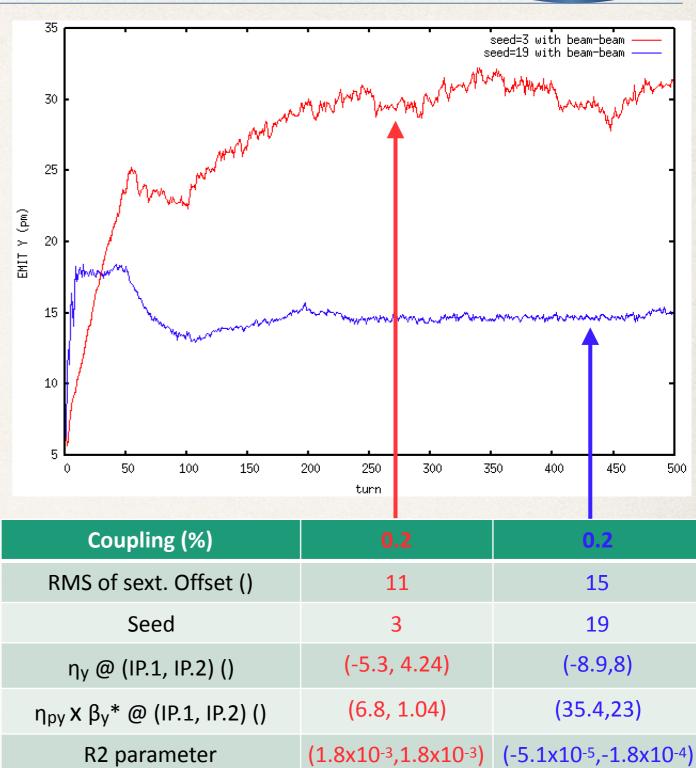


Beam blowup due to synchro-beta resonance with/without beam-beam effects

K. Oide, D. El Khechen (CERN)


Many thanks to M. Benedikt, D. Shatilov, F. Zimmermann, and the entire FCC-ee Collaboration Team

Work supported by JSPS KAKENHI Grant Number 17K05475. Also supported by the European Commission under Capacities 7th Framework Programme project EuCARD--2, grant agreement 312453, and under the Horizon 2020 Programme project CREMLIN, grant agreement 654166.

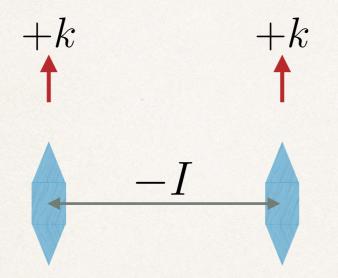
Unexpected beam blowup

- D. El Khechen has observed an unexpected vertical beam blowup in tracking simulations with beam-beam and lattice for FCC-ee ttbar by SAD.
- * The vertical (on closed orbit) emittance of the lattice is generated by random misalignments of sextpoles and set to the design (2.9 pm = 0.2%).
- * In early simulations with beam beam and lattice without misalignment did not show such blowups (D. Zhou).
- The blowup strongly depends on the random number for strength of skew quads or misalignments of sextupoles to produce the vertical emittance.

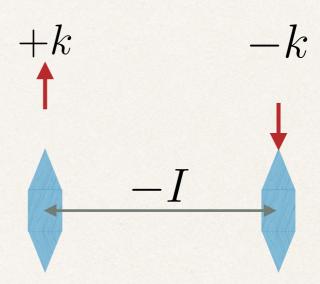
lattice emittance on closed orbit = 2.9 pm

Why unexpected?

This unexpected blowup occurs even when the residual dispersion at the IP is below the criteria given by D. Shatilov with beam-beam simulation with beamstrahlung but without the lattice.


	Energy [GeV]	45.6	80	120	175
	Vertical beam size (nominal) $[\mu]$	0.028	0.041	0.035	0.066
	Energy spread (with BS)	1.3·10-3	1.3·10 ⁻³	1.65·10 ⁻³	1.85·10 ⁻³
w/o BS	Dispersion for +5% in $\sigma_{\!\scriptscriptstyle y} \left[\mu \right]$	7	10	7	11
with BS	Actual $\sigma_{\rm y}/\sigma_{\rm y0}$ with such a dispersion	2.7	1.18	1.16	1.17
with BS	Actual dispersion for +5% in $\sigma_{\!\scriptscriptstyle \mathrm{V}} \left[\mu \right]$	1	5	4	6

D. Shatilov


Method

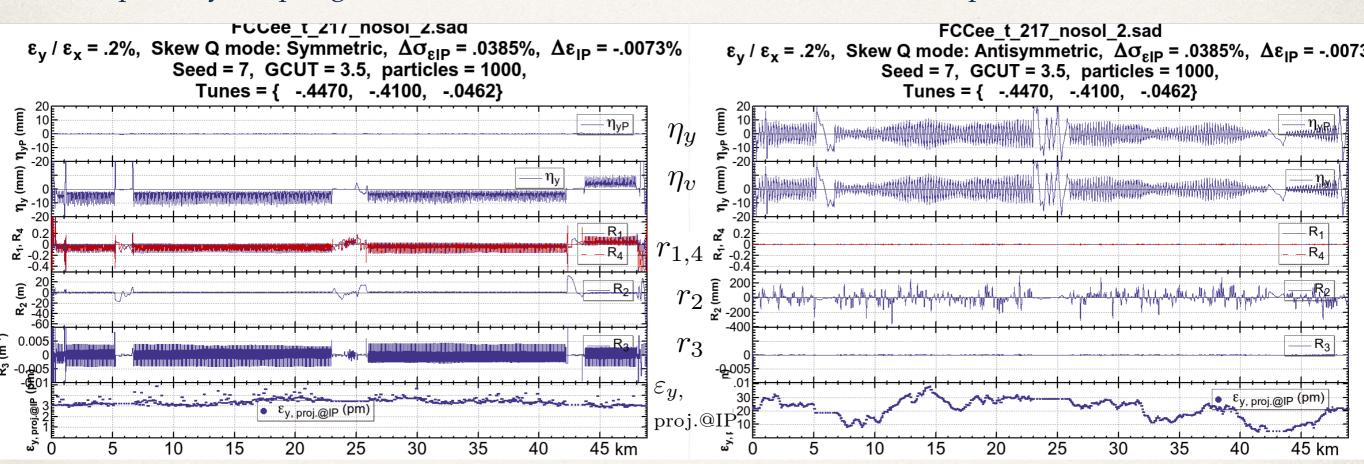
- Lattice: FCCee_t_217_nosol_2.sad, 182.5 GeV, half ring.
- The vertical emittance is given by randomly excited skew quadrupole placed on each sextupole in the arc:

Symmetric: vertical dispersion is confined within the pair, x-y coupling leaks outside.

Antisymmetric: x-y coupling is confined within the pair, vertical dispersion leaks outside.

- The vertical invariant emittance is always set to 2.9 pm ($\varepsilon_y/\varepsilon_x = 0.2\%$).
- Synchrotron radiation in all magnets.
- Tapering.
- Optionally, simplified beam-beam effects and beamstrahlung can be applied.
- 1000 particles up to 300 half-turns.

Optics by different excitations of skew quads



Symmetric Skew Quads

Vertical dispersion is confined within the pair, x-y coupling leaks outside.

Antisymmetric Skew Quads

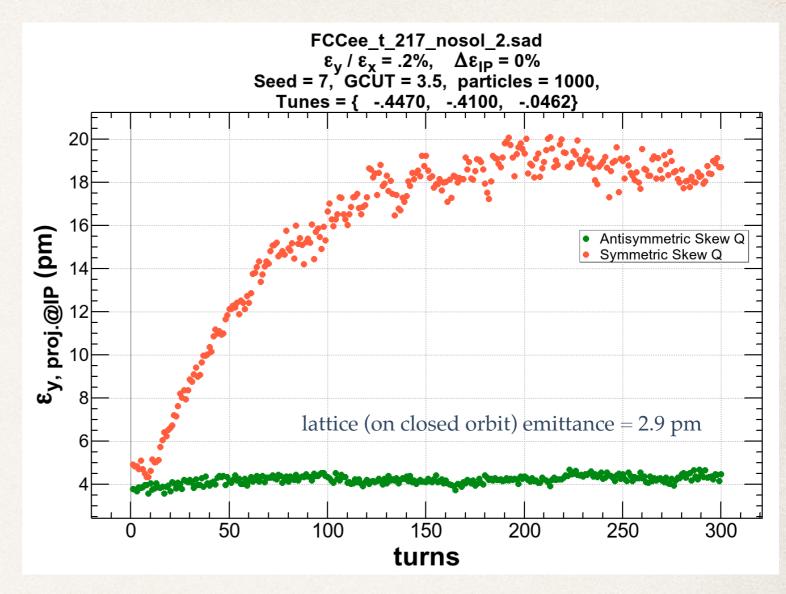
X-y coupling is confined within the pair, vertical dispersion leaks outside.

definition of x-y coupling parameter:

$$\begin{pmatrix} u \\ p_u \\ v \\ p_v \end{pmatrix} = R \begin{pmatrix} x \\ p_x \\ y \\ p_y \end{pmatrix} = \begin{pmatrix} \mu & . & -r_4 & r_2 \\ . & \mu & r_3 & -r_1 \\ r_1 & r_2 & \mu & . \\ r_3 & r_4 & . & \mu \end{pmatrix} \begin{pmatrix} x \\ p_x \\ y \\ p_y \end{pmatrix},$$
betatron coordinate physical coordinate

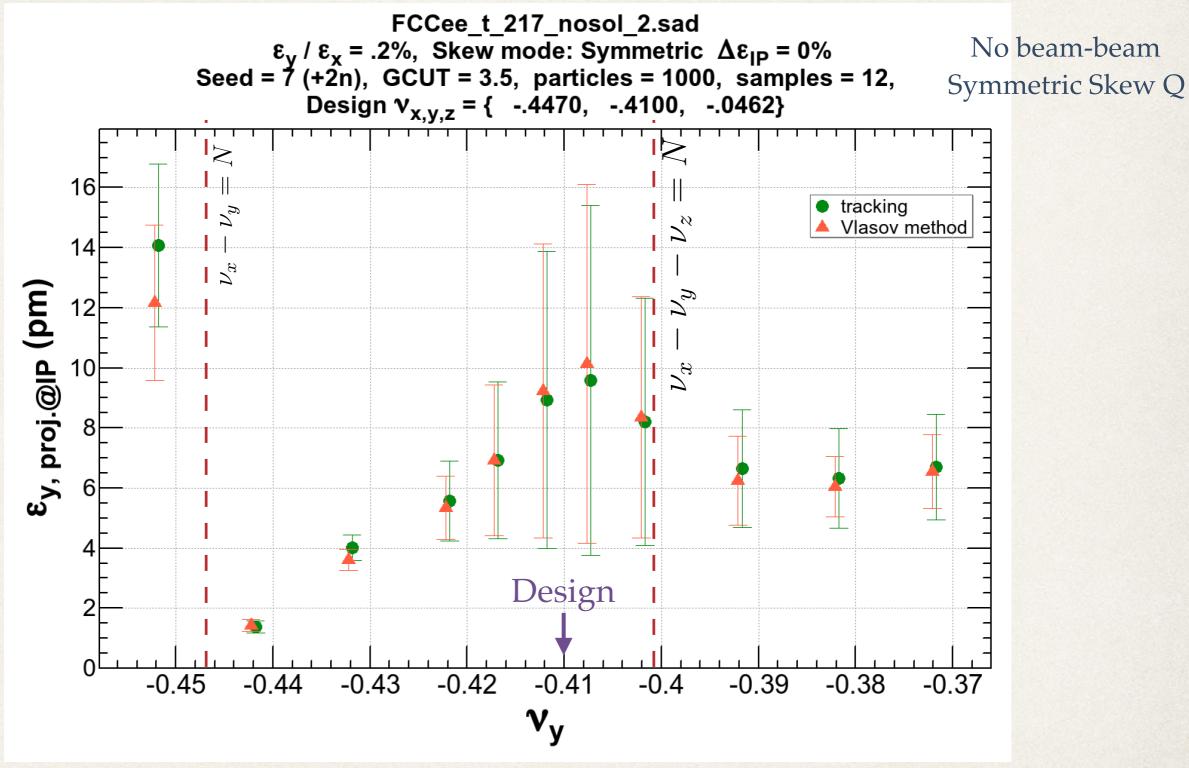
The skew quads on a sextupole pair can be represented by two random numbers $k_{1,2}$ and a parameter $-1 \le s \le 1$ as $(k_1 + sk_2, k_2 + sk_1)$. Then

s = 1: perfect symmetric


s = -1: perfect antisymmetric

s = 0:: simply random

Unexpected beam blowup



- * Then it was found that such a blowup could occur even *without beam-beam*.
- The blowup depends on how the vertical emittance is generated (between symmetric skew = x-y coupling dominated and antisymmetric skew = vertical dispersion dominated).
- The blowup is explained by a Vlasov model for "anomalous emittance" in Ref. [2]. .

The Vlasov model agrees with tracking

- The error bars show the variation for 12 samples of skew excitations.
- The most significant resonance is $\nu_x \nu_y \nu_z = N$, according to the tune dependence.

The Vlasov model (in Ref. [2])

We define the mean value h of the orbit deviation from the transverse part of x_e and the transverse variance matrix W around h as

$$\mathbf{h}(J_z, \phi_z) = \int (\mathbf{x}_t - \mathbf{x}_{te}) f(\mathbf{x}_t, J_z, \phi_z) d\mathbf{x}_t / \rho(J_z) ,$$

$$W(J_z, \phi_z) = \int (\mathbf{x}_t - \mathbf{x}_{te}) (\mathbf{x}_t^T - \mathbf{x}_{te}^T)$$

$$\times f(\mathbf{x}_t, J_z, \phi_z) d\mathbf{x}_t / \rho(J_z) ,$$
(3)

where f is the six-dimensional distribution function at s, and the integration is performed over the transverse phase space. The subscript t indicates the transverse part. The longitudinal distribution $\rho(J_z)$ is Gaussian, i.e.,

$$\int f(\mathbf{x}_t, J_z, \phi_z) d\mathbf{x}_t = \rho(J_z) = \exp(-J_z/\sigma_\delta^2)/\sigma_\delta^2, \qquad (4)$$

where σ_{δ} is the momentum spread. Since we have assumed that the synchrotron motion is sinusoidal, which advances the phase ϕ_z by μ_z in one revolution of the ring as Eq. (2), the equilibrium distribution satisfies these equations:

$$\begin{split} \mathbf{h}(J_z,\phi_z+\mu_z) &= U\mathbf{h}(J_z,\phi_z) + \mathbf{d} + \Delta\mathbf{h} \ , \\ W(J_z,\phi_z+\mu_z) &= UW(J_z,\phi_z)U^T + \mathbf{d}\mathbf{h}^TU^T + U\mathbf{h}\mathbf{d}^T \\ &\quad + \mathbf{d}\mathbf{d}^T + D + \Delta W \ , \end{split}$$

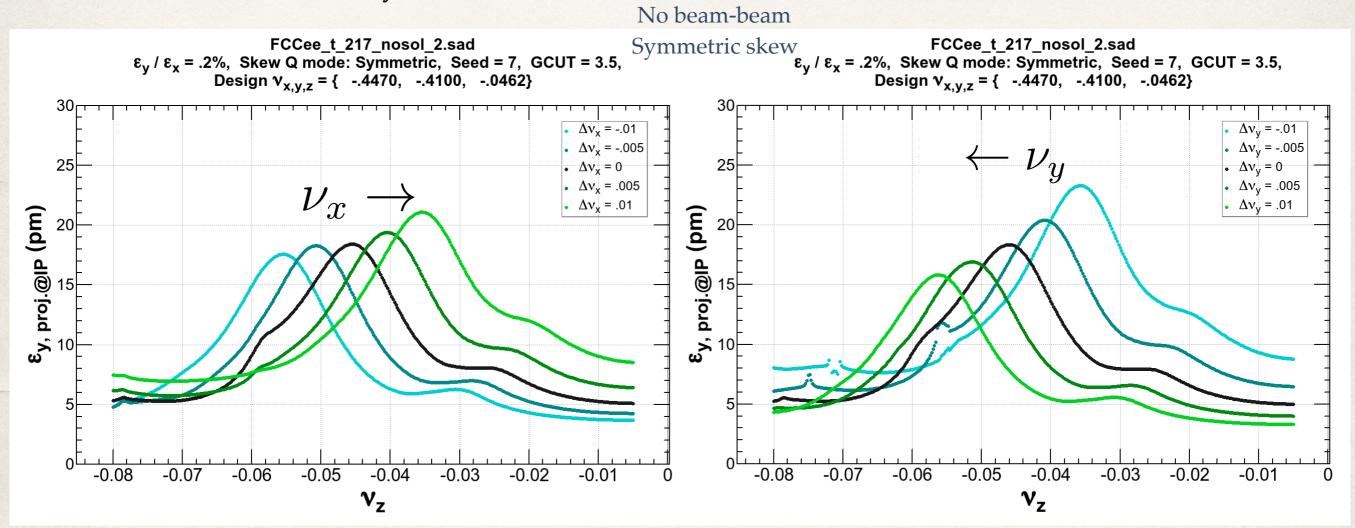
Closed orbit (J_z, ϕ_z)

Transverse second moment (J_z, ϕ_z)

The longitudinal distribution is Gaussian

 $U=U(\delta)$: momentum dependent 1-turn xfer matrix

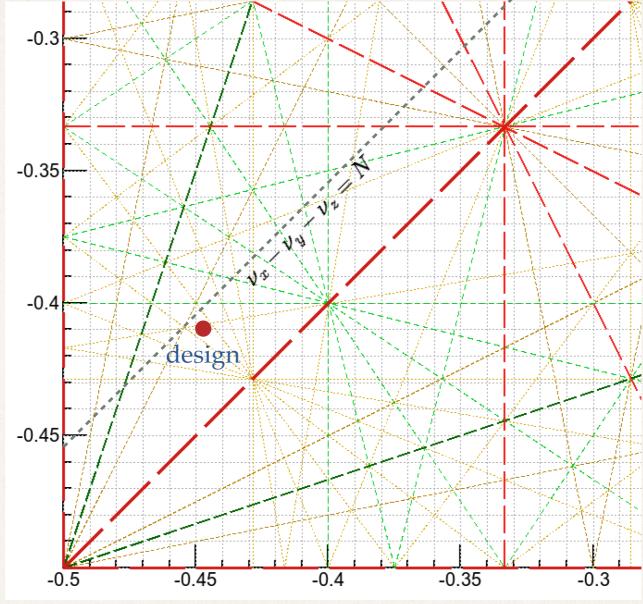
Equilibrium after one revolution of the ring


Diffusion is also taken into account.

(5)

Tune dependence by Vlasov model

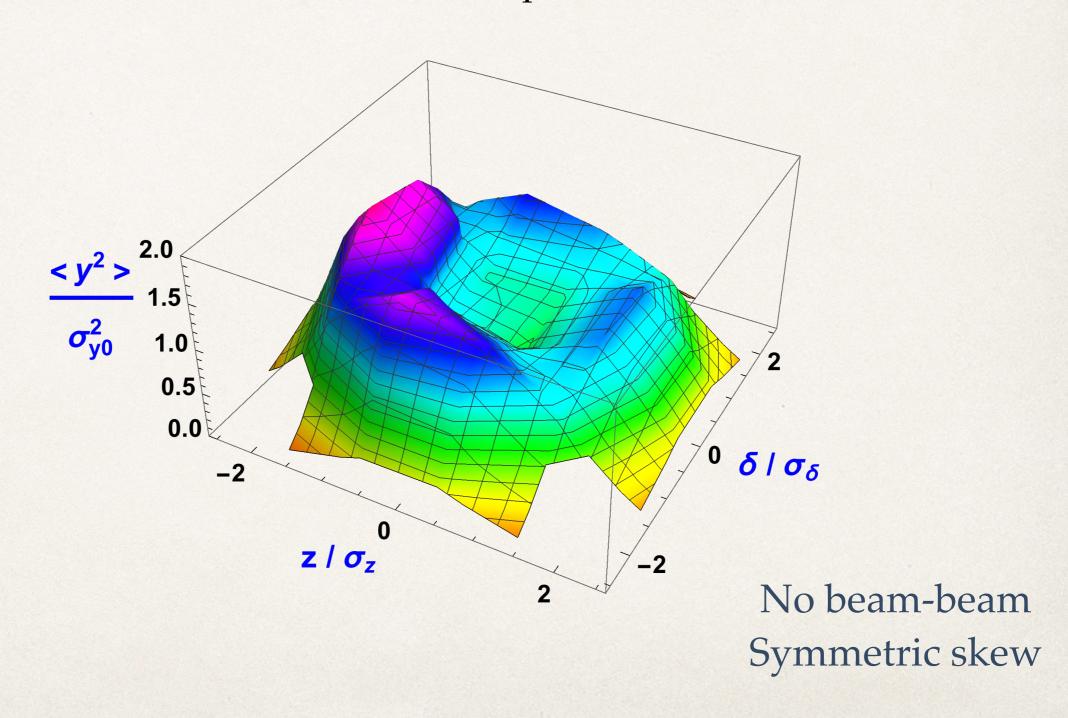
- As the agreement with tracking looks excellent, let us use the Vlasov model hereafter, since it is many orders faster than tracking.
- Scanning the synchrotron tune is just easy in the model, since it is just a parameter and no change in the lattice is necessary.


* The width of resonance \sim damping rate = 1/(40 half turns)

Skew Q is fixed at the design vz in these figures above.

• According to the tune dependence above, the resonance $\nu_x - \nu_y - \nu_z = N$ is identified as the most relevant one.

The resonance line


* The design tune point is a little bit off the resonance line — but it has a meaning: the blowup can be larger than on a tune exact at the resonance.

The Vlasov model

Near a resonance line, the transfer matrix over one synchrotron period can be on resonance at a certain amplitude of the synchrotron motion. This leads to the anomalous beam blowup.

%

Implementation of simplified beam-beam

(3)

implemented in a similar way.

• The beam-beam tune shift and beamstrahlung can be implemented in the Vlasov model, by introducing a thin kick

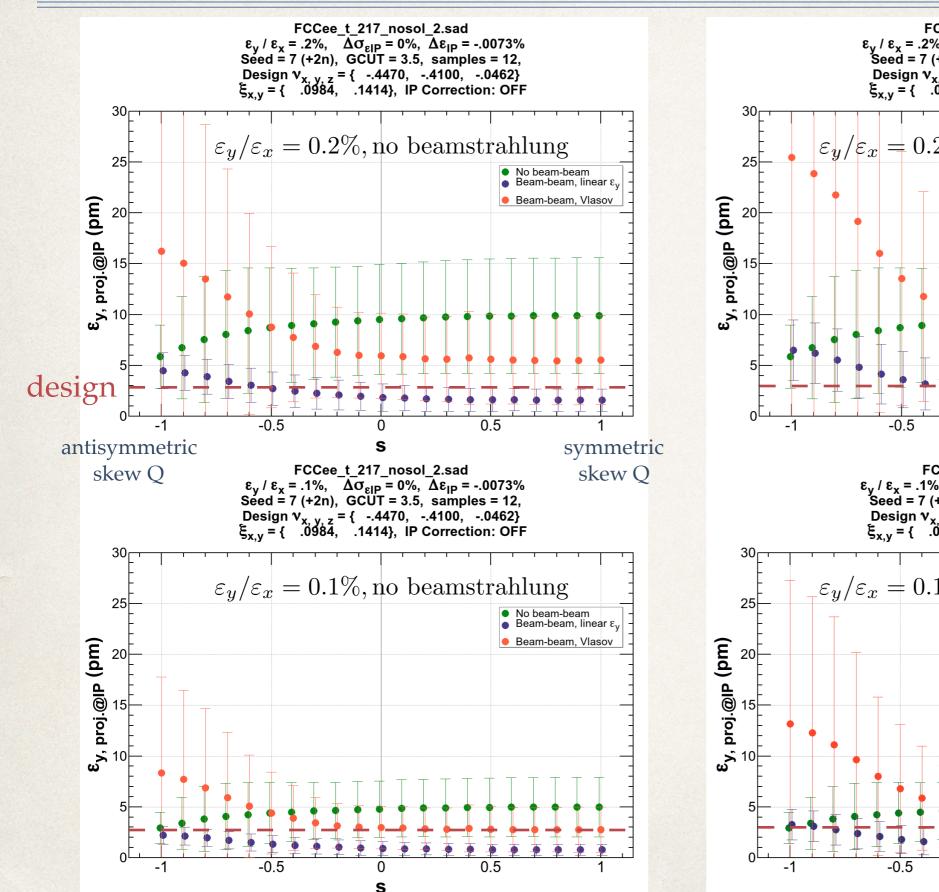
$$\Delta p_{x,y} = -k \frac{\partial U}{\partial (x,y)} , \qquad (1)$$

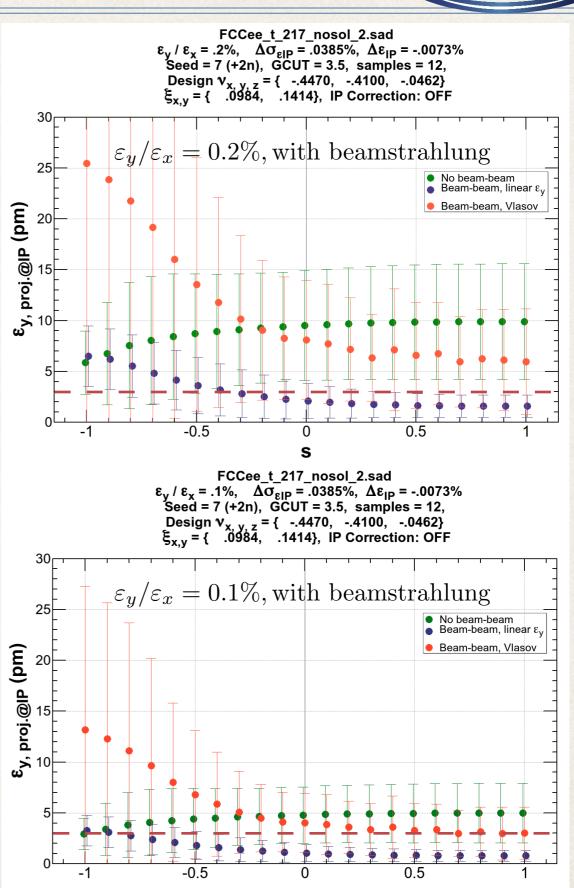
where U is a potential by a gaussian charge distribution.

The associated transfer matrix is

$$M_{\rm BB} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -k\frac{\partial^2 U}{\partial x^2} & 1 & -k\frac{\partial^2 U}{\partial x \partial y} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -k\frac{\partial^2 U}{\partial x \partial y} & 0 & -k\frac{\partial^2 U}{\partial y^2} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} , \tag{2}$$

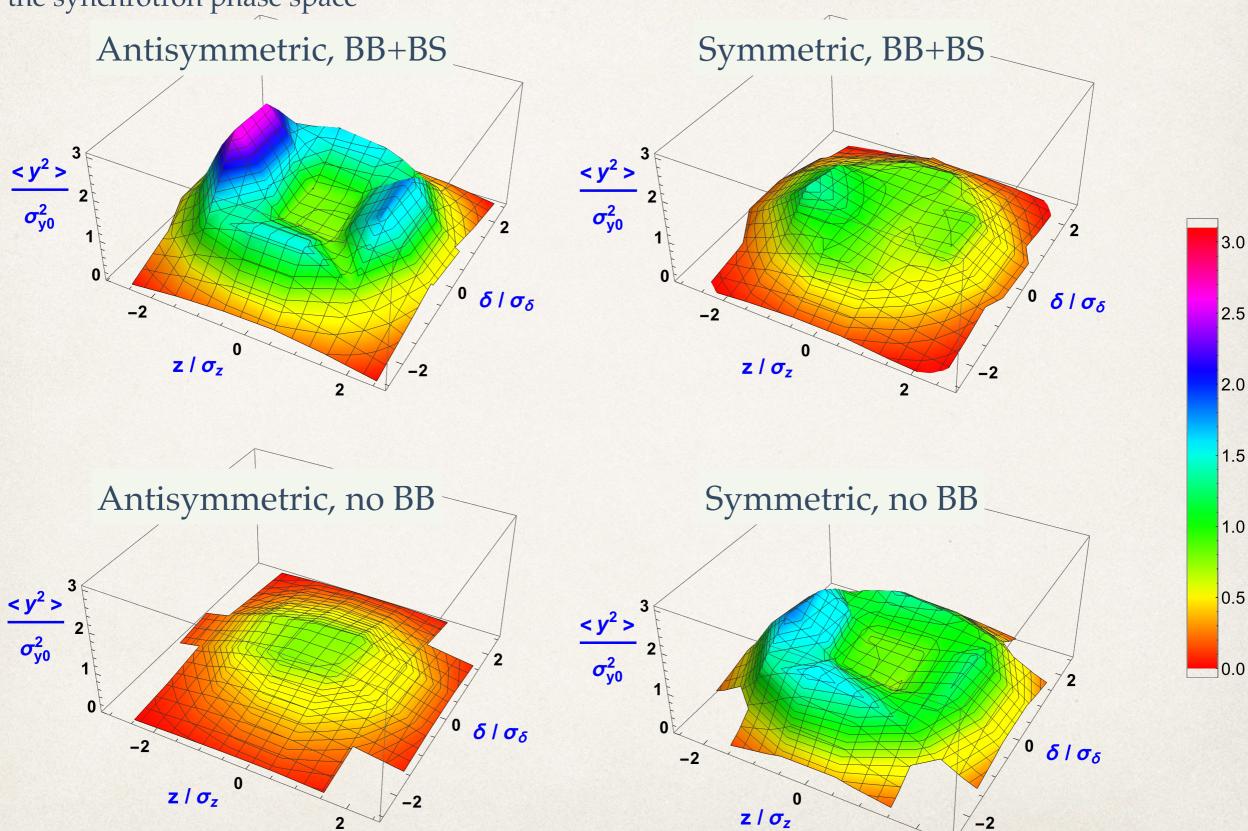
where k and U are chosen to the matrix be consistent with beam-beam parameters $\xi_{x,y}$.


• Beamstrahlung is simplified by an excitation matrix

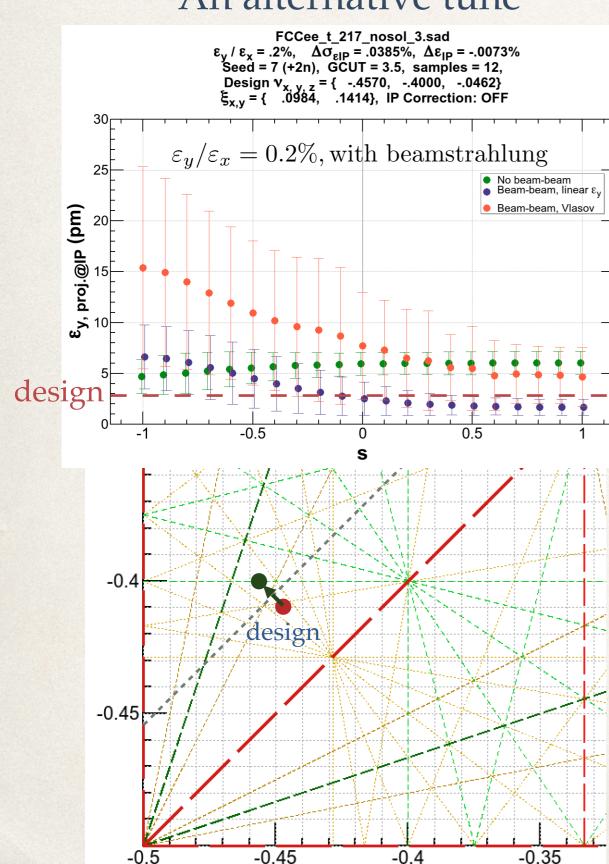

where σ_{ε} is the single-pass energy spread due to beamstrahlung.

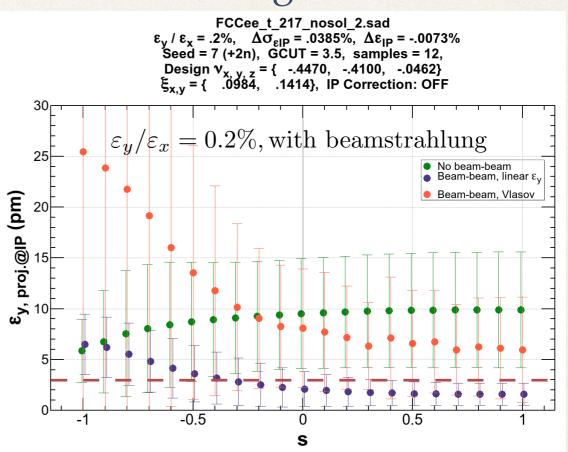
• In the case of FCC-ee@182.5 GeV, $\xi_{x,y} = (0.0984, 0.1414)$ and $\sigma_{\varepsilon} = 3.85 \times 10^{-4}$.

Blowup with/without beam-beam



Comparison of the blowups


in the synchrotron phase space


An alternative tune

An alternative tune

Design tune

Shifting the tune by $\Delta \nu_{x,y} = (-0.01, 0.01)$ relaxes the blowup. Combining with a lower emittance may reduce the blowup within the design emittance.

How can we solve the unexpected beam blowup?

- * The unexpected (anomalous) emittance blowup sets an additional condition for the machine.
- Not only the luminosity, but beam losses, detector background, quenches of superconducting magnets will be affected.
- * Probably the most straight-forward solution is to reduce the lattice (on closed orbit) emittance well below the design. For instance it should be less than 0.1% in the case of FCC-ee ttbar.
- Such a very small emittance is reachable by the emittance tuning method simulated.
- Once such a very small vertical emittance is achieved, a question is how to blowup it to the design value. For that purpose an emittance control knob, which does not affect the anomalous emittance, must be developed.

Summary

- Unexpected blowups of the vertical emittance have been seen in tracking in lattices for FCC-ee with skew quads or vertical misalignments of sextupoles, with or without beam-beam.
- This effect is well explained by a Vlasov model of the transverse distribution in the longitudinal phase space.
- The effect is a synchrotron-betatron resonance depending on the synchrotron oscillation amplitude.
- This effect sets another criteria on the machine tuning and alignment tolerances.
- Even smaller vertical emittance of the lattice will be necessary to achieve the desired emittance.

Summary

- Unexpected blowups of the vertical emittance have been seen in tracking in lattices for FCC-ee with skew quads or vertical misalignments of sextupoles, with or without beam-beam.
- This effect is well explained by a Vlasov model of the transverse distribution in the longitudinal phase space.
- The effect is a synchrotron-betatron resonance depending on the synchrotron oscillation amplitude.
- This effect sets another criteria on the machine tuning and alignment tolerances.
- Even smaller vertical emittance of the lattice will be necessary to achieve the desired emittance.

Thank you for paying attention!

Backups

Luminosity performance

Table 2.1: Machine parameters of the FCC-ee for different beam energies.

Circumference [km] 97.756 Bending radius [km] 10.760 Free length to IP ℓ^* [m] 2.2 Solenoid field at IP [T] 2.0 Froe length to IP ℓ^* [m] 30 SR power / beam [MW] 50 Beam energy [GeV] 45.6 80 120 175 182.5 Beam current [mA] 1390 147 29 6.4 5.4 Bunches / beam 16640 2000 328 59 48 Average bunch spacing [ns] 19.6 163 994 2763 ¹ 3396 ⁷² Bunch population [10 ⁻¹] 1.7 1.5 1.8 2.2 2.3 Horizontal emittance ε_x [nm] 0.27 0.84 0.63 1.34 1.46 Vertical emittance ε_x [pm] 1.0 1.7 1.3 2.7 2.9 Arc cell phase advances Idegl 60/60 90/90 Momentum compaction α_x			Z	WW	ZH	t	ī	
Free length to IP ℓ^* [m] Solenoid field at IP [T] Tell crossing angle at IP [mrad] SR power ℓ beam [MW] SD SD SD SD SD SD SD S	Circumference	[km]			97.756			
Solenoid field at IP Full crossing angle at IP Imrad SR power / beam IMW 50 50 Solenoid field at IP Imrad SR power / beam IMW 50 50 Solenoid field at IP Imrad SR power / beam IMW 50 Solenoid field Solenoid field field field Solenoid field fie			10.760					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2.2					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·		2.0					
Beam energy [GeV] 45.6 80 120 175 182.5 Beam current [mA] 1390 147 29 6.4 5.4 Bunches / beam 16640 2000 328 59 48 Average bunch spacing [ns] 19.6 163 994 2763¹ 3396²²² Bunch population [10¹¹¹] 1.7 1.5 1.8 2.2 2.3 Horizontal emittance ε_x [nm] 0.27 0.84 0.63 1.34 1.46 Vertical emittance ε_y [pm] 1.0 1.7 1.3 2.7 2.9 Arc cell phase advances [deg] 60/60 90/90 Momentum compaction α_p [10⁻⁶¹] 14.8 7.3 Arc sextupole families 208 292 Polyonation [a]² [m] 0.15 0.2 0.3 1.0 1.0 1.6 Horizontal β_x^* [m] 0.8 1.0 1.0 1.6 Horizontal β_x^* [m] 0.8 1.0 1.0	Full crossing angle at IP	[mrad]	30					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SR power / beam	[MW]			50			
Bunches / beam 16640 2000 328 59 48 Average bunch spacing [ns] 19.6 163 994 2763¹ 3396²²² Bunch population [10¹¹¹] 1.7 1.5 1.8 2.2 2.3 Horizontal emittance ε_w [nm] 0.27 0.84 0.63 1.34 1.46 Vertical emittance ε_w [pm] 1.0 1.7 1.3 2.7 2.9 Arc cell phase advances [deg] 60/60 90/90 Momentum compaction α_p [10⁻⁶] 14.8 7.3 Are sextupole families 208 292 Horizontal β $_x^*$ [ml] 0.15 0.2 0.3 1.0 Vertical β $_x^*$ [mm] 0.8 1.0 1.0 1.6 Horizontal size at IP σ_x^* [µm] 0.8 1.0 1.0 1.6 Horizontal size at IP σ_x^* [µm] 28 41 3.6 66 68 Energy spread (SR/BS) σ_z [ml] <t< td=""><td></td><td>[GeV]</td><td>45.6</td><td>80</td><td>120</td><td>175</td><td>182.5</td></t<>		[GeV]	45.6	80	120	175	182.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		[mA]	1390	147				
$\begin{array}{ c c c c c c c c c c }\hline Bunch population & [10^{11}] & 1.7 & 1.5 & 1.8 & 2.2 & 2.3\\\hline Horizontal emittance \varepsilon_x & [nm] & 0.27 & 0.84 & 0.63 & 1.34 & 1.46\\\hline Vertical emittance \varepsilon_y & [pm] & 1.0 & 1.7 & 1.3 & 2.7 & 2.9\\\hline Arc cell phase advances & [deg] & 60/60 & 90/90\\\hline Momentum compaction \alpha_p & [10^{-6}] & 14.8 & 7.3\\\hline Arc sextupole families & 208 & 292\\\hline Horizontal \beta_x^* & [m] & 0.15 & 0.2 & 0.3 & 1.0\\\hline Vertical \beta_y^* & [mm] & 0.8 & 1.0 & 1.0 & 1.6\\\hline Horizontal size at IP \sigma_x^* & [\mu m] & 6.4 & 13.0 & 13.7 & 36.7 & 38.2\\\hline Vertical size at IP \sigma_y^* & [nm] & 28 & 41 & 36 & 66 & 68\\\hline Energy spread (SR/BS) \sigma_\delta & [\%] & 0.038/0.132 & 0.066/0.131 & 0.099/0.165 & 0.144/0.186 & 0.150/0.192\\\hline Bunch length (SR/BS) \sigma_z & [mm] & 3.5/12.1 & 3.0/6.0 & 3.15/5.3 & 2.01/2.62 & 1.97/2.54\\\hline Piwinski angle (SR/BS) & 8.2/28.5 & 3.5/7.0 & 3.4/5.8 & 0.8/1.1 & 0.8/1.0\\\hline Length of interaction area L_i & [mm] & 0.42 & 0.85 & 0.90 & 1.8 & 1.8\\\hline Hourglass factor R_{HG} & & & & & & & & & & & & & & & & & & &$	Bunches / beam		16640	2000	328			
Horizontal emittance $ε_x$ [nm] 0.27 0.84 0.63 1.34 1.46 Vertical emittance $ε_y$ [pm] 1.0 1.7 1.3 2.7 2.9 Arc cell phase advances [deg] 60/60 90/90 Momentum compaction $α_p$ [10 ⁻⁶] 14.8 7.3	Average bunch spacing		19.6	163	994	2763 ¹	3396??	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bunch population	$[10^{11}]$	1.7	1.5	1.8	2.2	2.3	
$\begin{array}{ c c c c c c c }\hline Arc cell phase advances & [deg] & 60/60 & 90/90 \\\hline\hline Momentum compaction α_p & [10^{-6}]$ & 14.8 & 7.3 \\\hline\hline Arc sextupole families & 208 & 292 \\\hline\hline Horizontal β_x^* & [m] & 0.15 & 0.2 & 0.3 & 1.0 \\\hline\hline Vertical β_y^* & [mm] & 0.8 & 1.0 & 1.0 & 1.6 \\\hline\hline Horizontal size at IP σ_x^* & [µm] & 6.4 & 13.0 & 13.7 & 36.7 & 38.2 \\\hline\hline Vertical size at IP σ_y^* & [nm] & 28 & 41 & 36 & 66 & 68 \\\hline\hline Energy spread (SR/BS) σ_δ & [%] & 0.038/0.132 & 0.066/0.131 & 0.099/0.165 & 0.144/0.186 & 0.150/0.192 \\\hline\hline Bunch length (SR/BS) σ_z & [mm] & 3.5/12.1 & 3.0/6.0 & 3.15/5.3 & 2.01/2.62 & 1.97/2.54 \\\hline\hline Piwinski angle (SR/BS) & 8.2/28.5 & 3.5/7.0 & 3.4/5.8 & 0.8/1.1 & 0.8/1.0 \\\hline Length of interaction area L_i & [mm] & 0.42 & 0.85 & 0.90 & 1.8 & 1.8 \\\hline\hline Hourglass factor R_{HG} & & & & & & & & & & & & & & & & & & &$	Horizontal emittance ε_x	[nm]	0.27	0.84	0.63	1.34	1.46	
$\begin{array}{ c c c c c c c c }\hline \text{Momentum compaction }\alpha_p & [10^{-6}] & 14.8 & 7.3 \\ \hline \text{Arc sextupole families} & 208 & 292 \\ \hline \hline \text{Horizontal }\beta_x^* & [m] & 0.15 & 0.2 & 0.3 & 1.0 \\ \hline \text{Vertical }\beta_y^* & [mm] & 0.8 & 1.0 & 1.0 & 1.6 \\ \hline \hline \text{Horizontal size at IP }\sigma_x^* & [\mu m] & 6.4 & 13.0 & 13.7 & 36.7 & 38.2 \\ \hline \text{Vertical size at IP }\sigma_y^* & [nm] & 28 & 41 & 36 & 66 & 68 \\ \hline \hline \text{Energy spread (SR/BS)} \sigma_\delta & [\%] & 0.038/0.132 & 0.066/0.131 & 0.099/0.165 & 0.144/0.186 & 0.150/0.192 \\ \hline \hline \text{Bunch length (SR/BS)} \sigma_z & [mm] & 3.5/12.1 & 3.0/6.0 & 3.15/5.3 & 2.01/2.62 & 1.97/2.54 \\ \hline \hline \text{Piwinski angle (SR/BS)} & 8.2/28.5 & 3.5/7.0 & 3.4/5.8 & 0.8/1.1 & 0.8/1.0 \\ \hline \text{Length of interaction area } L_i & [mm] & 0.42 & 0.85 & 0.90 & 1.8 & 1.8 \\ \hline \hline \text{Hourglass factor } R_{\rm HG} & & & & & & & & & & & & & & & & & & &$	Vertical emittance ε_y	[pm]	1.0	1.7	1.3	2.7	2.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		60/60		90/90			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Momentum compaction α_p	$[10^{-6}]$	14.8		7.3			
$\begin{array}{ c c c c c c c c } \hline \text{Vertical }\beta_y^* & [\text{mm}] & 0.8 & 1.0 & 1.0 & 1.6 \\ \hline \text{Horizontal size at IP }\sigma_x^* & [\mu\text{m}] & 6.4 & 13.0 & 13.7 & 36.7 & 38.2 \\ \hline \text{Vertical size at IP }\sigma_y^* & [\text{nm}] & 28 & 41 & 36 & 66 & 68 \\ \hline \text{Energy spread }(\text{SR/BS}) \sigma_\delta & [\%] & 0.038/0.132 & 0.066/0.131 & 0.099/0.165 & 0.144/0.186 & 0.150/0.192 \\ \hline \text{Bunch length }(\text{SR/BS}) \sigma_z & [\text{mm}] & 3.5/12.1 & 3.0/6.0 & 3.15/5.3 & 2.01/2.62 & 1.97/2.54 \\ \hline \text{Piwinski angle }(\text{SR/BS}) & 8.2/28.5 & 3.5/7.0 & 3.4/5.8 & 0.8/1.1 & 0.8/1.0 \\ \hline \text{Length of interaction area } L_i & [\text{mm}] & 0.42 & 0.85 & 0.90 & 1.8 & 1.8 \\ \hline \text{Hourglass factor } R_{\text{HG}} & & & & & & & & & & & & & & & & & & $			20	08		292		
Horizontal size at IP σ_x^* [μm] 6.4 13.0 13.7 36.7 38.2 Vertical size at IP σ_y^* [nm] 28 41 36 66 68 Energy spread (SR/BS) σ_δ [%] 0.038/0.132 0.066/0.131 0.099/0.165 0.144/0.186 0.150/0.192 Bunch length (SR/BS) σ_z [mm] 3.5/12.1 3.0/6.0 3.15/5.3 2.01/2.62 1.97/2.54 Piwinski angle (SR/BS) 8.2/28.5 3.5/7.0 3.4/5.8 0.8/1.1 0.8/1.0 Length of interaction area L_i [mm] 0.42 0.85 0.90 1.8 1.8 Hourglass factor R_{HG} [%] 97 87 80 40 40 Energy loss / turn [GeV] 0.036 0.34 1.72 7.8 9.2 RF frequency [MHz] 400 400 / 800 400 / 800 80 400 / 800 80 80 40 / 5.4 4.0 / 6.9 80 80 40 / 5.4 4.0 / 6.9 80 80 80 80 <		[m]		0.2	0.3	1.	.0	
Vertical size at IP σ_y^* [nm] 28 41 36 66 68 Energy spread (SR/BS) σ_δ [%] 0.038/0.132 0.066/0.131 0.099/0.165 0.144/0.186 0.150/0.192 Bunch length (SR/BS) σ_z [mm] 3.5/12.1 3.0/6.0 3.15/5.3 2.01/2.62 1.97/2.54 Piwinski angle (SR/BS) 8.2/28.5 3.5/7.0 3.4/5.8 0.8/1.1 0.8/1.0 Length of interaction area L_i [mm] 0.42 0.85 0.90 1.8 1.8 Hourglass factor R_{HG} [%] 97 87 80 40 40 Energy loss / turn [GeV] 0.036 0.34 1.72 7.8 9.2 RF frequency [MHz] 400 400 / 800 RF voltage [GV] 0.1 0.75 2.0 4.0 / 5.4 4.0 / 6.9 Synchrotron tune Q_s 0.0250 0.0506 0.0358 0.0818 0.0872 Long. damping time [turns] 1.273 236 70.3 23.1		[mm]	0.8	1.0	1.0	1.	.6	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		[µm]		l	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[%]						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[mm]						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Crab sextupole strength [%] 97 87 80 40 40 Energy loss / turn [GeV] 0.036 0.34 1.72 7.8 9.2 RF frequency [MHz] 400 400 / 800 RF voltage [GV] 0.1 0.75 2.0 4.0 / 5.4 4.0 / 6.9 Synchrotron tune Q_s 0.0250 0.0506 0.0358 0.0818 0.0872 Long. damping time [turns] 1273 236 70.3 23.1 20.4 RF acceptance [%] 1.9 3.5 2.3 3.36 3.36		[mm]	0.42	0.85	0.90	1.8	1.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
RF frequency [MHz] 400 $400/800$ RF voltage [GV] 0.1 0.75 2.0 $4.0/5.4$ $4.0/6.9$ Synchrotron tune Q_s 0.0250 0.0506 0.0358 0.0818 0.0872 Long. damping time [turns] 1273 236 70.3 23.1 20.4 RF acceptance [%] 1.9 3.5 2.3 3.36 3.36								
RF voltage [GV] 0.1 0.75 2.0 $4.0/5.4$ $4.0/6.9$ Synchrotron tune Q_s 0.0250 0.0506 0.0358 0.0818 0.0872 Long. damping time [turns] 1273 236 70.3 23.1 20.4 RF acceptance [%] 1.9 3.5 2.3 3.36 3.36			0.036		1.72			
Synchrotron tune Q_s 0.0250 0.0506 0.0358 0.0818 0.0872 Long. damping time [turns] 1273 236 70.3 23.1 20.4 RF acceptance [%] 1.9 3.5 2.3 3.36 3.36								
Long. damping time [turns] 1273 236 70.3 23.1 20.4 RF acceptance [%] 1.9 3.5 2.3 3.36 3.36		[GV]						
RF acceptance [%] 1.9 3.5 2.3 3.36 3.36								
	Energy acceptance (DA) [%]		±1.3	±1.3	±1.7	-2.8 +2.4		
Polarisation time t_p [min] 15000 900 120 18.0 14.6	1							
Luminosity / IP [10 ³⁴ /cm ² s] 230 28 8.5 1.8 1.55		$[10^{34}/\text{cm}^2\text{s}]$	230	28	8.5	1.8	1.55	
Horizontal tune Q_x 269.139 269.124 389.129 389.108					1			
Vertical tune Q_y 269.219 269.199 389.199 389.175	3							
Beam-beam ξ_x/ξ_y 0.004/0.133 0.010/0.113 0.016/0.118 0.097/0.128 0.099/0.126			0.004/0.133	0.010/0.113	0.016/0.118	0.097/0.128	0.099/0.126	
Allowable e^+e^- charge asymmetry [%] ± 5 ± 3		[%]						
Lifetime by rad. Bhabha [min] 68 59 38 40 39		[min]	68		38	40	39	
Actual lifetime by BS [min] > 200 > 200 18 24 18	Actual lifetime by BS	[min]	> 200	> 200	18	24	18	

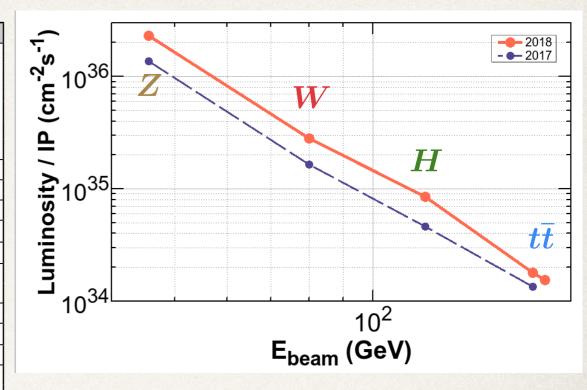
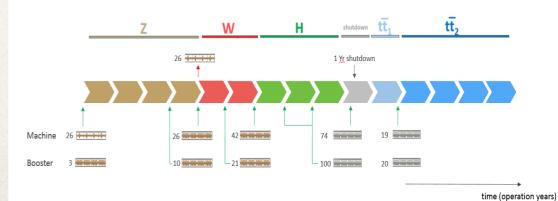



Table 2.10: Peak luminosity per IP, total luminosity per year (two IPs), luminosity target, and run time for each FCC-ee working point.

Working Point	Luminosity/IP	Tot. lum./year	Goal	Run Time		
	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	$[ab^{-1} / year]$	$[ab^{-1}]$	[years]		
Z (first two years)	100	24	150	4		
Z (other years)	200	48				
W	25	6	10	2		
Н	7.0	1.7	5	3		
RF reconfiguration						
$t\bar{t}$ 350 GeV (first year)	0.8	0.19	0.2	1		
tt 365 GeV	1.5	0.34	1.5	4		

