Diamond Based Fast Luminosity Monitoring for SuperKEKB

LumiBelle2 Project

Philip Bambade LAL-Orsay

LAL group: P. Bambade, S. Di Carlo, D. Jehanno, V. Kubytskyi, C.-G. Pang (PhD student)

P. Cornebise, D. El Khechen (PhD student 2012-2016), Y. Peinaud, C. Rimbault

<u>Collaborators</u>

- Belle II: Sadaharu Uehara + Belle II / BEAST team

- SuperKEKB: Yoshihiro Funakoshi, Kenichi Kanazawa, Mika Masuzawa, Yukiyoshi Ohnishi,

Yusuke Suetsugu, Makoto Tobiyama, Alan Fisher (SLAC), Uli Wienands (ANL)

Exploring the luminosity frontier with SuperKEKB

KEKB 2×10^{34} /cm²/s

SuperKEKB 8×10^{35} /cm²/s

Future e+e- circular colliders use "nanobeam" collision scheme

was tried for 1st time at SuperKEKB in 2018

SuperKEKB / Belle-II & "Machine-Detector Interface"

- Control beam induced backgrounds
- **Luminosity monitoring & tuning**
 - 1) Phase 1 : 2016/Feb. \rightarrow Jun.
 - single beam commissioning, vacuum scrubbing
 - no luminosity (no final focus), no detector
 - 2) Phase 2 : 2018/Feb. \rightarrow 2018/Jul.
 - colliding beam commissioning, no vertex detector
 - 3) Phase 3 : ~ February 2019...
 - towards full luminosity for physics running

parameters		KEKB		SuperKEKB		unito	
	parameters		LER	HER	LER	HER	units
	Beam energy	Еb	3.5	8	4	7.007	GeV
На	alf crossing angle	φ	11		41.5		mrad
	# of Bunches	N	1584		2500		
Но	rizontal emittance	εx	18	24	3.2	4.6	nm
	Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Ве	eta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
	Beam currents	Ιb	1.64	1.19	3.6	2.6	Α
be	am-beam param.	ξ	0.129	0.090	0.088	0.081	
	Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Hor	rizontal Beam Size	Qx*	150	150	10	11	um
Ve	ertical Beam Size	σ y*	0.94		0.048	0.062	um
	Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Nano-Beam Scheme SuperKEKB (design)

 $\beta_v = 300 \ \mu m$ $d \sim 300 \ \mu m$

→ mitigates hour-glass (and beam-beam) effects

Luminosity

Fast & slow variations at IP require feedback corrections

Beam-beam deflection for fast vertical motion

Luminosity feedback by "dithering" for slower horizontal motion

Horizontal motion \sim few Hz Modulation freq. $f_0 \sim 79$ Hz Sampling (lumi. meas.) ~ 1 kHz

- minimize f₀ output component
- dithering × lumi. signal → phase

Dithering coil x 12

Radiative Bhabha at vanishing scattering angle

 $\sigma \sim 250 \text{ mbarn } (E_{\gamma} > 1\% E_{\text{beam}})$

Correction for cross section due to finite beam size

Luminosity monitoring specs

- Relative measurements
- 10⁻² in 1 ms over all bunches ("dithering")
- 10^{-2} in ~ 1 s for each 2500 bunch $\rightarrow 4$ ns
- Dynamic range $\rightarrow 10^{32} \sim 10^{36}$ cm⁻²s⁻¹
- Non luminosity scaling contamination < 1% (e.g. beam gas bremsstrahlung and Touschek losses)

Y. Funakoshi (KEK), background workshop, Feb. 2012

Two complementary techniques

LumiBelle2

ZDLM (Zero Degree Luminosity Monitor)

Count photons and recoiling electrons or positrons from the radiative Bhabha process at vanishing scattering angle $\sigma \sim 250 \; mbarn \; (E_{\gamma} > 1\% \; E_{beam})$

- Diamond sensors
- $4 \times 4 \times 0.5/0.14 \ mm^3$ single crystal CVD diamond sensors
- Fast charge/current amplifiers
- Digital electronics

- Cherenkov and scintillator detectors + PMT
- $15 \times 15 \times 64 \ mm^3$ LGSO non-organic scintillator and Escrystal (quartz)
- Analog electronics

LER side

•Signal: Bhabha positrons

 Background: Bremsstrahlung and Touschek positrons

•Platform: 11 m after IP

•3 sensors aligned

•Window + radiator

HER side

•Signal: Bhabha photons

 Background: Bremsstrahlung photons, Touschek electrons

•Platform: 30.5-30.8 m after IP

•3 sensors: up & down, (side)

HER beam pipe

DAQ and online signal processing

TIL: if
$$S[(i-1) \times 2 + 1] - S[(i-1) \times 2 + 3] > threshold$$
:

TIL
$$+= S[(i-1) \times 2 + 1] - S[(i-1) \times 2 + 3]$$

RAWSUM: if S(j) > threshold: Rawsum += S(j)

No trigger + Synchronization to RF ----> Continuous monitoring, averaging at 1 kHz TIL and RAWSUM are different ways of calculating the luminosity from the measured signal

Single beam background

Coulomb

- Proportional to vacuum pressure and beam current
- Important globally but negligible for luminosity monitoring

dominant for LumiBelle2

Bremsstrahlung

- Proportional to vacuum pressure and beam current
- Largest source of background in phase 2
- Photons measured at HER side
- Positrons measured at LER side

Touschek

- Proportional to square of beam current
- Inversely proportional to beam size

Luminosity signal

Radiative Bhabha process

- Scattered @ IP
- Proportional to luminosity
- Large cross-section

Background study (1)

- Background measurement:

Dominant

+Touschek $\propto I^2/(\sigma_x\sigma_y\sigma_z) \propto I \times P$

Pressure is proportional to current

Background signal is proportional to product of beam current and pressure

Background study (2)

First collision – April 26, 2018

Control room display of recent luminosity run (June 16, 2018)

Normalization of LumiBelle2 w.r.t. ECL LOM absolute luminosity (channel / configuration dependent + can evolve in time... is monitored)

LER 1st	LER 2 nd	HER 1st	HER 2 nd
$(25 \pm 8)10^2$	$(4 \pm 1) \ 10^2$	(13 ± 4)	1.2 ± 0.4

LumiBelle2 LER compared to ZDLM and ECL LOM

Offline check of LumiBelle2 channel correlations

Application: input to dithering feedback to maintain collisions horizontally

Application: Luminosity fitting w.r.t. IP beam tuning parameters

- Example: vertical offset scan to estimate average of e+ and e- σ_v at IP
 - offset scans usually range from $\Delta y = -14 \mu m$ to $\Delta y = +14 \mu m$
 - σ_{v} estimated from 4 LumiBelle2 luminosity monitors
 - bias from beam-beam induced blow-up for high current and/or small β^*
 - → can help to probe the beam-beam blow-up and benchmark the beam-beam simulations

$$\frac{L}{L_0} = exp\left(-\frac{\Delta y^2}{2\Sigma_y^2}\right)$$

$$\Sigma_y^2 = \sigma_{1,y}^2 + \sigma_{2,y}^2 \approx 2\sigma_y^2$$

Evolution in σ_y^* in May

- $\sigma_{\mathcal{V}}^*$ is obtained for each monitor and averaged
- The errors combine statistical and systematic measurement uncertainties
- Already some bias from the beam-beam blow-up ?

Sensitive luminosity monitor important to correct optical aberrations in vertical IP beam size*

→ must do at very low intensity to avoid confusion from beam-beam blow-up

^{*} Yukiyoshi Ohnishi's opening plenary talk on Monday 24/9

SNR and optimum offset from vertical beam offset scan

- $L_{ECL-LOM} = 1.3 \ 10^{32} \ cm^{-2} \ s^{-1}$
- measured SNR \sim 65 (simulation \rightarrow 42)
- optimum collision offset $\sim 0.19 \mu m$
- $\Sigma_{\rm v} \sim 0.51~\mu{\rm m}$

Application: bunch-by-bunch luminosity monitoring

- $-L_{ECL-LOM} = 1.6 \ 10^{33} \ cm^{-2} \ s^{-1}$ (end of Phase 2)
- $-N_{\text{bunch}} = 395$
- bunch separation = 32 ns (nominally \rightarrow 4 ns)
- RMS bunch luminosity spread = 9.3 %
- RMS bunch current product spread = 8.7 %
- integrated lumi. precision @ 1 kHz = 2.35%
- bunch-by-bunch Lumi precision @ 1 Hz = 1.5%

Conclusion and prospects

LumiBelle2 operated satisfactorily during Phase 2

- reasonable agreement with simulation for single beam backgrounds
- provides useful online luminosity information for SKB machine tuning (e.g. IP beam size tuning)
- 1st test as input to horizontal IP orbit dithering feedback \rightarrow Cf. Y. Funakoshi's talk on Wednesday
- application: evaluate mean σ_v of beams at IP ightarrow "Van der Meer" scans @ LHC
- bunch-by-bunch luminosities

Future evolution of LumiBelle2

- increase HER signal rates → have identified and will use better location for Phase 3
- faster charge amplifiers & lower noise current amplifiers
- long term DAQ solution, possibly with a few more channels
- shielding / protection to mitigate activation on LER side under study
- ability to easily vary signal acceptance to keep few % precision @ 1 kHz over 10^{32} 10^{36} cm⁻²s⁻¹
 - → important to limit accumulated radiation dose
- more remote operation, with less human resources and less presence at KEK
 - → one of LAL Belle II group service tasks

Application to future high energy colliders

- start by evaluating basic specifications and methods

Backup slides

LumiBelle2 precision/dose and luminosity

HER:

- Initially low precision
- Low dose

LER:

- High precision
- High dose
- Need both HER and LER to cover full range of SKB luminosities;
- HER precision can be improved with larger diamonds;
- LER can be moved to receive a lower dose;
- Recent study shows % level precision enough for horizontal IP orbit feedback with dithering technique

Phase	Luminosity (cm ⁻² s ⁻¹)	ΔL/L HER/LER (%)	<i>Dose</i> HER/LER (Mgy/h)
2.1	1×10^{33}	28.9 / 2	2e-7 / 2e-4
2.2	1×10^{34}	20.7 / 0.6	1.5e-6 / 1.5e-3
2.3	2×10^{34}	15.1 / 0.4	3e-6 / 3e-3
2.4	4×10^{34}	10.5 / 0.3	6e-6 / 6e-3
3	8×10^{35}	3.1 / 0.07	1.2e-4 / 0.12