

Operation of Superconducting Final-Focus Magnet System at SuperKEKB

N. Ohuchi

Y. Arimoto, X. Wang, Z. Zong, H. Yamaoka, R. Ueki, K. Aoki, M. Kawai, Y. Kondo, K. Tsuchiya

- 1. SuperKEKB Interaction region (IR)
- 2. IR superconducting magnet design
- 3. Magnetic field measurements
- 4. Operational experiences of QCS in Phase-2
- 5. Summary

From KEKB to SuperKEKB

Configuration of IR magnets

QCS-L Cryostat Helium Vessel QC2LP ESL solenoid

QCS-R Cryostat

25 SC magnets in QCSL

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 16 SC correctors: a1, b1, a2, b4

4 SC leak field cancel magnets: b3, b4, b5, b6

1 compensation solenoid 2018/09/26

30 SC magnets in QCSR

4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 19 SC correctors: a1, b1, a2, a3, b3, b4 4 SC leak field cancel magnets: b3, b4, b5, b6

3 compensation solenoid

IR SC magnets

- Main quadrupoles [QC1, QC2]: 8 magnets
 - Forming final beam focusing system with quadrupole doublets.

• Correctors $[a_1, b_1, a_2, a_3, b_3, b_4]$: 35 magnets

- a_1 , b_1 , a_2 : magnetic alignment of the magnetic center and the mid-plane phase angle of main quadruple.
- a_3 , b_3 : correction of sextupoles induced by magnet construction errors.
- b_4 : increasing the dynamic transverse aperture (increasing the beam life time).

• Compensation solenoid[ESR, ESL]: 4 magnets

- Canceling the integral solenoid field by the particle detector (Belle II).
- By tuning the B_z profile, the beam vertical emittance is designed to be minimized.
- The compensation solenoids are designed to be overlaid on the main quadrupoles and correctors.
- ESR consists of three solenoid magnets of ESR1, ESR2 and ESR3.
- Leak field cancel coils $[b_3, b_4, b_5, b_6]$: 8 magnets
 - Canceling the leak field on the electron beam line from QC1P (collared magnet).

<u>Total number of the SC devices in two cryostats = 55</u>

Configuration of IR magnet system

Super

0-

KEKB

Configuration of IR magnet systems

Super

IR SC magnets

- Main quadrupoles [QC1, QC2]
 - QC1L(R)P, QC2L(R)P for the left (right) side cryostat to IP and for the positron beam line.
 - QC1L(R)E, QC2L(R)E for the left (right) side cryostat to IP and for the electron beam line.

	Integral field gradient, (T/m)•m	Magnet type	Z pos. from IP, mm	θ, mrad	ΔX , mm	ΔY, mm
QC2RE	13.58 [32.41 T/m × 0.419m]	Iron Yoke	2925	0	-0.7	0
QC2RP	11.56 [26.28 × 0.410]	Permendur Yoke	1925	-2.114	0	-1.0
QC1RE	26.45 [70.89×0.373]	Permendur Yoke	1410	0	-0.7	0
QC1RP	22.98 [68.89×0.334]	No Yoke	935	7.204	0	-1.0
QC1LP	22.97 [68.94×0.334]	No Yoke	-935	-13.65	0	-1.5
QC1LE	26.94 [72.21×0.373]	Permendur Yoke	-1410	0	+0.7	0
QC2LP	11.50 [28.05 × 0.410]	Permendur Yoke	-1925	-3.725	0	-1.5
QC2LE	15.27 [28.44×0.537]	Iron Yoke	-2700	0	+0.7	0

Super KEKB

IR SC magnets

- Cross section design of main quadrupoles [QC1, QC2]
 - The quadrupole magnets are designed with the two layer SC coils (double pane cake design).

SC Coils for QC1LP

L8 in HongKong

9

QC1P (No iron yoke)

QC1P magnet cross section

QC1P magnet design (QC1RP, QC1LP)

- Design field gradient = 76.37 T/m @ 1800 A
- Effective magnetic length = 0.3336 m
- Magnet length = 0.4093 m
- $B_p = 4.56 \text{ T}$ (with solenoid field of $B_z = 2.6 \text{ T}$, $B_r = 1.1 \text{ T}$)
- Load line ratio at 4.7 K = 72.3 %
- Inductance = 0.88 mH

Coil design

- 2 layer coils (3 coil blocks for each layer)
- Error field in 2 D cross section @ R=10 mm
- $b_6 = 0.10$ units, $b_{10} = -0.21$ units, $b_{14} = 0.02$ units
- Integral error field in 3D model
 - $b_4 = 0.24$ units, $b_6 = 0.54$ units, $b_8 = 0.01$ units , $b_{10} = -0.21$ units

Superconducting cable

- Cable size : 2.5 mm × 0.93 mm
- Keystone angle = 2.09 degree

QC1E (Permendur yoke)

3D magnet design of QC1P/1E

Super

KEKB

6

Magnet design: Permendur yoke

Leak field in the e+ beam line in case of Iron and Permendur Yokes

2D field calculation of QC1E (4s) : Yoke material= Iron With 0T bias field

Super

KEKB

In the nominal operation of 4s: *G* = 72.21 T/m with 1577 A Max. field in the magnet = 2.724 T Leak field in the e+ beam line center = 5 Gauss

Leak field in the e+ beam line in case of Iron and Permendur Yokes

With 0.5 T field in the Yoke (4s)

Leak field at e+ center = 6 Gauss

Leak field at e+ center <1 Gauss

- The SC correctors were designed and directly wound on the support bobbin (helium inner vessel) by BNL under the US-Japan Science and Technology Cooperation Program in HEP.
 - Multi-layer coil [maximum layer=4 by limiting with the gap distance between the main quadrupole magnet and the helium inner vessel]
 - Some correctors were assembled on the outer surface of QC1LP and QC1RP (no magnetic yoke).

QCSL- Main Quadrupole	Corrector	QCSR-Main Quadrupole	Corrector
QC1LP	a_1, b_1, a_2, b_4	QC1RP	$a_1, b_1, a_2, b_4, a_3 \rightarrow b_3$
QC2LP	a_1, b_1, a_2, b_4	QC2RP	<i>a</i> ₁ , <i>b</i> ₁ , <i>a</i> ₂ , <i>a</i> ₃
QC1LE	a_1, b_1, a_2, b_4	QC1RE	<i>a</i> ₁ , <i>b</i> ₁ , <i>a</i> ₂ , <i>a</i> ₃
QC2LE	a_1, b_1, a_2, b_4	QC2RE	<i>a</i> ₁ , <i>b</i> ₁ , <i>a</i> ₂ , <i>a</i> ₃
		Between QC1RP and QC2RP	b ₃

QC1LE correctors : a_1 , b_1 , a_2 , b_4 QC1LP leak field cancel coils : b_3 , b_4 , b_5 , b_6

The correctors for the QC2LE magnet will be delivered from BNL in March. The cold test of the correctors is scheduled in March.

QC1P leak field cancel magnets

- QC1P for the e+ beam line is non-iron magnet and the e- beam line is very close to QC1P. The leak fields from QC1P go through the e- beam line.
- B₃, B₄, B₅ and B₆ components of the leak fields are designed to be canceled with the SC cancel magnets.
- B_1 and B_2 components are not canceled, and they are included in the optics calculation.

- Field measurements of the leak field cancel coils (b_3, b_4, b_5, b_6)
 - The field profiles of the cancel coils measured with the 20 mm long harmonic coil.

IR SC magnets

Assembly of the QC1LP, QC2LP, QC1LE, correctors and QC1LP leak field cancel magnets (Front cold mass of QCSL)

eeFACT2018 in HongKong

eeFACT2018 in HongKong

20

IR SC magnets

Compensation solenoids [ESR2, ESR3] ESR3 for LER beam line

IR SC magnets

Two cryostats in SuperKEKB IR

Super

KEKB

Installation of QCS cryostats into Belle-II

• Single Stretched Wire measurement (SSW)

 Measurements of magnetic field centers and angles of the quadrupole field of QC1 and QC2

Harmonic coil measurement

- Integral magnetic field quality measurements of the SC magnets
- Higher order multipole field profile measurements along the beam line.

• 3 axis-hall probe measurement

- Solenoid field profile measurements along the beam lines

(measured under solenoid fields)

The strengths of the multipole field components are normalized with the B_2 field strength as 10,000. The magnetic field qualities of QC1 magnets were quite good.

Operation of QCS superconducting magnet system for Phase2

- Cryogenic system
 - Two cryogenic systems were cooled down to 4 K from February 9, 2018.
 - Cooling two magnet-cryostats to 4 K completed in February 11, 2018.
- Power supplies
 - Tuning parameters of the power supplies from February 13 to February 16, 2018.
- Water leak problem for Belle-II detector
 - Opening the Belle-II end yoke in the QCS-L side at February 27, 2018.
 - Countermeasure for the water leaks
 - Closing the Belle-II end yoke at March 5, 2018
 - Assembly of the concrete radiation shields from March 9 to March 14, 2018.

<u>SuperKEKB Phase2 beam operation (March 16, 2018 ~ July 17, 2018)</u>

- Many magnet quenches during beam operation

QCS magnet quench history in Phase2

#	Date	Time	Quenched Magnet	Beam Line	Beam condition	Magnet current (A)	
1	2018/4/1	20:54:53	QC1LP	LER	LER Beam injection	QC1LP=1600.1	
2	2018/4/2	19:31:21	QC1LP	LER	LER Beam injection	QC1LP=1600.1	
3	2018/4/9	17:32:41	QC1LE-b1	HER	HER Optics Tuning	b1=-32.57	
4	2018/4/9	20:07:48	QC1LE-b1	HER	HER Beam injection	b1=-32.57	
5	2018/4/9	20:54:58	QC1LE-b1	HER	HER Beam injection	b1=-32.57	
6	2018/4/9	21:42:14	QC1LE-b1	HER	HER Beam injection	b1=-32.57	
7	2018/4/10	17:45:15	QC1LE-b1	HER	HER Beam injection b1=-32.57		
8	2018/4/10	21:58:15	QC1RE-b1	HER	HER=20mA	b1=33.20	
9	2018/4/11	14:21:10	QC1RE-b1	HER	HER=28.9mA	b1=33.20	
10	2018/4/11	15:27:15	QCSL cancel	HER	HER Beam injection	b3=-40.30, b4=-25.60, b5=-17.60	
11	2018/4/11	15:30:57	QC1LE	HER		QC1LE=1583.0	
12	2018/4/11	15:31:18	QC1LP	LER	LER=78.8mA	QC1LP=1600.1	
13	2018/4/11	18:47:07	QC1RE-b1	HER	Beam injection, HER=9.9mA	b1=33.20	
14	2018/4/11	20:24:48	QC1RE-b1	HER	HER=5.3mA	b1=33.20	
15	2018/4/11	21:15:06	QC1RE-b1	HER	HER=8.3mA	b1=33.20	
16	2018/4/20	14:38:53	QC1RP, QC1LP, QC1RP-b1	LER	LER=47.9mA	QC1RP=1603.8, QC1LP=1600.1, QC1RP-b1=-13.88	
17	2018/4/21	0:23:44	QC1LP, QC1RP	LER	LER RF Room Phase scan, LER=18.5mA	QC1RP=1603.8, QC1LP=1600.1	
18	2018/4/21	0:24:06	QC1RP-b1	LER		b1=-13.88 Tuning collimator	
19	2018/5/6	11:28:14	QC1LE-b1	HER	HER Optics Tuning, HER=38.5mA	b1=-32.57	
20	2018/5/13	2:45:43	QC1RP-b1	LER	LER Beam injection, LER=390.6mA	b1=-13.88	
21	2018/5/17	2:09:30	QC1RP-b1	LER	LER Beam injection, LER=229.7mA	b1=-13.88	
22	2018/5/17	4:06:19	QC1RP-b1	LER	LER Beam injection, LER=106.5mA	b1=-13.88	
23	2018/5/24	17:17:00	QCSL cancel	HER	HER Beam injection, HER=20.9mA	b3=-40.30, b4=-25.60, b5=-17.60, b6=14.40	
24	2018/6/25	11:20:34	QC1RP, QC1RP-b1, QC1LP	LER	HER Beam injection , D2V1collimator damage , LER=727.9mA/HER=613.0mA	QC1RP=1597.6, b1=-13.88, QC1LP=1598.4	
25	2018/7/3	5:14:17	QC1RP-b1	LER	LER Beam injection, LER=285.9mA	b1=-13.88	
26	2018/7/9	11:17:18	QC1LE, QC1LE-b1, QCSL cancel	HER	LER/HER Beam injection, LER=487.0mA HER=766.1mA	QC1LE=1581.4, b1=-32.57, Cancel-b3=-40.34, Cancel-b4=-25.55	
27	2018/7/15	22:32:14	QC1RP, QC1LE, QC1LE-b1, QCSL cancel	LER, HER	LER/HER Beam injection, LER=794.7mA HER=487.6mA	QC1RP=1597.6, QC1LE=1579.62, QC1LE-b1=-32.58, Cancel-b3=-40.34, Cancel-b4=-25.55	
28	2018/7/16	17:53:03	QC1LE-b1, QCSL cancel	HER	HER=670.0∩A	QC1LE=1579.2, Cancel-b3=-40.34, Cancel-b4=-25.55	

Quenched magnets by beams

Summary

- The beam final focus system, QCS, for SuperKEKB was constructed and the Phase-2 beam commissioning with the system was successfully completed.
- The first collision of e- and e+ beams successfully was carried out at April 26th, 2018. The reached luminosity was
 5.55 × 10³³ cm⁻¹s⁻¹ at the beam currents of LER=800 mA and HER=780 mA, 1576 bunches/beam at July 5th, 2018.

• Magnet quenches by beams were serious problem.

- Enhancement of beam diagnosis system and magnet quench detection system is planed for Phase-3 beam operation.
- Data of the magnetic field measurements on the beam lines are still being studied.
 - With the field measurement data, the precise and complete 3D field calculation model will be constructed for the Phase-3 operation.

Back-up

t (msec)

Jul/16/2017 QC1LE-b1 Quench