Ideas for longitudinal polarization at the Z/W/H/top factory

I.Koop

Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk State Technical University, 630090, Novosibirsk, Russia

62nd ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e⁺e⁻ Colliders (eeFACT2018)

HKUST, Hongkong, 24-27 September, 2018

Outline

- Longitudinal polarization scheme with restoration of vertical spin direction in arcs
- Spin transparent solenoid type spin rotators
- Adiabatic acceleration of polarized beams in a booster synchrotron
- Depolarization rates estimations
- Conclusion

Optimal option for longitudinal polarization at Z

 Antisymmetric chicane plus two 90⁰ solenoid type spin rotators.
 Opposite polarities of left-right from IP magnetic fields cancel spin direction chromaticity outside of the insertion. Spin tune unchanged!

Spin rotation ϕ by the half-chicane (angle α):

$$\phi = \frac{\pi}{2} \rightarrow \alpha = \frac{\phi}{\nu_0} = 15 \text{ mr} (\text{at } \mathbb{Z} \nu_0 = 103.5)$$

Tolerance: $\Delta \alpha = \pm 5 \text{ mr}$

In this option only the chicane magnets contribute to the radiative depolarization, therefore the spin depolarization time at Z exceeds 24 hours! But beamstrahlung will decrease it, say to 1-2 hours. Still OK!

Alternative option: rotators with not parallel axes

A ring with two insertions, each made of two $\pi/2$ spin rotators, separated by an arc $\phi = \pi/v0$. Let be $|\vec{d}|=0$ at v0=191.3. Then expect much stronger depolarization at nearby energy points, where d>>1.

This option looks unacceptable for $\stackrel{\nu}{W}$. For Z can be considered, because of lower v0. Koop-Ideas for Longitudinal Polarization,

eeFACT2018, HKUST, Hongkong

FCC-ee layout

Layout of FCC-ee

Possible locations of Spin Rotators at FCC-ee

Lattice shall be modified to provide long drift for the left Spin Rotator at $\phi 1 = +15$ mr from IP. Version with $\phi 1 = -15$ mr for the left rotator is not as good as option with $\phi 1 = \phi 2 = +15$ mr.

Spin transparent rotator for the solenoid partial Snake

Two solenoids, each L=24 m, B=5 T, provide spin rotation by $\varphi = 90^{\circ}$ at E=45.6 GeV. Extension to E=82 GeV with B=9 T looks feasible. All quads don't need to be skewed! Spin transparency require: Full Snake: $\cos \varphi = -1$, $\sin \varphi = 0$; 90° - spin rotator: $\cos \varphi = 0$, $\sin \varphi = 1$

Polarized beams in a booster synchrotron

Three options will be presented in next slides:

- Scheme with even number of Snakes good but technically difficult for realization (strong ramping solenoids are needed).
- 2. Fast energy ramping without any Snake needs faster energy ramping than it is supposed.
- Adiabatic crossing of integer resonances by use of Partial Snake with static solenoids – most promising solution!

Opion 1: Four Snakes and arcs in between

In 70-th such approach was considered by A.Kondratenko, for FCC discussed by S.R. Mane In arXiv:1406.0561v1 physics.acc-ph 3 Jun 2014.

The equilibrium spin is altering , be directed upright or down in arcs. Four Siberian Snakes rotate spin by 180⁰ around the longitudinal axis.

The spin precession frequency will be zero in case of equally spaced snakes. To avoid zero spin tune a small asymmetry of successive arcs has to be foreseen: $\phi = (1 \pm \chi)\pi/2$. Now spin tune $v = \chi \cdot v_0$ became reduced to v=0.363, if $\chi=0.002$, $v_0=181.5$. Here $v_0=\gamma a - unperturbed$ spin tune, where a=0.001159652187 is anomalous magnetic moment.

How the arcs asymmetry can be made

Depolarization in presence of Snakes

Derbenev-Kondratenko formula:

$$\tau_{p}^{-1} = \frac{5\sqrt{3}}{8} \lambda_{e} r_{e} c\gamma^{5} \left\langle \left| \mathbf{K}^{3} \right| \left(1 - \frac{2}{9} (\vec{n}\vec{v})^{2} + \frac{11}{18} \vec{d}^{2} \right) \right\rangle \approx \tau_{ST}^{-1} \frac{11}{18} \left\langle \vec{d}^{2} \right\rangle$$

$$\mathbf{K} = \rho^{-1}, \quad \left| \vec{v} \right| = 1, \quad \vec{d} = \gamma \left(\partial \vec{n} / \partial \gamma \right) \text{ - spin-orbit coupling vector}$$
Spin transparency cancels the betatron contribution:
$$\vec{d} = \vec{d}_{\gamma} + \vec{A}_{\beta}$$
For m pairs of snakes $\left\langle \vec{d}^{2} \right\rangle \sim v_{0}^{2} w^{2} / m^{2}$, Here $v_{0} = \gamma a$,
w - spin perturbation (due to orbit distortions, or other field errors)

Tracking simulations, ASPIRRIN code, analytic results, all give: For E=80 GeV, m=2, w=0.1 we find $\langle \vec{d}^2 \rangle = 4000 \rightarrow \tau_d \approx 18 \text{ s}$ That ensures small polarization loss if $t_{\text{ramp}} \leq 12 \text{ s}$

Tolerances on the orbit distortions

Tolerances on the vertical orbit distortion y(s):

Spin rotation angle kick produced by a single quad: $\varphi_1 = v_0 \cdot \Delta y_1$ Number of quads in a ring: N=2500

Statistically indepent N kicks will produce the total spin rotation: $\varphi_{\Sigma} = v_0 \cdot \Delta y_1' \cdot \sqrt{N}$ Now we want: $\varphi_{\Sigma} \leq w \cdot 2\pi$, Here w - single equivalent by strengh the spin perturbation tune

Spin tracking shows that w=0.1 is tolerable for booster at 80 GeV

Thus we get:
$$\Delta y_1' \le \frac{W \cdot 2\pi}{v_0 \cdot \sqrt{N}} = 6 \cdot 10^{-5} \rightarrow y_{rms} = \Delta y_1' \cdot \beta_y = 6 \text{ mm}$$

Spin tracking of the depolarization process

Radiative depolarization: 4 snakes, 80 GeV, $\sigma_E=0.00065$, $\lambda=1/240$, $\nu=0.363$, perturbation w=0.1

Spin tracking of 1000 particles, over 2000 turns in a ring with the spin perturbation w=0.1.

The observed depolarization time 18 s is large enough for acceleration of a beam from 15 GeV to 80 GeV in 10 s.

Due to perturbation (w=0.1) the spin precession frequency became shifted to 0.3702 from the ideal 0.3631 value.

Fractional part of spin tune

Spectrum of the transversal polarization component. Side bands are spaced by synchrotron tune $v_s=0.1$

eas for Longitudinal Polarization, eeFACT2018, HKUST, Hongkong

Option-2: Fast acceleration in a booster ring

39-45 GeV, Q_s=0.02, $\sigma_{\delta}=0.0004$, w=0.02, $d\nu/dN=0.056$

Spin tune: ν

As one can see, the presented here simulation shows very strong depolarization in the FCC-ee booster synchrotron during acceleration with the nominal ramp rate: 25 GeV/ 0.32 s. Besides, we can expect up to 3 times stronger harmonics due to statistical fluctuations.

Koop-Ideas for Longitudinal Polarization, eeFACT2018, HKUST, Hongkong

Option 3: Adiabatic crossing of integers near Z

Spin tune: ν

Beam polarization is well preserved with the use of single Partial Snake for the acceleration in the FCC-ee booster ring. Polarization loss is only 3%, energy ramp rate 25 GeV/0.32 s. Can use static solenoid with field integral BL=200 T·m. Then, at 20 GeV we will have w=0.5 (full snake!) and w=0.22 at 45.6 GeV. Quads of spin-rotator will ramp to keep $Q_{x,y} = const$.

Option 3: Adiabatic crossing of integers near W

80 GeV, Q_s=0.02, σ_{δ} =0.0007, w=0.2, $d\nu/dN$ =0.056

Spin tune: ν

Beam depolarization is now well pronounced. Polarization loss is about 40 %, energy ramp rate 25 GeV/0.32 s (nominal for booster – see talks from Y.Papaphilippou and B.Haerer at FCC-week 2018). Can increase Snake's strength up to w= 0.5. It helps but not very much. Also can benefit from reduction of energy spread, say about 1.5 - 2 times, but how to do this? Meanwhile, option 3 looks feasible even for W in case if 10% polarization level in the end is OK!

Koop-Ideas for Longitudinal Polarization, eeFACT2018, HKUST, Hongkong

Example of polarizing ring parameters

Energy, E	1	GeV
Circumference, C	22	m
Average radius, R	3.5	m
Bending radius, ρ	0.6	m
Bending field, B	5.5	Т
Energy loss / turn, U ₀	145	keV
Momentum spread, σ _p	0.00155	
Number of e± per bunch, N	1010	
Number of bunches,N _b	16	
Total beam current, I	350	mA
SR powrer	50	kW
Sokolov-Ternov polarization time , τ_{sT}	127	S
Polarization degree	70	%
Injection/Ejection time periodicity, T ₀	10	S

Here we assume that every bunch spends in a ring $T_0 \cdot N_{b=}$ =160 s before extraction. So, the polarization degree is high enough, in the order of 70%! Every 10 s one bunch is assumed to be extracted for the energy calibration purposes only. Use of high bending field

is energetically beneficial to obtain the required polarization degree.

Conclusion

- At Z the longitudinal polarization looks feasible, but some changes in IR lattice are required to place rotators at ϕ =+15 mr from IP.
- At W rotators should be moved to other drifts located at ϕ =+8 mr from IP. Depolarization rate will be roughly the same as without spin rotators.
- In any case fast acceleration of pre-polarized electron and positron beams has to be foreseen. Partial Snake with static solenoids will preserve polarization during ramping.
- Booster lattice design should be adapted for that snake accommodation. Koop-Ideas for Longitudinal Polarization, eeFACT2018, HKUST, Hongkong

Thank you for your attention!

Koop-Ideas for Longitudinal Polarization, eeFACT2018, HKUST, Hongkong