

- FCC complex and FCC-ee first stage
- CepC
- Higgs production at an e⁺e⁻ collider
- Higgs width measurement
- Higgs couplings
- Higgs CP studies
- s-channel Higgs production
- BSM Higgs searches
- Higgs self-coupling
- Synergy with hadron colliders
- Conclusions

Acknowledgments

M. Klute and P. Janot for material and useful discussions

International FCC collaboration

- * pp-collider (FCC-hh)
 - main emphasis, defining infrastructure requirements
- 16 T \Rightarrow 100 TeV pp, L~2x10³⁵, L_{int}=2 ab⁻¹/yr
- ~100 km tunnel infrastructure
- se⁺e⁻ collider (FCC-ee),√s=90-365 GeV,

L~10³⁵-4x10³⁶, L_{int}=1-48 ab⁻¹/yr for H, Z

as potential first step

- HE-LHC with FCC-hh technology
- ***** p-e (FCC-he) option, √s=3.5 TeV, L~10³⁴

working point	nominal luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ vr half luminosity in first two years (Z) and first year (ttbar) to account for initial operation	physics goal	run time [years]			
Z first 2 years	100	26 ab ⁻¹ /year	150 ab-1				
Z later	200	48 ab ⁻¹ /year	150 ab -	4			
W	25	6 ab ⁻¹ /year	10 ab ⁻¹	1 - 2			
н	7.0	1.7 ab ⁻¹ /year	5 ab ⁻¹	3			
machine modification for RF installation & rearrangement: 1 year							
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1			
top later (365 GeV)	1.4	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	4			

FCC-ee operation model

eeFact2018 - 25/09/2018

Higgs measurements at the Higgs factory - Paolo Giacomelli

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

- Double ring e⁺e⁻ collider with 2 IPs
- Compatible with the geometry of SPPC $\Box \sqrt{s}$ 90-240 GeV
- $L=2.93 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ at $\sqrt{\text{s}}=240 \text{ GeV}$

Future lepton colliders luminosities

Clear advantage in luminosity for circular colliders vs. linear colliders.

Linear colliders (esp. CLIC) have higher energy reach, but less than FCC-hh.

eeFact2018 - 25/09/2018

Higgs production at an e⁺e⁻ collider

"Higgstrahlung" process close to threshold
 Production cross section has a maximum at near threshold ~200 fb
 10³⁴/cm²/s
 20'000 HZ events per year.

Z – tagging by missing mass

For a Higgs of 125GeV, a centre of mass energy of 240-250 GeV is optimal
In the selection of the selection

eeFact2018 - 25/09/2018

Higgs production at FCC-ee

FCC-ee 5 ab-1@240 GeV ~1.5 ab⁻¹@365 GeV

Higgs Factory!

	FCC-ee 240 GeV	FCC-ee 350 GeV
Total Integrated Luminosity (ab ⁻¹)	5	1.5
# Higgs bosons from e⁺e⁻→HZ	1,000,000	180,000
# Higgs bosons from fusion process	25,000	45,000

Higgs couplings to Z

- Recoil method provides a unique opportunity for a decay-mode independent measurement of the HZ coupling
 - Higgs events are tagged with the Z boson decays, independently of Higgs decay mode, m_{recoil} = m_H
 - Expected precision 0.7% on the ZH cross section
 - Using only leptonic Z decays and only a measurement at 240 GeV so far

INFN Z-tagging by missing mass

total rate $\propto g_{HZZ}^{2}$ $\propto g_{\rm HZZ}^4/\Gamma_{\rm H}$ ZZZ final state \rightarrow measure total width $\Gamma_{\rm H}$

SZ

WW

g_{HZZ} to ±0.2% and many other partial widths empty recoil = invisible width 'funny recoil' = exotic Higgs decay easy control below threshold

5 ab⁻¹

90 100 110 120 130 140 150

m_{Recoil} (GeV)

Higgs boson width

- Total Higgs boson width can be extracted from a combination of measurements in a model independent way
 - 1) tagging Higgs final states

$$\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

2) measurements of vector boson fusion production at 365 GeV

$$\frac{\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow WW) \cdot \sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow bb)}{\sigma(ee \rightarrow \nu\nu H) \cdot BR(H \rightarrow bb)}$$

$$\propto \frac{g_{HZ}^2 \cdot g_{HW}^2}{\Gamma} \cdot \frac{g_{HZ}^2 \cdot g_{Hb}^2}{\chi} \cdot \frac{\chi}{g_{HW}^2 \cdot g_{Hb}^2} = \frac{g_{HZ}^4}{\Gamma}$$
3) combination of all measurements

Precision obtainable on $\delta\Gamma_H/\Gamma_H \sim 1.6\%$

→ \v\

) 360 √s (GeV)

320

300

240

$\overbrace{\text{Higgs boson couplings, ZH}}^{\text{Higgs boson couplings, ZH}}$

CLD: 15% improvement due to higher lepton efficiency

$\overbrace{\text{Higgs boson couplings, ZH}}^{\text{Higgs boson couplings, ZH}} Higgs boson couplings, ZH \rightarrow \ell\ell bb$

CLD: 20% improvement due to higher lepton efficiency and better b tagging

$\overbrace{\text{Higgs boson couplings, ZH}}^{\text{Higgs boson couplings, ZH}}$

Events/1 GeV CLD 18H ZΗ 5 ab⁻¹ 16 SZ ww 14 🗌qqbar 12 10 100 105 110 115 120 125 130 135 140 145 150 m_{miss} C. Bernet FCC week 2018

Ongoing work, should lead to better results in TDR

CLD: 35% improvement due to better b tagging and particle flow

Higgs boson couplings

Precision Higgs coupling measurements

- Absolute coupling measurements enabled by HZ cross section and total width measurement
- Data at 365 GeV constrain total width
 - solve only used $H \rightarrow bb$ in fusion production so far
- Tagging individual Higgs final states to extract various Higgs couplings
- Couplings extracted from model-independent fit
- Statistical uncertainties are shown for 5 ab⁻¹@240 GeV and 1.5 ab⁻¹@365 GeV (from arXiv:1308.6176)
 - all measurements are under review / are being redone
 - possible improvements of 10-35% on cross section measurements

in %	FCC-ee 240 GeV	+FCC-ee 365 GeV	+HL-LHC
δ g Hzz	0.25	0.22	0.21
δ g _{Hww}	1.3	0.47	0.44
$\delta \mathbf{g}_{Hbb}$	1.4	0.68	0.58
δ g _{Hcc}	1.8	1.23	1.20
$\delta {f g}_{{\sf Hgg}}$	1.7	1.03	0.83
δ g Ηττ	1.4	0.8	0.71
δ g _{Ημμ}	9.6	8.6	3.4
δ g _{Ηγγ}	4.7	3.8	1.3
δ g _{Htt}			3.3
δΓΗ	2.8	1.56	1.3

Several couplings improve further by doing a combined fit with HL-LHC

Comparison with other e⁺e⁻ colliders

Collider	μ Coll 125	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀	FCC-ee ₃₆₅
Years	6	15	7	6	7	3	
Lumi (ab ⁻¹)	0.005	2	0.5	3	5		lider.5
δ m_H (MeV)	0.1	14	110	10	lit	ear 7	6
δΓ _Η / Γ _Η (%)	6.1	3.8	6.3	.0	OVE ^{2.6}	2.8	1.6
δ g_{нь} / g_{нь} (%)	3.8	1.8	103	redge 1.8	1.3	1.4	o.68
δ g_{HW} / g_{HW} (%)	3.9		3 1.3	1.7	1.2	1.3	0.47
δ g_{Hτ} / g_{Hτ} (%)	00	ha 1.9	4.2	1.9	1.4	1.4	0.80
δg _{Ηγ} / α	d Cer	6.4	n.a.	6.1	4.7	4.7	3.8
C.ee.	3.6	13	n.a.	12	6.2	9.6	8.6
δ g_{HZ} / g_{HZ} (%)	n.a.	0.35	0.80	0.32	0.25	0.25	0.22
δ g_{Hc} / g_{Hc} (%)	n.a.	2.3	6.8	2.3	1.8	1.Gr Re	een = be <u>st</u> d = worst

electron Yukawa coupling

s-channel Higgs production

- unique opportunity for measurement close to SM sensitivity
- highly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb;
- various Higgs decay channels studied
- studied monochromatization scenarios
 - baseline: 6 MeV energy spread, L
 = 2 ab⁻¹
 - optimized: 10 MeV energy spread,
 L = 7 ab⁻¹
 - Iimit ~3.5 times SM in both cases

Higgs measurements at the Higgs factory - Paolo Giacomelli

Higgs invisible decays

Higgs boson to invisible decays are predicted for instance in the Higgs-portal model of Dark Matter.

- Follows FCC-ee ZH cross section measurement
- for visualization BR(H->inv) = 100%
- 95%CL upper limit using 5ab⁻¹ is 0.47%
- Study using leptonic Z decays in Eur.
 Phys. J. C (2017) 77: 116
- Hadronic Z decays under study.
 Show similar performance

Excellent opportunities for BSM Higgs searches

- ➡ Very large HZ datasets allow g_{ZH} measurements of extreme precision
- Indirect and model-dependent probe of Higgs self-coupling

A precision on $\delta \kappa_{\lambda}$ of ±40% can be achieved, and of ±35% in combination with HL-LHC.

If c_z if fixed to its SM value, then the precision on $\delta \kappa_\lambda$ improves to ±20%

Higgs self-coupling at FCC-hh INFŃ

δμ **≅ 2-4%** δ⊓ **≅ 5%**

Details in arXiv:1606.09408 and arXiv1802.01607

eeFact2018 - 25/09/2018

۲

Higgs measurements at the Higgs factory - Paolo Giacomelli

HIGGS PHYSICS

Higgs couplings g_{Hxx} precisions

hh, eh precisions assume SM or ee measurements FCC-hh : $H \rightarrow ZZ$ to serve as cross-normalization

for ttH, combination of \pm 4% (model dependent)HL-LHC with FCC-ee will lead to ttH coupling to \pm 3%... model independent!

for g_{HHH} investigating now : the possibility of reaching 5σ observation at FCC-ee: 4 detectors

+ recast of running scenario

g _{Hxx}	FCC-ee	FCC-hh	FCC-eh
ZZ	0.22 %	< 1% *	
WW	0.47%		
Γ _H	1.6%		
γγ	4.2%	<1%	
Ζγ		1%	
ttH	13%	1%	
bb	0.7%		0.5%
ττ	0.8%		
сс	0.7%		1.8%
gg	1.0%		
μμ	8.6%	1-2%	
uu,dd	$H \rightarrow \rho \gamma$?	$H \rightarrow \rho \gamma$?	
SS	$H \rightarrow \phi \gamma$?	$H \rightarrow \phi \gamma$?	
ee	ee → H		
HH	40%	~3-5%	20%
inv, exo	<0.55%	10 ⁻³	5%

➡Fantastic prospects to probe the Higgs sector with FCC

- Large Higgs samples open new possibilities
- Model-independent measurements of g_{ZH} and total width with FCC-ee
- Precision measurements of Higgs boson couplings, including self couplings, mass, CP
 - sub-percent precision on several Higgs couplings only possible with FCC-ee
- BSM Higgs physics through direct and indirect measurements
- Synergy between FCC-ee and FCC-hh Higgs physics
- More precise Higgs measurements are foreseen for the FCC TDR.
- FCC-ee and FCC-hh (or CepC + SppC) will provide <u>by far</u> the best possible Higgs measurements of any accelerator.

- \Rightarrow H \rightarrow tt decay is a promising channel to study CP violation Events
 - Tree level couplings to quarks and leptons
 - CP-even and CP-odd couplings induced at the same order
- \rightarrow CP violation can be probed through τ polarization
 - \cdot **\tau** decays clean enough that the spin information is not washed out by hadronization effects
 - \ast pion emission preferred in the direction of the τ spin in rest frame

 $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$

exploring

* model using $\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + \mathrm{i}\gamma_5\sin\Delta)f$

- expected 68% CL
 - 0.17 radian (0.05 in * GEN level study)
 - 9.7 degree (2.9 in * GEN level study)

Higgs self-coupling at hadron colliders

Probing triple-Higgs coupling with double Higgs production

- Consistency of check of EWSB
- Reconstructing the Higgs potential
- Sensitivity through yields and kinematics
- Large enhancement through BSM possible
- Exhaustive program at the (HL-)LHC

