.
2. The sectional curvature SecM∗ of M∗ satisfies |SecM∗ | ≤ C1K .
3. The injectivity radius inj(M∗) of M∗ is close to inj(M).
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Generalization with missing data

Recall that Djk = dM(Xj ,Xk) + ηjk .
We can assume that we are given

D (partial data)
jk =

{
Djk if Yjk = 1,

‘missing’ if Yjk = 0,

where Yjk ∈ {0, 1} are independent random variables,

P(Yjk = 1 |Xj ,Xk) = Φ(Xj ,Xk) (2)

and there is a smooth non-increasing function h : [0,∞)→ [0, 1] so
that

c1 h(dM(x , y)) ≤ Φ(x , y) ≤ c2 h(dM(x , y)). (3)



For z ∈ M, let rz : M → R be the distance function from z ,

rz(x) = dM(z , x), x ∈ M.

For y , z ∈ M, we consider the “rough distance function”

κ(y , z) = ‖ry − rz‖2L2(M) =

∫
M
|dM(y , x)− dM(z , x)|2dµ(x).

Lemma
There is a constant c0 ∈ (0, 1) such that

c2
0dM(y , z)2 ≤ ‖ry − rz‖2L2(M,dµ) ≤ dM(y , z)2, y , z ∈ M.

y

s
z

s
x

s



We consider three sets S1, S2, S3 ⊂ {Xj}, where Ni = #Si satisfy
N1 > N2 > N3. We call S1 = {X1, . . . ,XN1} the densest net,
S2 the medium dense net and S3 the coarse net.

We give an algorithm to construct (M∗, g∗) from noisy data.

Step 1: For Xj ,Xk ∈ S2 are in the “medium dense net”, we compute

κapp(Xj ,Xk) =
1
N1

N1∑
`=1

|Dj` − Dk`|2 − 2σ2,

where we take a sum over the “densest net” S1.

Xj Xk

X`
r



Let y , z ∈ M, X be a random point on M having the distribution µ,
and η, η′ be independent random variables with variance σ2. Then

E
(

(dM(y ,X ) + η)− (dM(z ,X ) + η′)

)2

= E|dM(y ,X )− dM(z ,X )|2 + E|η − η′|2

=

∫
M
|dM(y , x)− dM(z , x)|2dµ(x) + 2σ2

= ‖ry − rz‖2L2(M) + 2σ2.

This yields for ry (x) = dM(y , x) and Dj` = dM(Xj ,X`) + ηj` the
following:

Lemma
Under the condition that Xj and Xk are known, we have

E
(
|Dj` − Dk`|2

∣∣∣∣ Xj ,Xk

)
= ‖rXj

− rXk
‖2L2(M) + 2σ2.



We recall that for Xj ,Xk ∈ S2,

κapp(Xj ,Xk) =
1
N1

N1∑
`=1

|Dj` − Dk`|2 − 2σ2

and

E
(
|Dj` − Dk`|2

∣∣∣∣ Xj ,Xk

)
− 2σ2 = ‖rXj

− rXk
‖2L2(M) = κ(Xj ,Xk).

Hoeffding’s inequality yields the following:

Lemma
Let L > D + 1 and ε > 0. If |ηjk | < L almost surely, then

P
[∣∣∣∣κapp(Xj ,Xk)− κ(Xj ,Xk)

∣∣∣∣ ≤ ε] ≥ 1− 2 exp(−1
8
N1L

−4ε2).



Lemma (Hoeffding’s inequality)
Let Z1, . . . ,ZN be N i.i.d. copies of the random variable Z whose
range is [0, 1]. Then, for ε > 0, we have

P
[∣∣∣∣ 1N (

N∑
j=1

Zj)− EZ
∣∣∣∣ ≤ ε] ≥ 1− 2 exp(−2Nε2).

This is a generalization of tail estimates for Gaussian variables:
For independent Gaussian random variables Yj ∼ N(0, 1),

S = 1
N

∑N
j=1 Yj , satisfies ES2 = 1

N .

For N > ε−2, P(S < ε) = P(Y < N1/2ε) ≥ 1− e−Nε
2/2 as

1√
2π

∫ ∞
x

e−t
2/2dt ≤ 1√

2π

∫ ∞
x

e−t
2/2 t

x
dt =

1√
2π

1
x
e−x

2/2, x > 1.



Recall that function κ(y , z) is a rough distance function:

c2
0dM(y , z)2 ≤ κ(y , z) ≤ dM(y , z)2.

Let W (y , ρ) be the set

W (y , ρ) = {z ∈ M : κ(y , z) < ρ2}.

We have BM(y , 1
c0
ρ) ⊂W (y , ρ) ⊂ BM(y , ρ).



For y1, y2 ∈ M, we define the avaraged distances

dρ(y1, y2) =
1

µ(W (y1, ρ))

∫
W (y1,ρ)

dM(z , y2) dµ(z).

Step 2: For Xj ,Xj ′ ∈ S3, where S3 is the coarse net, compute

dapp
ρ (Xj ,Xj ′) =

1
#(S2 ∩W (Xj , ρ))

∑
Xk∈S2∩W (Xj ,ρ)

Dkj ′ .

There is δ1 = δ1(ρ, θ) such that

P[ ∀Xj ,Xj ′ ∈ S3 : |dapp
ρ (Xj ,Xj ′)− dM(Xj ,Xj ′)| < δ1] ≥ 1− θ.



Summarizing, for points S3 = {y1, y2, . . . , yN3
} we find dapp

ρ (yj , yj ′)
such that

|dapp
ρ (yj , yj ′)− dM(yj , yj ′)| < δ1

with a large probability.

Step 3: We find a smooth manifold (M∗, g∗) using the net S3 and
the approximate distance dapp

ρ (y1, y2) of y1, y2 ∈ S3.
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Rough idea of the proof of manifold interpolation



Assume that we are given a finite metric space (X , d).
Let r = (δ/K )1/3 and do following steps:
1. Select a maximal r

100 -separated set X0 = {qi}Ji=1 ⊂ X .
2. Choose disjoint balls Di = Br (pi ) ⊂ Rn for i = 1, 2, . . . , J and

construct a δ-isometry fi : BX
1 (qi )→ Di .

3. For all qi , qj ∈ X0 such that d(qi , qj) < 1, find affine transition
maps Aij : Rn → Rn, such that Aij(pi + y) = pj + Lijy and

|Aij(fi (x))− fj(x)| < Cδ, for x ∈ BX
1 (qi ) ∩ BX

1 (qj).

4. Let Φ ∈ C∞0 (Rn) be 1 near zero, and Ω =
⋃

i Di .
Define a map Fj : Ω→ Rn+1 as follows: For x ∈ Di , put

Fj(y) =

{(
ϕij(y) · Lij(y) , ϕij(y)

)
, if d(qi , qj) < 1,

0, otherwise,

where ϕij(y) = Φ(Lij(y)).
5. Denote E = Rm, m = (n + 1)J and define an embedding

F : Ω→ E , F (y) = (Fj(y))Jj=1.



6. Construct the local patches Σi = F (Di ).
7. Apply algorithm SurfaceInterpolation for the set

⋃
i Σi to

construct a surface M ⊂ E .
8. Let PM be the normal projection on M.
9. Construct metric tensor on M by pushing forward the

Euclidean metric g e on Di in the maps PM ◦ F and
compute a weighted average of the obtained metric tensors.

The output is the surface M ⊂ E and the metric g on it.



Interpolation of surface in Rm from data points



Surface interpolation

Theorem
Let E be a separable Hilbert space, n ∈ Z+, δ < δ0(n), and
r = Kδ1/2

Suppose that X ⊂ E and for all x ∈ X , there is an n-dimensional
affine plane Ax such that

distH(X ∩ BE (x , r),Ax ∩ BE (x , r)) < δ.

Then there exists a closed n-dimensional smooth submanifold
M ⊂ E such that:

1. dH(X ,M) ≤ 5δ.
2. The second fundamental form of M at every point is bounded

by CnK .
3. The normal injectivity radius of M is at least r/3.



Algorithm SurfaceInterpolation: Let X ⊂ E = Rd is finite and
r = Kδ1/2. We implement the following steps:
1. Construct a maximal r

100 -separated set X0 = {qi}ki=1 ⊂ X .
2. For every point qi ∈ X0, let Ai ⊂ E be an affine subspace that

approximates X ∩ Br (qi ) near qi . Let Pi : E → E be
orthogonal projectors onto Ai .

3. Let ψ ∈ C∞0 ([− r
2 ,

r
2 ]) be 1 in [0, r3 ] and ϕi : E → E be

ϕi (x) = µi (x)Pi (x) + (1− µi (x))x , µi (x) = ψ(|x − qi |).

Define f : E → E by

f = ϕk ◦ ϕk−1 ◦ . . . ◦ ϕ1.

4. Construct the image M = f (Uδ(X )).
The output is the n-dimensional surface M ⊂ E .



Thank you for your attention!


