Quantitative inverse scattering via reduced order modeling

Liliana Borcea
Mathematics, University of Michigan Ann Arbor

Joint work with:

- Vladimir Druskin Worcester Polytechnic Institute
- Alexander Mamonov University of Houston
- Mikhail Zaslavsky Schlumberger
- Jörn Zimmerling University of Michigan

Support: U.S. Office of Naval Research N00014-17-1-2057.

Inverse scattering for generic hyperbolic system

- Primary wave $P^{(s)}(t, \boldsymbol{x})$ and dual wave $\widehat{P}^{(s)}(t, \boldsymbol{x})$ satisfy

$$
\partial_{t}\binom{P^{(s)}(t, \boldsymbol{x})}{\widehat{P}^{(s)}(t, \boldsymbol{x})}=\left(\begin{array}{cc}
0 & -L_{q} \\
L_{q}^{T} & 0
\end{array}\right)\binom{P^{(s)}(t, \boldsymbol{x})}{\widehat{P}^{(s)}(t, \boldsymbol{x})}, \quad t>0, \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
$$

with homogeneous boundary conditions and initial conditions

$$
P^{(s)}(0, \boldsymbol{x})=b^{(s)}(\boldsymbol{x}), \quad \hat{P}^{(s)}(0, \boldsymbol{x})=0 .
$$

- Ω is half space $\left(x_{d}>0\right)$ and measurements on $\partial \Omega^{+}$at $x_{d}=0^{+}$.
- Array of sensors on $\partial \Omega^{+}$. Source excitation $b^{(s)}(x)$ supported near $\partial \Omega^{+}$, where (s) counts sensor index and polarization.
- Finite duration of measurements \rightsquigarrow can truncate Ω to compact cube $\Omega_{c} \subset \Omega$ with accessible boundary $\partial \Omega_{c}^{\mathrm{ac}} \subset \partial \Omega$ and inaccessible boundary $\partial \Omega_{c}^{\text {inac }} \subset \Omega$.
- Unknown medium modeled by reflectivity q. First order partial differential operator L_{q} is affine in q.

Kinematics is assumed known!

- Inverse scattering problem: Find q in Ω_{c} from array measurements of reflected primary wave

$$
D_{k}^{(r, s)}:=\left\langle b^{(r)}, P^{(s)}(k \tau, \cdot)\right\rangle=\left\langle b^{(r)}, \cos \left(k \tau \sqrt{L_{q} L_{q}^{T}}\right) b^{(s)}\right\rangle
$$

for $r, s=1, \ldots, m$ and time instants $k \tau, \quad k=0, \ldots, 2 n-1$.

- L_{q} is affine in q but map $q \mapsto\left(\boldsymbol{D}_{k}\right)_{0 \leq k \leq 2 n-1}$ to invert is nonlinear

Outline of talk

- Most imaging assumes reflectivity to data map is linear (Born approximation).
- Nonlinear methods: Qualitative (linear sampling, factorization,...) mostly at single frequency. Optimization is difficult.

Goal 1: Use reduced order model (ROM) to approximate the Data to Born (DtB) map

$$
\left(\boldsymbol{D}_{k}\right)_{0 \leq k \leq 2 n-1} \rightarrow\left(\boldsymbol{D}_{k}^{\mathrm{Born}}\right)_{0 \leq k \leq 2 n-1}
$$

$\boldsymbol{D}_{k}^{\text {Born }}$ defined using Fréchet derivative of map $q \mapsto \boldsymbol{D}_{k}$ at $q=0$.

Goal 2: Use the ROM to obtain quantitative estimate of q.

ROM for Data to Born (DtB) transformation

Data are $m \times m$ matrices
$\boldsymbol{D}_{k}=\left\langle\boldsymbol{b}, \cos \left(k \tau \sqrt{L_{q} L_{q}^{T}}\right) \boldsymbol{b}\right\rangle, \quad \boldsymbol{b}=\left(b^{(1)}, \ldots b^{(m)}\right), \quad 0 \leq k \leq 2 n-1$

ROM of propagator* $\mathscr{P}_{q}=\cos \left(\tau \sqrt{L_{q} L_{q}^{T}}\right)$

- Wave at time $k \tau$ is Chebyshev polynomial \mathcal{T}_{k} of $1^{\text {st }}$ kind of \mathscr{P}_{q}

$$
P^{(s)}(k \tau, \boldsymbol{x})=\cos \left(k \tau \sqrt{L_{q} L_{q}^{T}}\right) b^{(s)}(\boldsymbol{x})=\mathcal{T}_{k}\left(\mathscr{P}_{q}\right) b^{(s)}(\boldsymbol{x})
$$

- ROM propagator $\mathscr{P}_{q}^{\text {rom }}$ gives exact data $\boldsymbol{D}_{k}, 0 \leq k \leq 2 n-1$. It is constructed from the data and inherits properties of \mathscr{P}_{q} to allow DtB transformation.
${ }^{*} P^{(s)}((k+1) \tau, \boldsymbol{x})=2 \mathscr{P}_{q} P^{(s)}(k \tau, \boldsymbol{x})-P^{(s)}((k-1) \tau, \boldsymbol{x})$

Definition of reduced order model (ROM)

Algebraic setting: from continuum to fine grid discretization

- Operator $L_{q} \rightsquigarrow$ lower block bidiagonal matrix $\boldsymbol{L}_{q} \in \mathbb{R}^{N \times N}$
- Propagator $\mathscr{P}_{q}=\cos \left(\tau \sqrt{\boldsymbol{L}_{q} \boldsymbol{L}_{q}^{T}}\right)$ is $N \times N$ matrix.
- Snapshots $\boldsymbol{P}_{k}=\left(P^{(s)}(k \tau, \cdot)\right)_{1 \leq s \leq m}=\mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \boldsymbol{b} \in \mathbb{R}^{N \times m}$

ROM obtained by projection on range of $\boldsymbol{P}:=\left(\boldsymbol{P}_{0}, \ldots, \boldsymbol{P}_{n-1}\right)$

$$
\mathscr{P}_{q}^{\text {Rom }}=\boldsymbol{V}^{T} \mathscr{P}_{q} \boldsymbol{V} \in \mathbb{R}^{n m \times n m} \quad \boldsymbol{b}^{\mathrm{ROM}}=\boldsymbol{V}^{T} \boldsymbol{b} \in \mathbb{R}^{n m \times n}
$$

Here $\boldsymbol{V} \in \mathbb{R}^{N \times n m}$ satisfies

$$
\boldsymbol{V}^{T} \boldsymbol{V}=I_{n m}, \quad \boldsymbol{V} \boldsymbol{V}^{T}=\text { orthogonal projector on range }(\boldsymbol{P})
$$

Data interpolation

Theorem: Projection ROM satisfies

$$
\boldsymbol{D}_{k}=\boldsymbol{b}^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \boldsymbol{b}=\left(\boldsymbol{b}^{\mathrm{Rom}}\right)^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\mathrm{Rom}}\right) \boldsymbol{b}^{\mathrm{rom}}, 0 \leq k \leq 2 n-1 .
$$

Proof:
Step 1: Prove $\boldsymbol{P}_{k}=\boldsymbol{V} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {rom }}\right) \boldsymbol{b}^{\text {rom }}$ for $k=0, \ldots, n-1$.
Step 2: This gives
$\boldsymbol{D}_{k}=\boldsymbol{b}^{T} \boldsymbol{P}_{k}=\boldsymbol{b}^{T} \boldsymbol{V} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {RoM }}\right) \boldsymbol{b}^{\text {Rom }}=\left(\boldsymbol{b}^{\text {مoM }}\right)^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {rom }}\right) \boldsymbol{b}^{\text {RoM }}, \quad 0 \leq k \leq n-1$

Step 3: For $n \leq k \leq 2 n-1$ use the above and the recursion

$$
\mathcal{T}_{k}(x)=2 \mathcal{T}_{n-1}(x) \mathcal{T}_{k-n+1}(x)-\mathcal{T}_{|2 n-2-k|}(x)
$$

Using definition $\mathscr{P}_{q}^{\text {rom }}=\boldsymbol{V}^{T} \mathscr{P}_{q} \boldsymbol{V}$ and $\boldsymbol{b}^{\text {ROM }}=\boldsymbol{V}^{T} \boldsymbol{b}$

- For $k=0$ we have $\boldsymbol{P}_{0}=\boldsymbol{b}=V V^{T} \boldsymbol{b}=V \boldsymbol{b}^{\text {Rom }}=V \mathcal{T}_{0}\left(\mathscr{P}_{q}^{\text {rom }}\right) \boldsymbol{b}^{\text {Rom }}$
- Hypothesis: true for $k<n-1$.
- For $k+1$ use $\mathcal{T}_{k+1}(x)=2 x \mathcal{T}_{k}(x)-\mathcal{T}_{k-1}(x)$

$$
\begin{aligned}
\boldsymbol{V} \mathcal{T}_{k+1}\left(\mathscr{P}_{q}^{\text {rom }}\right) \boldsymbol{b}^{\text {Rom }} & =2 \boldsymbol{V} \mathscr{P}_{q}^{\text {Rom }} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {Rom }}\right) \boldsymbol{b}^{\text {ROM }}-\boldsymbol{V} \mathcal{T}_{k-1}\left(\mathscr{P}_{q}^{\text {Rom }}\right) \boldsymbol{b}^{\text {Rom }} \\
& =2 \boldsymbol{V} \boldsymbol{V}^{T} \mathscr{P}_{q} \boldsymbol{V} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {Rom }}\right) \boldsymbol{b}^{\text {ROM }}-\boldsymbol{P}_{k-1} \\
& =\boldsymbol{V} \boldsymbol{V}^{T} 2 \mathscr{P}_{q} \boldsymbol{P}_{k}-\boldsymbol{P}_{k-1} \\
& =\boldsymbol{V} \boldsymbol{V}^{T}\left(\boldsymbol{P}_{k+1}+\boldsymbol{P}_{k-1}\right)-\boldsymbol{P}_{k-1}=\boldsymbol{P}_{k+1}
\end{aligned}
$$

Note: Any \boldsymbol{V} satisfies the data interpolation. Which \boldsymbol{V} is best?

- Define V by Gram-Schmidt (QR factorization)

$$
P=V R
$$

- Causality and finite speed of propagation make $P \approx$ block upper-tridiagonal with coordination of temporal and spatial mesh. This requires knowing kinematics!

Basis that transforms \boldsymbol{P} to block upper-tridiagonal \boldsymbol{R} is almost the canonical one $\rightsquigarrow \boldsymbol{V}$ is approximate identity.

Theorem: Matrix \boldsymbol{V} from $Q R$ factorization makes $\mathscr{P}_{q}^{\text {rом }}=V^{T} \mathscr{P}_{q} \boldsymbol{V}$ block tridiagonal.

This result proved using recursion relations of polynomials becomes important in inversion.

Illustration for sound waves in 1-D

Illustration for sound waves in 2-D

Array with $m=50$ sensors \times
Snapshots plotted for a single source o

From data to ROM

- Start with $\mathbf{P}=\left(\boldsymbol{P}_{0}, \ldots, \boldsymbol{P}_{n-1}\right)=\boldsymbol{V} \boldsymbol{R}$ and use $\boldsymbol{P}_{j}=\mathcal{T}_{j}\left(\mathscr{P}_{q}\right) \boldsymbol{b}$

$$
\begin{aligned}
\left(\mathbf{P}^{T} \mathbf{P}\right)_{j k} & =\boldsymbol{b}^{T} \mathcal{T}_{j}\left(\mathscr{P}_{q}\right) \mathcal{T}_{k}\left(\mathscr{P}_{q}\right) \boldsymbol{b}=\frac{1}{2} \boldsymbol{b}^{T}\left[\mathcal{T}_{j+k}\left(\mathscr{P}_{q}\right)+\mathcal{T}_{|j-k|}\left(\mathscr{P}_{q}\right)\right] \boldsymbol{b} \\
& =\frac{1}{2}\left(\boldsymbol{D}_{j+k}+\boldsymbol{D}_{|j-k|}\right)=\left(\boldsymbol{R}^{T} \boldsymbol{R}\right)_{j k}, \quad 0 \leq j, k \leq n-1
\end{aligned}
$$

Block Cholesky decomposition to get \boldsymbol{R} is ill-conditioned part of computation \rightsquigarrow spectral truncation of Gramian $P^{T} P$.

- ROM propagator: $\quad \mathscr{P}_{q}^{\text {rom }}=\boldsymbol{V}^{T} \mathscr{P}_{q} \boldsymbol{V}=\boldsymbol{R}^{-T}\left(\boldsymbol{P}^{T} \mathscr{P}_{q} \boldsymbol{P}\right) \boldsymbol{R}^{-1}$

$$
\left(\boldsymbol{P}^{T} \mathscr{P}_{q} \boldsymbol{P}\right)_{j, k}=\frac{1}{4}\left(\boldsymbol{D}_{j+k+1}+\boldsymbol{D}_{|k-j+1|}+\boldsymbol{D}_{|k-j-1|}+\boldsymbol{D}_{|k+j-1|}\right)
$$

- ROM sensor function: $\boldsymbol{b}^{\text {rom }}=\boldsymbol{V}^{T} \boldsymbol{b}=\boldsymbol{V}^{T} \boldsymbol{P}_{0}=\boldsymbol{V}^{T} \boldsymbol{V} \boldsymbol{R} \mathrm{E}_{1}=\boldsymbol{R} \mathrm{E}_{1}$

Properties of ROM propagator

- Propagator factorization

$$
\frac{2}{\tau^{2}}\left(\boldsymbol{I}-\mathscr{P}_{q}\right)=\frac{2}{\tau^{2}}\left(\boldsymbol{I}-\cos \left(\tau \sqrt{\boldsymbol{L}_{q} \boldsymbol{L}_{q}^{T}}\right)\right)=\mathcal{L}_{q} \mathcal{L}_{q}^{T}, \quad \mathcal{L}_{q} \approx \boldsymbol{L}_{q}
$$

$\boldsymbol{L}_{q}=$ block lower bidiagonal (discretized $1^{\text {st }}$ order operator L_{q}).

- By construction ROM propagator is symmetric, block tridiagonal with factorization

$$
\frac{2}{\tau^{2}}\left(\boldsymbol{I}_{n m}-\mathscr{P}_{q}^{\text {8om }}\right)=\mathcal{L}_{q}^{\text {rom }}\left(\mathcal{L}_{q}^{\text {rom }}\right)^{T}=\boldsymbol{V}^{T} \mathcal{L}_{q} \mathcal{L}_{q}^{T} \boldsymbol{V} .
$$

- Cholesky factor $\mathcal{L}_{q}^{\text {Rom }}=V^{T} \mathcal{L}_{q} \widehat{\boldsymbol{V}}$ is block lower bidiagonal.
\rightsquigarrow Galerkin approximation on spaces of primary and dual snapshots with orthogonal bases in \boldsymbol{V} and $\widehat{\boldsymbol{V}}$.

Data to Born transformation

- Approximate Fréchet derivative of

$$
q \mapsto \boldsymbol{D}_{k}=\left(\boldsymbol{b}^{\mathrm{ROM}}\right)^{T} \mathcal{T}_{k}\left(\mathscr{P}_{q}^{\text {rom }}\right) \boldsymbol{b}^{\text {RoM }}
$$

using

- $\mathcal{L}_{q}^{\text {Rom }}=\boldsymbol{V}^{T} \mathcal{L}_{q} \widehat{\boldsymbol{V}}$ is approximately affine in q.
- $\boldsymbol{b}^{\text {rom }}=\boldsymbol{V}^{T} \boldsymbol{b}$ is independent of q.
- For a scaled down reflectivity ϵq, with $\varepsilon \ll 1$,

$$
\mathcal{L}_{\varepsilon q}^{\mathrm{ROM}}:=\mathcal{L}_{0}^{\mathrm{ROM}}+\varepsilon\left(\mathcal{L}_{q}^{\mathrm{ROM}}-\mathcal{L}_{0}^{\mathrm{ROM}}\right), \quad \mathscr{P}_{\varepsilon q}^{\text {RoM }}:=\boldsymbol{I}_{m n}-\frac{\tau^{2}}{2} \mathcal{L}_{\varepsilon q}^{\mathrm{ROM}}\left(\mathcal{L}_{\varepsilon q}^{\text {RoM }}\right)^{T}
$$

- The transformed (to Born) data:

$$
\boldsymbol{D}_{k}^{\mathrm{Born}}:=\boldsymbol{D}_{0, k}+\left.\left(\boldsymbol{b}^{\mathrm{ROM}}\right)^{T} \frac{d}{d \varepsilon} \mathcal{T}_{k}\left(\mathscr{P}_{\varepsilon q}^{\mathrm{ROM}}\right)\right|_{\varepsilon=0} \boldsymbol{b}^{\mathrm{ROM}}, \quad 0 \leq k \leq 2 n-1
$$

DtB transformation: Sound waves 1-D

DtB transformation: Sound waves 2-D

Axes in km. Colorbars show σ, c normalized by values at array.

Robustness of transformation to background velocity

Incorrect wave speed

Wrong velocity model induces artifacts due to domain boundary

- Here we considered constant ρ and variable velocity. Only the constant background c_{o} is assumed known.
- Note how the echo from small reflector, masked by a multiple, is revealed by the DtB transformation.

Results for 2-D isotropic elasticity are in our paper.

Quantitative inversion: 2 possibilities

- Use DtB output in linear least-squares Born data fit:

$$
q=\arg \min _{q^{s}} \sum_{k=0}^{2 n-1}\left\|\boldsymbol{D}^{\text {Born }}-F^{\text {Born }}\left(q^{s}\right)\right\|_{F}^{2}
$$

- Match ROM instead. Since $\mathcal{L}_{q}^{\text {rom }} \approx$ affine in $q(x) \approx \sum_{j} q_{j} \phi_{j}(x)$

$$
q=\arg \min _{q^{s}}\left\|\mathcal{L}_{q^{s}}^{\text {Rom }}-\mathcal{L}_{q}^{\text {вом }}\right\|_{F}^{2}, \quad \mathcal{L}_{q^{s}}^{\text {Rom }}=\mathcal{L}_{0}^{\text {вом }}+\sum_{j} q_{j}^{s}\left[\mathcal{L}_{\phi_{j}^{\text {вом }}}-\mathcal{L}_{0}^{\text {Rom }}\right]
$$

Grid from $\mathcal{L}_{0}^{\text {rom }}\left(\mathcal{L}_{0}^{\text {ºm }}\right)^{T}$ (tridiagonal matrix discretization of Δ)

Singular values ROM-LS matrix

Singular values Data-LS matrix

Quantitative inversion

Linear LS data fit without the DtB transformation.

Quantitative inversion

Linear LS data fit with the DtB transformation.

Quantitative inversion: ROM match

Iteration 1 and 6 (top and middle) and true medium bottom.

Quantitative inversion: ROM match (iteration 3)

Conclusions

- We introduced a linear algebraic algorithm for transforming the scattered wave measured by an active array of sensors to the single scattering (Born) approximation which is linear in the unknown reflectivity.
- We showed that ROM can be used for quantitative inversion.

Lots left to do:

- Synthetic aperture setup; transmission setup; time harmonic waves, anisotropic and attenuating media.
- Approach can be extended to select multiple scattering effects.

References

- Borcea, Druskin, Mamonov, Zaslavsky, Robust nonlinear processing of active array data in inverse scattering via truncated reduced order models, Journal of Computational Physics 381, 2019, p. 1-26.
- Borcea, Druskin, Mamonov, Zaslavsky, Untangling the nonlinearity in inverse scattering with data-driven reduced order models, Inverse Problems 34 (6), 2018, p. 065008.
- Quantitative inversion paper in preparation: Borcea, Druskin, Mamonov, Zimmerling.

Sound waves. Constant density.

- Medium modeled by wave speed $c(\boldsymbol{x})$ and density ρ

$$
\left(\partial_{t}^{2}+A\right) p\left(t, \boldsymbol{x} ; \boldsymbol{x}_{s}\right)=\partial_{t} f(t) \delta\left(\boldsymbol{x}-\boldsymbol{x}_{s}\right), \quad A=-c^{2}(\boldsymbol{x}) \Delta
$$

"Primary wave" defined by pressure and "dual wave" by velocity.

- Even time extension
$p^{\mathrm{even}}\left(t, \boldsymbol{x} ; \boldsymbol{x}_{s}\right)=p\left(t, \boldsymbol{x} ; \boldsymbol{x}_{s}\right)+p\left(-t, \boldsymbol{x} ; \boldsymbol{x}_{s}\right)=\cos (t \sqrt{A}) \widehat{f}(\sqrt{A}) \delta\left(\boldsymbol{x}-\boldsymbol{x}_{s}\right)$
- Data are

$$
D_{k}^{(r, s)}=p^{\mathrm{even}}\left(t_{k}, \boldsymbol{x}_{r} ; \boldsymbol{x}_{s}\right)=\frac{1}{\rho}\left\langle\sqrt{\rho} c b^{(r)}, \cos \left(t_{k} \sqrt{A}\right) \sqrt{\rho} c b^{(s)}\right\rangle_{\frac{1}{c^{2}}}
$$

"Sensor function" $b^{(s)}(\boldsymbol{x})$ is defined* by $\sqrt{p^{\text {even }}\left(0, \boldsymbol{x} ; \boldsymbol{x}_{s}\right)}$ and is localized near x_{s}.

$$
\widehat{f} \geq 0 \text { can be achieved by convolution of echoes with time reversed pulse. }
$$

Sound waves. Constant density.

- Equivalently, $D_{k}^{(r, s)}=\frac{1}{\rho}\left\langle\sqrt{\rho} c b^{(r)}, p^{(s)}\left(t_{k}, \cdot\right)\right\rangle_{\frac{1}{c^{2}}}$ where

$$
\partial_{t}\binom{p^{(s)}(t, \boldsymbol{x})}{-\mathbf{u}^{(s)}(t, \boldsymbol{x})}=\left(\begin{array}{cc}
0 & \rho c^{2}(\boldsymbol{x}) \nabla \cdot \\
\frac{1}{\rho} \nabla & 0
\end{array}\right)\binom{p^{(s)}(t, \boldsymbol{x})}{-\mathbf{u}^{(s)}(t, \boldsymbol{x})}
$$

with initial conditions

$$
p^{(s)}(0, \boldsymbol{x})=\sqrt{\rho} c(\boldsymbol{x}) b^{(s)}(\boldsymbol{x}), \quad \mathbf{u}^{(s)}(0, \boldsymbol{x})=\mathbf{0}
$$

- We need first order system with L_{q} affine in reflectivity $q(\boldsymbol{x})$.
- Let $c(\boldsymbol{x})=c_{o}(\boldsymbol{x})[1+q(\boldsymbol{x})]$ with unknown $q(\boldsymbol{x})=\frac{c(\boldsymbol{x})-c_{o}(\boldsymbol{x})}{c_{o}(\boldsymbol{x})}$
- "Primary wave" is $P^{(s)}(t, \boldsymbol{x})=\frac{p^{(s)}(t, \boldsymbol{x})}{\sqrt{\rho} c(\boldsymbol{x})}$
- "Dual wave" is $\widehat{P}^{(s)}(t, \boldsymbol{x})=-\sqrt{\rho} \mathbf{u}^{(s)}(t, \boldsymbol{x})$

Sound waves for constant density $\rho=\sigma / c$

- First order system becomes

$$
\partial_{t}\binom{P^{(s)}(t, \boldsymbol{x})}{\hat{P}^{(s)}(t, \boldsymbol{x})}=\left(\begin{array}{cc}
0 & -L_{q} \\
L_{q}^{T} & 0
\end{array}\right)\binom{P^{(s)}(t, \boldsymbol{x})}{\widehat{P}^{(s)}(t, \boldsymbol{x})}
$$

with initial conditions $P^{(s)}(0, \boldsymbol{x})=b^{(s)}(\boldsymbol{x}), \quad \widehat{P}^{(s)}(0, \boldsymbol{x})=0$.

- The first order operator is

$$
L_{q} \widehat{P}^{(s)}(t, \boldsymbol{x})=-[1+q(\boldsymbol{x})] c_{o}(\boldsymbol{x}) \nabla \cdot \widehat{P}^{(s)}(t, \boldsymbol{x})
$$

- Data are, for $1 \leq r, s \leq m$ and $t_{k}=k \tau$, with $0 \leq k \leq 2 n-1$

$$
D_{k}^{(r, s)}=\left\langle b^{(r)}, P^{(s)}\left(t_{k}, \cdot\right)\right\rangle=\left\langle b^{(r)}, \cos \left(t_{k} \sqrt{L_{q} L_{q}^{T}}\right) b^{(s)}\right\rangle
$$

