Early Commissioning of the luminosity dither system for SuperKEKB

Y. Funakoshi for the dither FB team for SuperKEKB Accelerator Laboratory, KEK 2018.09.26@eeFACT 2018

Contents

- Collaborators
- Introduction
- Instruments of dithering system
- Dither test
- Summary & future prospect

Collaborators

- Y. Funakoshi, T. Kawamoto, M. Masuzawa, S. Nakamura, T. Oki, M. Tobiyama, S. Uehara, R. Ueki KEK 305-0801 Tsukuba, Japan
- A. S. Fisher, M.K. Sullivan, D. Brown, M. Kosovsky SLAC, 94025 Menlo Park, U.S.A.
- U. Wienands ANL 60439 Argonne, U.S.A.
- P. Bambade, S. Di Carlo, D. Jehanno, C. Pang LAL, 91898, Orsay, France
- D.El Khechen, CERN, CH-1211, Geneva, Switzerland

Orbit feedback at IP : Algorism

• Beam-beam deflection (SLC, KEKB)

BPM

Luminosity

Luminosity feedback (dithering)(PEP-II)

Х

When we dither the beam at around the peak of the luminosity, the dithering frequency component in the luminosity becomes minimum.

SupeKEKB horizontal

• Beam size feedback (KEKB horizontal w/o crab)

At KEKB before installation of crab cavities, the vertical beam of LER was used for the horizontal orbit feedback at IP.

Need of dithering feedback in SuperKEKB horizontal orbit FB

	KEKB (achieved)		SuperKEKB (design)		
	LER	HER	LER	HER	
ξ _x	0.127	0.102	0.0028	0.0012	
σ_{x}	147.0	169.7	248.9 (effective)	207.4 (effective)	μm
β_x	1.2	1.2	0.032	0.025	m
φ _c	11		41.5		mrad
$\phi_{Piwinski}$	0.45	0.39	23.2	24.6	

In the horizontal direction, we cannot use the orbit feedback based on the beam-beam deflection, due to very small beam-beam parameters.

Nano beam scheme

$$L = \frac{1}{2\sqrt{2}\pi} \frac{N^+ N^-}{(\sin\phi_c \sigma_z) \sqrt{\sigma_{y+}^2 + \sigma_{y-}^2}} f_{col}$$

Principle of dither feedback

- Synchronous modulation
 - Modulate the LER beam position at IP at a known frequency (f_{mod}^79Hz) with a horizontal orbit bump.
 - Observe the luminosity modulation with a Lock-In Amplifier.
 - Dither feedback acts so that the output of Lock-In Amp becomes minimum (PI feedback).

Instruments (2) Photo Tsukuba B4 control room PLC (Yokogawa), ADC, DAC

Lock-In Amplifier Signal Recovery Model 7230 DSP @Belle 2 Electronics Hut 12ch Phase adjuster / 12ch Programable amplifier (fabricated at SLAC)

Instruments (3) Fast luminosity monitor

• Two complementary techniques developed at LAL and KEK:

- ~ 5x5x0.5 mm³ single crystal CVD diamond sensors (CVD DS) pairs coupled to fast charge / current amplifiers (LAL group) (LumiBelle 2)
- Cerenkov detector + scintillator (ZDLM group @ KEK)

positioned together outside of the beam pipe

Detects positrons which lost energy due to radiative Bhabha process.

-> P. Bambade's talk

Instrument (4) dither coils

8 locations for 12 dithering coils in LER around IP.

Coil mechanical design

Parameters for dither simulation

	initial		intermediate		ultimate (design)	
Luminosity	1 x 10 ³⁴ cm ⁻² s ⁻¹		1 x 10 ³⁵ cm ⁻² s ⁻¹		8 x 10 ³⁵ cm ⁻² s ⁻¹	
	LER	HER	LER	HER	LER	HER
I _{beam} [A]	1.0	0.8	2.7	1.95	3.6	2.6
# of bunches	25	00	2500		2500	
ε _x /ε _y (nm/pm)	2.2/44	5.2/104	3.2/51.84	4.6/77.28	3.2/8.64	4.6/12.88
β_x^*/β_y^* (mm)	128/2.16	100/2.4	128/1.08	100/1.2	32/0.27	25/0.30
σ _x */σ _y *(μm/nm)	16.8/308	22.8/500	20.2/237	21.4/305	10.1/48	10.7/59
$\sigma_{x}^{*}_{eff}$ (µm)	249	208	249	208	249	208
ξ _x /ξ _y	0.0033/0.024	0.0013/0.0257	0.0083/0.049	0.0052/0.046	0.0028/0.0881	0.0012/0.0807
∆x (90% Iumi)	~80µm		~40µm		~ 8µm	
Lumi. meas.	1kHz		1kHz		1kHz	
accuracy	~5 x 10 ⁻³ (w/ radiator)		1.3 x 10 ⁻³ (w/o radiator)		1×10^{-3} $\sigma_{x}^{*}_{eff} = \sigma_{z} \sin \phi$	

Luminosity degradation due to horizontal orbit shift at IP

Parameters

- Feedback cycle
 - ~< 1Hz
- Dither frequency
 - 79Hz
 - Dither amplitude: <40 μ m
- Luminosity monitor
 - Resolution: 10⁻² at 1kHz
 - Dynamic range: $10^{32} 10^{36} \text{ cm}^{-2}\text{s}^{-1}$

Dither bump closure measurement by using turn-byturn RPM (I FR) Normalized Amplitudes, Common Scale

output as function of IP H offset (May

Dither test (2) Lock-in amp output as function of IP H offset (July 14th)

HER horizontal orbit (difference from the reference orbit)

	Input to lock-in amplifier	Scan range (µm)
Scan 1	LumiBelle2	$-250 \sim +250$
Scan 2	LumiBelle2	$+250\sim$ -250
Scan 3	ZDLM	$-150 \sim +150$
Scan 4	ZDLM	$+150 \sim$ -150

Dither test (4) dither feedback (May 5th)

Dither feedback worked well. But luminosity was not sensitive to the horizontal offset and fluctuated for other reasons. No vertical orbit feedback has been used yet.

Summary & future prospects

- The dithering system used for SLAC was successfully implemented for SuperKEKB. The system will be used for the horizontal orbit feedback at IP.
- In Phase 2 commissioning, only the system test was done, since luminosity is not so sensitive to the horizontal offset yet.
- The system work well except for LumiBelle 2 in the second test. The problem with LumiBelle 2 will be investigated at the beginning of Phase 3.
- In Phase 3, β_y^* will be squeezed further and the dither feedback may become important.
- The feedback software run on a PC connected via network in Phase 2. It will run on the PLC in Phase 3.

Spare slides

Dither simulation (1 x 10³⁴ cm⁻ ²s⁻¹) U. Wienands

Figure 5: Spectrum of the orbit (black) and the orbit difference (green) with the dither feedback.

ZDS2RP:K0 ZDS1RP:K0 ZDS1LP:K0 ZDS2LP:K0 ZDS4RP:SK0 ZDS3RP:SK0 ZDS2RP:SK0 ZDS1RP:SK0 ZDS1LP:SK0 ZDS2LP:SK0 ZDS3LP:SK0 ZDS4LP:SK0

Dither coil field

Figure 2: Field plot of the symmetric coil

Instrument (5) Programmable amp

