Benchmarking of simulations of coherent beam-beam effects

K. Ohmi, K. Hirosawa, H. Ikeda, H. Koiso, Y. Ohnishi, M. Tobiyama (KEK), D.E.Khechen(CERN)

eeFACT18@HKUST, HongKong

Coherent beam-beam instability in head-tail mode for collision with a large crossing angle

Mechanism of the instability- Cross wake force

 Usual wake force gives correlation between bunch head to tail. Head-tail instability is induced by synchrotron motion

$$\Delta p_x(z) = -\int_z^\infty W(z-z')\rho_x(z')dz'$$

• Cross wake field gives correlation of two colliding beam by convolution of each dipole moment.

$$\Delta p_{x,\mp}(z_{\mp}) = -\int_{-\infty}^{\infty} W_x^{(\mp)}(z_{\mp} - z'_{\pm}) \rho_x^{(\pm)}(z'_{\pm}) dz'_{\pm}$$

• Cross wake force induced by the beam-beam interaction is localized at IP.

Coherent beam-beam Instability seen in strong-strong simulation (SuperKEKB)

- Design parameters of SuperKEKB was stable.
- We squeeze β^* step-by-step.
- Instability was seen in detuned β^* (8x,8x).
- We plan to study this instability in Phase II commissioning this year.
- This instability is serious for FCC-ee design.

Eigen mode analysis for v_x =0.53 v_s (LER)=0.0247, v_s (HER)=0.0280

Low threshold with coupling $v_x + v_s^{(+)}$ and $vx - 3v_s^{(-)}$. For different vs, appearance of instability is complex.

Strong-strong beam-beam simulation 8x8x, 1.44mAx1.04mA, v_x =0.53

Summary of the strong-strong simulation

v_x	8x8x				4x8x			
	L/L ₀ ,	σ _x /σ _{x0} (I	L & H)	OSC.	L/L ₀ ,	σ_x/σ_{x0}	(L & H)	OSC.
0.53 a	0.58-0.66	6.5	4.5		0.75-1.0	3.0-7.5	2.2-6.2	
0.535 g	0.70-0.95	2.5-6.2	1.4-4.0		1.04	1.2	1.0	
0.54 d	0.75-0.95	2.5-6.0	1.4-4.0		1.05	2.1	1.1	
0.545 f	0.83	7.2	1.2	no osc.	0.94	5.2	1.7	
0.55 e					0.75-0.77	8.6	3.5	

Horizontal emittance growth does not contribute luminosity drop in collision with a large crossing angle, when β_y is large. Crab waist on in the simulation. CW-off may be serious for the horizontal emittance growth.

Instability study in Phase II

- Typical condition
- $\beta_x = 0.2m$, 0.1m, $\beta_y = 3mm$
- I_{tot}=270mA (e+)x 225mA (e-), Nb=395,
- I_b=0.68mAx0.57mA (design 1.44mAx1.04mA)
- Np=4.3x10¹⁰, 3.6x10¹⁰. (design 9.04x10¹⁰x 6.53x10¹⁰)
- v_s (e+)=0.022, v_s (e-)=0.026

7/7 day time study

- 270mAx225mA, 10:50-12:30
- Search tune condition in which the instability appears.

$\sigma_{\!_X}\left(\nu_{\!_X}\!(e^{\scriptscriptstyle +}),\,\nu_{\!_X}\!(e^{\scriptscriptstyle -})\right)$ at 270mAx225mA

- I₊I₋=0.39 mA², N_b=395
- We did not cross over the peak to avoid a beam abort.

- The same tune condition in Red(e+) & blue(e-)
- Magenta(e+) & cyan(e-)

$\sigma_x (v_x(e^+), v_x(e^-))$ at 220mAx180mA

• I₊I₋=0.25 mA², N_b=395

$\sigma_{\!_X}\left(\nu_{\!_X}\!(e^{\scriptscriptstyle +}),\,\nu_{\!_X}\!(e^{\scriptscriptstyle -})\right)$ at 200mAx160mA

- I₊I₋=0.21 mA², N_b=395
- Beam size blow-up somewhat weak. The resonance line was crossed over.

- Peak tune does not depend on bunch current.
- Stop-band may depend on?
- More study is necessary.

Threshold of the instability

- 170mAx142mA, No σ_x blowup
- 200mAx160mA, blowup is seen.
- No blow-up in single beam tune scan.

Machine experiment at July 13, 2018

- 16:50 (instability start) & 16:57 (peak), data taking using streak camera x-z and BOR.
- v_s (e+)=0.022, v_s (e-)=0.026

Bunch Oscillation Recorder (LER)

- Clear oscillation was seen in a data, which taken at strongest beam size blow-up.
- Background level of HER data was high, noisy.

Horizontal beam size by streak camera

average

- No clear difference between stable and unstable
- Perhaps, lack of resolution.

Shot by shot

Horizontal size [arb.]

Possible instability condition

- v_x(e+)=0.552, v_x(e-)= 0.5435, v_s (e+)=0.022, v_s (e-)=0.026
 v_x(signal)=0.563
- $v_x(e_-) + v_s(e_-) = 0.5695$, $v_x(e_+) 5 v_s(e_+) = 1-0.558$ 300mAx250mA: $\xi_x(e_+) = 0.0073$, $\xi_x(e_-) = 0.0025$ Possible candidate: 0.563 = (0.5695 + 0.558)/2
- $v_x(e_{-}) v_s(e_{-}) = 0.5175$, $v_x(e_{+}) 3v_s(e_{+}) = 1-0.514$ • $v_x(e_{-}) + v_s(e_{-}) = 0.5695$, $v_x(e_{+}) + v_s(e_{+}) = 0.574$
- v_x(e-)+v_s (e+)=0.5655,

but no synchro-beta coupling mode.

• v_x(e+)+v_s (e-)=0.578

Simulation in the experimental condition

- FFT peak 0.558, not bad.
- $v_x(e+)=0.552$, $v_s(e+)=0.0213$, $v_x(e-)=0.5435$, $v_s(e-)=0.026$

Summary

- Coherent beam-beam instability in head-tail mode has been predicted in strong-strong beam-beam simulation.
- The instability was observed in SuperKEKB commissioning as is predicted.
- Horizontal beam size blow-up has been observed depending on horizontal tunes of two beams.
- Bunch oscillation was detected, but streak camera did not show the signals of instability.
- Simulation in the experimental condition shows reasonable agreement. Probably mode coupling between +1(e⁻) and -5(e⁺) modes.
- More systematic tune scan, identify peak position.

Instability and Tune

- 7/6 0:00-0:40
- 7/2 stable HER 45.5464 43.6109 LER 44.5594 46.6187 0.556 0.618

unstable 0.5431 0.607

• 6/24 No instability HER .5437 0.607 LER 0.5585 0.6143