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Inverse scattering for generic hyperbolic system

• Primary wave P (s)(t,x) and dual wave P̂ (s)(t,x) satisfy

∂t

(
P (s)(t,x)

P̂ (s)(t,x)

)
=

(
0 −Lq
LTq 0

)(
P (s)(t,x)

P̂ (s)(t,x)

)
, t > 0, x ∈ Ω ⊂ Rd

with homogeneous boundary conditions and initial conditions

P (s)(0,x) = b(s)(x), P̂ (s)(0,x) = 0.

• Ω is half space (xd > 0) and measurements on ∂Ω+ at xd = 0+.

• Array of sensors on ∂Ω+. Source excitation b(s)(x) supported
near ∂Ω+, where (s) counts sensor index and polarization.

• Finite duration of measurements can truncate Ω to compact
cube Ωc ⊂ Ω with accessible boundary ∂Ωac

c ⊂ ∂Ω and inaccessi-
ble boundary ∂Ωinac

c ⊂ Ω.
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Nonlinear reflectivity to data mapping

• Unknown medium modeled by reflectivity q. First order partial

differential operator Lq is affine in q.

Kinematics is assumed known!

• Inverse scattering problem: Find q in Ωc from array mea-

surements of reflected primary wave

D
(r,s)
k :=

〈
b(r), P (s)(kτ, ·)

〉
=

〈
b(r), cos

(
kτ

√
LqL

T
q

)
b(s)

〉

for r, s = 1, . . . ,m and time instants kτ, k = 0, . . . ,2n− 1.

• Lq is affine in q but map q 7→
(
Dk

)
0≤k≤2n−1

to invert is nonlinear
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Outline of talk

• Most imaging assumes reflectivity to data map is linear (Born

approximation).

• Nonlinear methods: Qualitative (linear sampling, factoriza-

tion,...) mostly at single frequency. Optimization is difficult.

Goal 1: Use reduced order model (ROM) to approximate the

Data to Born (DtB) map

(Dk)0≤k≤2n−1 → (DBorn
k )0≤k≤2n−1

DBorn
k defined using Fréchet derivative of map q 7→ Dk at q = 0.

Goal 2: Use the ROM to obtain quantitative estimate of q.
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ROM for Data to Born (DtB) transformation

Data are m×m matrices

Dk =

〈
b, cos

(
kτ

√
LqL

T
q

)
b

〉
, b =

(
b(1), . . . b(m)

)
, 0 ≤ k ≤ 2n−1

ROM of propagator∗ Pq = cos
(
τ
√
LqLTq

)
• Wave at time kτ is Chebyshev polynomial Tk of 1st kind of Pq

P (s)(kτ,x) = cos
(
kτ

√
LqL

T
q

)
b(s)(x) = Tk(Pq)b

(s)(x)

• ROM propagator PPPROM

q gives exact data Dk, 0 ≤ k ≤ 2n − 1.
It is constructed from the data and inherits properties of Pq to
allow DtB transformation.
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Definition of reduced order model (ROM)

Algebraic setting: from continuum to fine grid discretization

• Operator Lq  lower block bidiagonal matrix Lq ∈ RN×N

• Propagator PPPq = cos
(
τ
√
LqLTq

)
is N ×N matrix.

• Snapshots PPP k =
(
P (s)(kτ, ·)

)
1≤s≤m

= Tk(PPPq)b ∈ RN×m

ROM obtained by projection on range of PPP := (PPP0, . . . ,PPPn−1)

PPPROM

q = V TPPPqV ∈ Rnm×nm bROM = V Tb ∈ Rnm×n

Here V ∈ RN×nm satisfies

V TV = Inm, V V T = orthogonal projector on range(PPP )
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Data interpolation

Theorem: Projection ROM satisfies

Dk = bTTk(PPPq)b = (bROM)TTk(PPPROM

q )bROM, 0 ≤ k ≤ 2n− 1.

Proof:

Step 1: Prove PPP k = V Tk(PPPROM

q )bROM for k = 0, . . . , n− 1.

Step 2: This gives

Dk = bTPPP k = bTV Tk(PPPROM

q )bROM = (bROM)TTk(PPPROM

q )bROM, 0 ≤ k ≤ n−1

Step 3: For n ≤ k ≤ 2n− 1 use the above and the recursion

Tk(x) = 2Tn−1(x)Tk−n+1(x)− T|2n−2−k|(x)

�
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Proof that PPP k = V Tk(PPPROM

q )bROM for k = 0, . . . , n− 1

Using definition PPPROM

q = V TPPPqV and bROM = V Tb

• For k = 0 we have PPP0 = b = V V Tb = V bROM = V T0(PPPROM

q )bROM

• Hypothesis: true for k < n− 1.

• For k + 1 use Tk+1(x) = 2xTk(x)− Tk−1(x)

V Tk+1(PPPROM

q )bROM = 2V PPPROM

q Tk(PPPROM

q )bROM − V Tk−1(PPPROM

q )bROM

= 2V V TPPPqV Tk(PPPROM

q )bROM −PPP k−1

= V V T2PPPqPPP k −PPP k−1

= V V T (PPP k+1 +PPP k−1)−PPP k−1 = PPP k+1
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Our choice of V

Note: Any V satisfies the data interpolation. Which V is best?

• Define V by Gram-Schmidt (QR factorization)

PPP = V R

• Causality and finite speed of propagation make PPP ≈ block
upper-tridiagonal with coordination of temporal and spatial mesh.
This requires knowing kinematics!

Basis that transforms PPP to block upper-tridiagonal R is almost
the canonical one  V is approximate identity.

Theorem: Matrix V from QR factorization makes PPPROM

q = V TPPPqV
block tridiagonal.

This result proved using recursion relations of polynomials be-
comes important in inversion.
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Illustration for sound waves in 1-D
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Illustration for sound waves in 2-D

σ c

PPP o Vo PPP q V

Array with m = 50 sensors ×
Snapshots plotted for a single source ◦
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From data to ROM

• Start with P = (PPP0, . . . ,PPPn−1) = V R and use PPP j = Tj(PPPq)b

(PTP)jk = bTTj(PPPq)Tk(PPPq)b =
1

2
bT
[
Tj+k(PPPq) + T|j−k|(PPPq)

]
b

=
1

2

(
Dj+k + D|j−k|

)
= (RTR)jk, 0 ≤ j, k ≤ n− 1.

Block Cholesky decomposition to get R is ill-conditioned part of
computation  spectral truncation of Gramian PPPTPPP .

• ROM propagator: PPPROM

q = V TPPPqV = R−T
(
PPPTPPPqPPP

)
R−1

(
PPPTPPPqPPP

)
j,k

=
1

4

(
Dj+k+1 + D|k−j+1|+ D|k−j−1|+ D|k+j−1|

)

• ROM sensor function: bROM = V Tb = V TPPP0 = V TV RE1 = RE1
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Properties of ROM propagator

• Propagator factorization

2

τ2

(
I −PPPq

)
=

2

τ2

(
I − cos

(
τ

√
LqL

T
q

))
= LqLTq , Lq ≈ Lq

Lq = block lower bidiagonal (discretized 1st order operator Lq).

• By construction ROM propagator is symmetric, block tridiag-
onal with factorization

2

τ2

(
Inm −PPPROM

q

)
= LROM

q (LROM

q )T = V TLqLTq V .

• Cholesky factor LROM

q = V TLqV̂ is block lower bidiagonal.

 Galerkin approximation on spaces of primary and dual snap-
shots with orthogonal bases in V and V̂ .
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Data to Born transformation

• Approximate Fréchet derivative of

q 7→ Dk = (bROM)TTk(PPPROM

q )bROM

using

- LROM

q = V TLqV̂ is approximately affine in q.

- bROM = V Tb is independent of q.

• For a scaled down reflectivity εq, with ε� 1,

LROM

εq := LROM

0 + ε
(
LROM

q − LROM

0

)
, PPPROM

εq := Imn −
τ2

2
LROM

εq (LROM

εq )T

• The transformed (to Born) data:

DBorn
k := D0,k + (bROM)T

d

dε
Tk(PPPROM

εq )
∣∣∣∣
ε=0

bROM, 0 ≤ k ≤ 2n− 1
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DtB transformation: Sound waves 1-D
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DtB transformation: Sound waves 2-D

σ(x) c(x)

Scattered field True Born DtB transform

Axes in km. Colorbars show σ, c normalized by values at array.
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Robustness of transformation to background velocity

True wave speed Incorrect wave speed

Wrong velocity model induces artifacts due to domain boundary
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DtB transformation: Sound waves - 2D

Model c(x) Scattered data DtB

• Here we considered constant ρ and variable velocity. Only the

constant background co is assumed known.

• Note how the echo from small reflector, masked by a multiple,

is revealed by the DtB transformation.

Results for 2-D isotropic elasticity are in our paper.
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Quantitative inversion: 2 possibilities

• Use DtB output in linear least-squares Born data fit:

q = arg minqs
2n−1∑
k=0

‖DBorn − FBorn(qs)‖2F

• Match ROM instead. Since LROM

q ≈ affine in q(x) ≈
∑
j qjφj(x)

q = arg minqs‖LROM

qs − LROM

q ‖2F , LROM

qs = LROM

0 +
∑
j

qsj

[
LROM

φj
− LROM

0

]

Grid from LROM

0 (LROM

0 )T (tridiagonal matrix discretization of ∆)

19



Quantitative inversion

Linear LS data fit without the DtB transformation.
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Quantitative inversion

Linear LS data fit with the DtB transformation.
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Quantitative inversion: ROM match

Iteration 1 and 6 (top and middle) and true medium bottom.
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Quantitative inversion: ROM match (iteration 3)
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Conclusions

• We introduced a linear algebraic algorithm for transforming

the scattered wave measured by an active array of sensors to

the single scattering (Born) approximation which is linear in the

unknown reflectivity.

• We showed that ROM can be used for quantitative inversion.

Lots left to do:

• Synthetic aperture setup; transmission setup; time harmonic

waves, anisotropic and attenuating media.

• Approach can be extended to select multiple scattering effects.
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Sound waves. Constant density.

•Medium modeled by wave speed c(x) and density ρ

(∂2
t +A)p(t,x;xs) = ∂tf(t)δ(x− xs), A = −c2(x)∆

”Primary wave” defined by pressure and ”dual wave” by velocity.

• Even time extension

peven(t,x;xs) = p(t,x;xs)+p(−t,x;xs) = cos(t
√
A)f̂(

√
A)δ(x−xs)

• Data are

D
(r,s)
k = peven(tk,xr;xs) =

1

ρ

〈√
ρ c b(r), cos

(
tk
√
A
)√

ρ c b(s)
〉

1
c2

”Sensor function” b(s)(x) is defined∗ by
√
peven(0,x;xs) and is

localized near xs.

∗

f̂ ≥ 0 can be achieved by convolution of echoes with time reversed pulse.



Sound waves. Constant density.

• Equivalently, D(r,s)
k = 1

ρ

〈√
ρ c b(r), p(s)(tk, ·)

〉
1
c2

where

∂t

(
p(s)(t,x)

−u(s)(t,x)

)
=

(
0 ρc2(x)∇·

1
ρ∇ 0

)(
p(s)(t,x)

−u(s)(t,x)

)

with initial conditions

p(s)(0,x) =
√
ρ c(x) b(s)(x), u(s)(0,x) = 0.

• We need first order system with Lq affine in reflectivity q(x).

- Let c(x) = co(x)
[
1 + q(x)

]
with unknown q(x) = c(x)−co(x)

co(x)

- ”Primary wave” is P (s)(t,x) = p(s)(t,x)√
ρ c(x)

- ”Dual wave” is P̂ (s)(t,x) = −√ρu(s)(t,x)
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Sound waves for constant density ρ = σ/c

• First order system becomes

∂t

(
P (s)(t,x)

P̂ (s)(t,x)

)
=

(
0 −Lq
LTq 0

)(
P (s)(t,x)

P̂ (s)(t,x)

)

with initial conditions P (s)(0,x) = b(s)(x), P̂ (s)(0,x) = 0.

• The first order operator is

LqP̂
(s)(t,x) = −[1 + q(x)]co(x)∇ · P̂ (s)(t,x).

• Data are, for 1 ≤ r, s ≤ m and tk = kτ , with 0 ≤ k ≤ 2n− 1

D
(r,s)
k =

〈
b(r), P (s)(tk, ·)

〉
=

〈
b(r), cos

(
tk

√
LqL

T
q

)
b(s)

〉
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