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Unexpected beam blowup (G=D)
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+ D. El Khechen has observed an S i bl
. : e A
unexpected vertical beam blowup in l ™ Ju‘}““ MR, WM”
tracking simulations with beam-beam o
and lattice for FCC-ee ttbar by SAD. At /”“w Jw"’“
I

< The vertical (on closed orbit) emittance
of the lattice is generated by random

misalignments of sextpoles and set to
the design (2.9 pm = 0.2%).
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+ In early simulations with beam beam
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and lattice without misalignment did

+ The blowup strongly depends on the RMS of sext. Offset ()
random number for strength of skew Seed 3 19
quads or misalignments of sextupoles ny @ (IP.1, IP2) () RN (-8.9,8)
to produce the vertical emittance. Npy X By* @ (IP.1, IP.2) () (6.8, 1.04) (35.4,23)
R2 parameter (1.8x10-3,1.8x10-3) (-5.1x10-5,-1.8x10-4)

lattice emittance on closed orbit = 2.9 pm

D. El Khechen



Why unexpected? (( FEC ))

+ This unexpected blowup occurs even when the residual dispersion at the IP
is below the criteria given by D. Shatilov with beam-beam simulation with
beamstrahlung but without the lattice.

Energy [GeV] 45.6 80 120 175

Vertical beam size (nominal) 4] 0.028 0.041 0.035 0.066

Energy spread (with BS) 1.3-103 | 1.3-103 | 1.65-103 | 1.85-10°3
w/o BS | Dispersion for +5% in o [1] > 7 10 7 11
with BS | Actual o, /0, with sucha dispersion m 1.18 1.16 1.17
with BS | Actual dispersion for +5% in o, (4] w 5 4 6

D. Shatilov



Method (( FCE))

e Lattice: FCCee_t_217_nosol_2.sad, 182.5 GeV, half ring.

* The vertical emittance is given by randomly excited skew quadrupole placed on each
sextupole in the arc:
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Symmetric: vertical dispersion is Antisymmetric: x-y coupling is
confined within the pair, x-y coupling confined within the pair, vertical
leaks outside. dispersion leaks outside.

* The vertical invariant emittance is always set to 2.9 pm (gy/ ex = 0.2%).

* Synchrotron radiation in all magnets.

* Tapering.

* Optionally, simplified beam-beam effects and beamstrahlung can be applied.
e 1000 particles up to 300 half-turns.
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Optics by different excitations of skew quads GED

Symmetric Skew Quads

Vertical dispersion is confined within the
pair, x-y coupling leaks outside.

FuLee_t_21/_NoOsol_z.sad

Antisymmetric Skew Quads
X-y coupling is confined within the pair,
vertical dispersion leaks outside.

FCCee_t_217_nosol_2.sad

€y | €5 = .2%, Skew Q mode: Symmetric, ACgp =.0385%, Agjp =-.0073% €,/ € =.2%, Skew Q mode: Antisymmetric, AG,p =.0385%, Agp = -.007:
Seed =7, GCUT = 3.5, particles = 1000, Seed =7, GCUT = 3.5, particles =1000,
2 Tunes ={ -.4470, -4100, -.0462} 0 Tunes { 4470 -4100 -0462}
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betatron coordinate physical coordinate

The skew quads on a sextupole pair can
be represented by two random numbers
k1. and a parameter —1 < s < 1 as
(k1 + ska, ko + sky). Then

s =1 : perfect symmetric
s = —1: perfect antisymmetric
s = 0:: simply random




Unexpected beam blowup

IP
R e he

+ Then it was found that such a blowup

FCCee_t_217_nosol_2.sad

; €y /€, =.2%, Agp=0%
could occur even without beam-beam. Seed =7,  GCUT = 3.5, particles = 1000,
Tunes = { -4470, -4100, -.0462}

The blowup depends on how the 20 | AARERARRAN R DR REARA IE
: : . : | - A g :
vertical emittance is generated 18 "H,.; o 2;? Jive """ gs-.o;y,. E
(between symmetric skew = x-y o it & 7 | :
— __ | +® .‘:.o | . —_
coupling dominated and £ ): 3’6‘“ . ‘ QS;S%QT:gllfeﬁ/kgWQ ]
antisymmetric skew = vertical o f ]
: . . 12 -~
dispersion dominated). % - ]
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The blowup is explained by a Vlasov = f ]
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model for “anomalous emittance” in i :
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[2] K. Oide, H. Koiso, ™
electron storage rings", Phys.Rev. E49 (1994) 4474-4479.
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Anomalous equilibrium emittance due to chromaticity in



The Vlasov model agrees with tracking (< L) )

FCCee_t 217 _nosol_2.sad
g,/ €, =.2%, Skew mode: Symmetric Agp = 0% No beam-beam
Seed = ¥(+2n), GCUT = 3.5, particles = 1000, samples =12, Symmetric Skew Q
Design vy, , ={ -4470, -.4100, -.0462}
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* The error bars show the variation for 12 samples of skew excitations.

* The most significant resonance is v, — v, — v, = N, according to the tune dependence.



The Vlasov model (in Ref. 2] (( g ))

We define the mean value h of the orbit deviation from
the transverse part of x, and the transverse variance ma-
trix W around h as

—t Closed orbit (Jz, ¢-)
h(J,,6,)= [ (x, =%, )f(x,,J;,8,)dx, /p(J,) ,
G3) Transverse

W(J,8,)= [ (x, =%, )(x{—x)
— e (L o)

xf(xt’Jz’¢z )dxt /p(‘]z) ’

where f is the six-dimensional distribution function at s,
and the integration is performed over the transverse
phase space. The subscript ¢ indicates the transverse part. So Al e :
The longitudinal distribution p(J, ) is Gaussian, i.e., / distribution is Gaussian

[ F(x,,0,,8,)dx,=pJ,)=exp(—J, /o)) /oF, &

The longitudinal

U=U(0): momentum
where o5 is the momentum spread. Since we have as- d dent [ f L
sumed that the synchrotron motion is sinusoidal, which ependen urn xter matrix
advances the phase ¢, by u, in one revolution of the ring

as Eq. (2), the equilibrium distribution satisfies these

equations: Equilibrium after one
h(J,,¢,+u,)=Uh(J,,¢é,)+d+Ah , 7 revolution of the ring
wJ,,é,+u,)=UWJ,,¢, ) UT+dh?UT+ Uhd” >

+dd"+D+AW

Diffusion is also taken into account.



Tune dependence by Vlasov model GED

+  As the agreement with tracking looks excellent, let us use the Vlasov model hereafter, since it is

many orders faster than tracking.

+  Scanning the synchrotron tune is just easy in the model, since it is just a parameter and no change

in the lattice is necessary.
No beam-beam

FCCee_t_217_nosol_2.sad Symmetric skew FCCee_t_217_nosol_2.sad
gy I €, =.2%, Skew Q mode: Symmetric, Seed =7, GCUT = 3.5, gy 1 €, =.2%, Skew Q mode: Symmetric, Seed =7, GCUT = 3.5,
Design vy, ,={ -.4470, -4100, -.0462} Design vy, , ={ -.4470, -4100, -.0462}
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Skew Q is fixed at the design

+ The width of resonance ~ damping rate = 1/ (40 half turns) e

« According to the tune dependence above, the resonance
v, — v, — v, = N Is identified as the most relevant one.
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The resonance line (( g o ))
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+ The design tune point is a little bit off the resonance line — but it
has a meaning: the blowup can be larger than on a tune exact at
the resonance.



The Vlasov model (( S ))

+ Near a resonance line, the transfer matrix over one synchrotron period
can be on resonance at a certain amplitude of the synchrotron motion.
This leads to the anomalous beam blowup.

5 20
<y°>
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2
ayo 1.0
0.5
0.0

2t No beam-beam
Symmetric skew



Implementation of simplified beam-beam
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e The beam-beam tune shift and beamstrahlung can be implemented in the Vlasov model, by intro-

ducing a thin kick

Aps

oU

iyl

where U is a potential by a gaussian charge distribution.

e The associated transfer matrix is

s
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where £ and U are chosen to the matrix be consistent with beam-beam parameters &, ,.

e Beamstrahlung is simplified by an excitation matrix

AXYBB =

0
0
0
0
0

v
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() ey ey ey e (@
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ey el (emlid (@l am) Hem,

ERE @ HEDRES

A

Q)
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where o, is the single-pass energy spread due to beamstrahlung.

(3)

The damping due to BS is also
implemented in a similar way.

o In the case of FCC-ee@182.5 GeV, &, , = (0.0984,0.1414) and o. = 3.85 x 1072,



Blowup with/without beam-beam
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Design v, , ,={ -.4470, -.4100, -.0462}
Exy={ 6384, 1414}, IP Correction: OFF
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FCCee_t_217_nosol_2.sad

£y | Ex = .2%,

Aos") = 0%, A8|p =-.0073%

Seed =7 (+2n), GCUT = 3.5, samples =12,

FCCee_t_217_nosol_2.sad

€,/ € = .2%,

ACgp =.0385%, Agp=-.0073%
Seed =7 (+2n), GCUT = 3.5, samples =12,
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Exy={ 16384, .1414}, IP Correction: OFF
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Comparison of the blowups B

in the synchrotron phase space

Antisymmetric, BB+BS Symmetric, BB+BS




An alternative tune
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An alternative tune

FCCee_t_217_nosol_3.sad
€y [ €y =.2%, ACgp =.0385%, Agpp=-.0073%
Seed =7 (+2n), GCUT = 3.5, samples =12,
Design v, , ,={ -4570, -.4000, -.0462}
Exy={ .63’84, 1414}, IP Correction: OFF

30— . |
r g, /€x = 0.2%, with beamstrahlung

25— YL ’ —
- T ® No beam-beam E
= o ® Beam-beam, linear Ey|
i ® Beam-beam, Vlasov ]

20_

Design tune

FCCee_t_217_nosol_2.sad
g,/ €y =.2%, AOgp =.0385%, Agp=-.0073%
Seed =7 (+2n), GCUT = 3.5, samples =12,
Design v, , ,={ -.4470, -4100, -.0462}
Exy={ 6384, 1414}, IP Correction: OFF
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Shifting the tune by Av, , = (—0.01,0.01) re-
laxes the blowup. Combining with a lower

emittance may reduce the blowup within the
design emittance.
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How can we solve the unexpected beam blowup? R

+ The unexpected (anomalous) emittance blowup sets an additional
condition for the machine.

+ Not only the luminosity, but beam losses, detector background,
quenches of superconducting magnets will be affected.

+ Probably the most straight-forward solution is to reduce the lattice
(on closed orbit) emittance well below the design. For instance it
should be less than 0.1% in the case of FCC-ee ttbar.

+ Such a very small emittance is reachable by the emittance tuning
method simulated.

+ Once such a very small vertical emittance is achieved, a question is
how to blowup it to the design value. For that purpose an emittance
control knob, which does not affect the anomalous emittance, must
be developed.



Summary (( FCE))

+ Unexpected blowups of the vertical emittance have been seen in tracking
in lattices for FCC-ee with skew quads or vertical misalignments of
sextupoles, with or without beam-beam.

+ This effect is well explained by a Vlasov model of the transverse
distribution in the longitudinal phase space.

+ The effect is a synchrotron-betatron resonance depending on the
synchrotron oscillation amplitude.

+ This effect sets another criteria on the machine tuning and alignment
tolerances.

+ Even smaller vertical emittance of the lattice will be necessary to achieve
the desired emittance.



Summary (( FCE))

+ Unexpected blowups of the vertical emittance have been seen in tracking
in lattices for FCC-ee with skew quads or vertical misalignments of
sextupoles, with or without beam-beam.

+ This effect is well explained by a Vlasov model of the transverse
distribution in the longitudinal phase space.

+ The effect is a synchrotron-betatron resonance depending on the
synchrotron oscillation amplitude.

+ This effect sets another criteria on the machine tuning and alignment
tolerances.

+ Even smaller vertical emittance of the lattice will be necessary to achieve
the desired emittance.

Thank you for paying attention!



Backups



Liuminosity performance

Table 2.1: Machine parameters of the FCC-ee for different beam energies.
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Table 2.10: Peak luminosity per IP, total luminosity per year (two IPs), luminosity target, and run time
for each FCC-ee working point.

Z | Ww |  ZH | tt
Circumference [km] 97.756
Bending radius [km] 10.760
Free length to IP ¢ [m] 2.2
Solenoid field at IP [T] 2.0
Full crossing angle at IP [mrad] i 30 ;
SR power / beam [MW] 50
Beam energy [GeV] 45.6 80 120 175 182.5
Beam current [mA] 1390 147 29 6.4 54
Bunches / beam 16640 2000 328 59 48
Average bunch spacing [ns] 19.6 163 994 2763 3396”
Bunch population [10M] 1.7 1.5 1.8 2.2 2.3
Horizontal emittance ¢, [nm] 0.27 0.84 0.63 1.34 1.46
Vertical emittance €, [pm] 1.0 1.7 1.3 2.7 2.9
Arc cell phase advances [deg] 60/60 90/90
Momentum compaction a, [10_6] 14.8 7.3
Arc sextupole families 208 292
Horizontal 3,, [m] 0.15 0.2 0.3 1.0
Vertical 3, [mm] 0.8 1.0 1.0 1.6
Horizontal size at IP o, [um] 6.4 13.0 13.7 36.7 38.2
Vertical size at IP a; [nm] 28 41 36 66 68
Energy spread (SR/BS) o5 [%] 0.038/0.132 | 0.066/0.131 | 0.099/0.165 | 0.144/0.186 | 0.150/0.192
Bunch length (SR/BS) o, [mm] 3.5/12.1 3.0/6.0 3.15/5.3 2.01/2.62 1.97/2.54
Piwinski angle (SR/BS) 8.2/28.5 3.5/7.0 3.4/5.8 0.8/1.1 0.8/1.0
Length of interaction area L; [mm] 0.42 0.85 0.90 1.8 1.8
Hourglass factor Ry
Crab sextupole strength [%] 97 87 80 40 40
Energy loss / turn [GeV] 0.036 0.34 1.72 7.8 9.2
RF frequency [MHz] 400 400 / 800
RF voltage [GV] 0.1 0.75 2.0 40/54 4.0/6.9
Synchrotron tune @, 0.0250 0.0506 0.0358 0.0818 0.0872
Long. damping time [turns] 1273 236 70.3 23.1 204
RF acceptance [%] 1.9 3.5 2.3 3.36 3.36
Energy acceptance (DA) [%] +1.3 +1.3 +1.7 -2.8+2.4
Polarisation time ¢,, [min] 15000 900 120 18.0 14.6
Luminosity / IP [10*/em’s] | (230 28 8.5 1.8 1.55 )
Horizontal tune (), 269.139 269.124 389.129 389.108
Vertical tune Q,, 269.219 269.199 389.199 389.175
Beam-beam &, /¢, 0.004/0.133 | 0.010/0.113 | 0.016/0.118 | 0.097/0.128 | 0.099/0.126
Allowable e e~ charge asymmetry [%] +5 +3
Lifetime by rad. Bhabha [min] 68 59 38 40 39
Actual lifetime by BS [min] > 200 > 200 18 24 18

Working Point Luminosity/IP | Tot. lum./year | Goal | Run Time
[1034 cmeSfl] [abf1 / year] [abfl] [years]
Z (first two years) 100 24 150 4
Z (other years) 200 48
W 25 6 10 2
H 7.0 1.7 5 3
’ RF reconfiguration ‘ 1 ‘
| £6350 GeV (first year) | 0.8 019 o2 ] 1 ]
| 11365 GeV \ 15 | 034 [ 15| 4 ]
W H tfz
26 T 1 Yr shutdown
T“ |
T T [ S R

Machine 26 F===4

Booster 3 [ttt

time (operation years)



