Optics correction including IP local coupling at SuperKEKB

Akio Morita SuperKEKB Commissioning Group

eeFACT 2018

This work was supported by JSPS KAKENHI Grant Number 17K05475.

Final Focus System Test

- Check both cable connection and operation software by using single kick and local orbit bump.
 - Fixed following connection errata.
 - Miss-connection between QC1LP and QC1RP BPMs.
 - Miss-connection between skew quadrupole and vertical dipole steering winding on QC2LP magnet.
 - Polarity inversion in HER vertical dipole steering.
 - Found hysteresis of superconducting dipole steering correctors.
 - It WOULD be caused by physical properties of superconducting wire.
 - Blocker for accurate IP local orbit control.
- Calibrate both electrode gain balance and position offset for final focus quadrupole(QC*) BPMs.
 - The QC* electrode gain error is larger than gain error of arc section BPMs.

Global Optics Correction

- Optics measurement & correction method is same as phase-1 commissioning.
 - It is based on closed orbit response measurement by using multi-turn BPMs(not TbT).
 - Cross talk of vertical orbit response by horizontal single steering kick(XY-Coupling)
 - Orbit response difference by shifting cavity frequency(Physical Dispersion)
 - Fitting $\sqrt{\beta} \cos \varphi$, $\sqrt{\beta} \sin \varphi$ to single steering kick response(Global Beta)
 - Correction by using linear model response with singular value decomposition(SVD)

Correction	Target function	Variables
XY-coupling	Δy (cross talk of horizontal single kick)	ΔSK1
V-dispersion	Δηγ	ΔSK1
H-dispersion	Δηχ	Δ K1 & H-bump on sextupoles
Global beta	Δν, Δβ/β, Δφ	ΔK1

- For skew quadrupole winding on sextupole pair, the orthogonal ΔSK1 parameter sub-spaces are used for XY-coupling and vertical dispersion correction, respectively.
- Frequent optics measurement compared with phase-1 commissioning.
 - Phase-2 ~7.5 measurements/day (~900 measurements / 120days)
 - Phase-1 ~3.3 measurements/day (~500 measurements / 150days)

HER IR Orbit Issue

 In order to reduce temperature discrepancy between upper and lower side of HER downstream vacuum pipe, IR vertical angle of HER is adjusted.

- Vacuum pressure around heat spot is improved.
- Vertical dispersion correction is improved.

QKSL* Issue(1)

• The large discrepancy between prediction and measurement after correction is found in HER XY-coupling correction using QKSL* skew quadrupole winding on LCC sextupole magnet.

QKSL* Issue(2)

- Checking hardware, optics and etc...
 - It is caused by main sextupole current dependency of skew quadrupole excitation coefficient.
- Fixed by introducing calibration factor depending with main sextupole current into optics server software.(not EPICS IOC)

HER XY-Coupling Correction

Almost same quality

CAUTION: Steering set is different.

LER XY-Coupling Correction

XY-coupling degradation is found. But, IR section is not so bad.

It can not be explained by tunnel subsidence(sextupole alignment).

Is it caused by permanent magnet device for e⁻ cloud?

CAUTION: Steering set is different.

Global Beta Correction

Beta Squeezing & Luminosity Scaling

- We are detuning/squeezing β^* by using matching section quadrupoles: QLA & QLB.
 - Transfer matrix between IP and vertical local chromaticity corrector(Y-LCC) is not changed.
 - But, phase advance of IR section is changed by squeezing. (Need to rematch tune section)
- Luminosity scaling law: $L = \frac{f_L}{2\pi\sqrt{2}}$

$$L = \frac{f_{rev}}{2 \pi \sqrt{2} \sigma_z \phi_x} \frac{N N + nb}{\sqrt{(\epsilon_{v-} + \epsilon_{v+})\beta_v^*}}$$

– Luminosity is proportional to inversed square-root of β_v^* if vertical emittance is kept.

Beta Squeezing Table

Phase	βx* [mm]		By* [mm]		State	L _{peak} cm ⁻² s ⁻¹	I _{LER} /I _{HER} , nb [mA]	Start
	LER	HER	LER	HER				
2.0	384	400	48.6	81	Detuned for Beam Capture			
2.1.0	200		8	3	Collision	9.3 x 10 ³²	250/220, 600	04/16
2.1.1	200		6	5	Collision	13.7 x 10 ³²	340/285, 789	05/22
2.1.2	200		4	1	Collision	13.6 x 10 ³²	340/285, 789	05/28
2.1.3	200		4	3	Collision	13.2 x 10 ³²	240/285, 789	06/08
2.1.4	200			3	Collision	10.5 x 10 ³²	320/265, 789	06/11
2.1.5	100		Z	1	Collision	10.9 x 10 ³²	340/285, 789	06/12
2.1.6	200	100	Z	1	Collision	19.0 x 10 ³²	340/285, 789	06/13
2.1.7	200	100		3	Collision	26.6 x 10 ³²	340/285, 789	06/20
2.2.0	200			2	Optics Correction			06/07
2.3.0	100			2	Not achieved	@ 20)18.07.03(not up	-to date

QCS Quenchs in β_v^* Squeezing

- We have many QCS quenches during early stage of β_{y}^{*} squeezing.
 - It blocks our study. (Typical recovery time 2 hours)
 - Quench is mainly occurred in QC1(vertical final focus quadrupole).
 - It WOULD be caused by beam loss due to increased β_y at QC1 and degraded XY-coupling.
- Workaround
 - Use beam collimator to protect QCS.
 - Reduce step size of βy^* squeezing.
 - Perform fine optics correction and injection tuning before next squeezing step.
 - Link Belle-II diamond background detector to beam abort system in order to abort beam before QCS quench by detecting beam loss near QCS.

After applying workarounds, we squeeze β_y^* from 4mm to 2mm without QCS quenches.

Unscaled Luminosity at Squeezing

- Luminosity does not increase at squeezing β_v^* from 6mm to 4mm.
- Vertical beam size measured by X-ray monitor is shrinked as decaying beam current, however, specific luminosity does not increase.
 - While HER vertical beam size was shrinking by factor 3 due to beam current decay, specific luminosity was kept almost constant.
- We found discrepancy between vertical beam size of beam-beam scan and X-ray monitor measurements.
 - Beam-Beam scan size: $\sigma_{y \text{ scan}}^{*} = 1.2 \mu m$
 - X-ray monitor size: $\sigma_v^* \sim 0.4/0.5 \mu m$ (LER/HER)

Geometrical mismatch between two beams is suspected. Need to check geometrical error at IP: waist, R1*, R2*, η_v^* , ...

Waist Scan

IP Coupling/Dispersion Knob Scan

Big HER R2* error is found. R2* << -3 mm

Where R2* come from?

Why is not R2* error found by global coupling measurement?

HER R2* Knob Issue

- Scan range is limited by power supply of skew quadrupole winding on arc sextupoles. (± 3mm typ.)
 - ±3mm scan range is not enough to find luminosity peak.
- 3mm R2* knob height already exceeds perturbative region.
 - R2* knob side effect makes vertical emittance growth.
- Another R2* tuning:
 - Reintroduce orbit knob by using vertical orbit bump at arc sextupole pairs used in KEKB B-factory.
 - Vertical orbit bump for HER arc section is acceptable, because of old coppor round vacuum chamber.
 - Correct R2* by using QCS skew quadrupole corrector to avoid vertical dispersion generation by large skew quadrupole/orbit bump R2* knobs.

Specific Luminosity before & after IP coupling knob tuning

Phase 2.1.6: $\beta_x^* = 200/100$ mm(LER/HER), $\beta_v^* = 4$ mm, I = 340/285mA(LER/HER), nb = 789

Beam-beam scan before & after IP coupling knob tuning

Phase 2.1.6: $\beta_x^* = 200/100$ mm(LER/HER), $\beta_v^* = 4$ mm, I = 15/15mA(LER/HER), nb = 1576

Summary

- β_{v}^{*} squeezing & Beam operation
 - β_v^* is squeezed down to 2 mm for both rings. (optics correction)
 - We have achieved collision operation with β_y^* = 3mm and luminosity is not limited by hourglass effect at this β_y^* .
- Optics correction
 - Global correction works fine, however, new XY-coupling error is found in LER arc section.
 - Large R2* error, which is a source of luminosity loss, is found by knob scan.
 - It is corrected by using QCS skew quadrupole, because it is too large to adjust by IP coupling/dispersion tuning knob.
 - HAVE TO identify error source and feedback to optics modeling.

Optics Issue for Phase-3

- Improve optics measurement accuracy in order to reach ultra low emittance operation for phase-3.
 - Large orbit displacement by either large single kick or large frequency shift makes beam loss at beam collimator.
 - Orbit response measurement by using high storage beam current for good BPM S/N has risk to destroy vacuum component.
- Introduce individual quadrupole corrector in arc cell for global beta correction.
 - Resolve offset accumulation of individual correctors.
 - Introduce individual -I cell correction.(How to prevent miscorrection?)
- Improve tuning knob software framework for daily tuning & study.
 - Complete preliminary tuning knob software developed in phase-2 commissioning.
 - Test & deploy synchronus magnet setting.
- Evaluate side effect of e-cloud countermeasure magnetic devices.

Backup Slides

Phase 2.1.7 IR Optics

>

HER IP Coupling/Dispersion Knob

Smallest Beam-Beam Scan Size

Phase 2.1.7: βx* = 200/100mm(LER/HER), βy* = 3mm, I = 15/15mA(LER/HER), nb = 1576 measured at 2018.06.29 22:40 JST

