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Large emittance ratio, ✏y/✏x = 0.201%



Vertical dispersion & betatron coupling 
dominate εy growth 
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Vertical emittance: 

Sources of vertical emittance growth:  
•  vertical dispersion Dy 

•  betatron coupling 
•  opening angle ~       (here negligible) 
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L: cell length
lB : dipole length
�: phase advance/cell



Correction methods used: 
•  Orbit correction:

–  MICADO & SVD from MADX
•  Hor. corrector at each QF, Vert. corrector at each QD
1598 vertical correctors / 1590 horizontal correctors
•  BPM at each quadrupole
1598 BPMs vertical / 1590 BPMs horizontal  

•  Vertical dispersion and orbit:
–  Orbit Dispersion Free Steering (DFS) 

•  Linear coupling:
–  Coupling resonant driving terms (RDT)

•  1 skew at each sextupole + skews correctors at the IP 

•  Beta beating correction & Horizontal dispersion via Response Matrix:
–  Rematching of the phase advance at the BPMs

•   1 trim quadrupole at each sextupole
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(N . M) or under (N , M) constrained. In the for-
mer and most frequent case, Eq. (7) cannot be solved
exactly. Instead, an approximate solution must be found,
and commonly used least square algorithms minimize the
quadratic residual

S ! k "u 1 A "uk2 . (8)

Dispersion free steering is based on the extension of
Eq. (7) to include the dispersion at the BPMs. The ex-
tended linear system is

µ
!1 2 a""u

a "Du

∂
1

µ
!1 2 a"A

aB

∂
"u ! 0 , (9)

where vector "Du (dimension N) represents the dispersion
at the BPMs. B is the N 3 M dispersion response matrix,
its elements Bij giving the dispersion change at the ith
monitor due to a unit kick from the jth corrector. The
weight factor a is used to shift from a pure orbit (a !
0) to a pure dispersion correction (a ! 1 ). In general,
the optimum closed orbit and dispersion rms are not of
the same magnitude and a must be adjusted for a given
machine. a can, in principle, be evaluated from the BPM
accuracy and resolution. Applied to Eq. (9), a least square
algorithm will minimize

S ! !1 2 a"2 k "u 1 A "uk2 1 a2 k "Du 1 B "uk2 . (10)

Singular response matrices are a well-known problem of
orbit corrections. The singularities are related to redundant
correctors, i.e., areas of the machine where the sampling
of the orbit is insufficient. Such situations yield numeri-
cally unstable solutions where large kicks are associated
to minor changes in the orbit. A standard cure consists in
disabling a subset of correctors and removing the corre-
sponding lines from the linear systems of Eqs. (7) and (9).
Regularization can also be obtained by extending Eq. (9)
to constrain the size of the kicks,0

B@
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a "Du
"0

1
CA 1

0
@ !1 2 a"A

aB
bI

1
A "u ! 0 . (11)

Here "0 is a null vector of dimensionM, I is a unit matrix of
dimension M 3 M, and b is a kick weight. The quadratic
residual now contains the rms strength of the corrector
kicks,

S ! !1 2 a"2 k "u 1 Auk2 1 a2 k "Du 1 B "uk2

1 b2 k "uk2 , (12)

and large kicks are suppressed since they receive a penalty
which can be adjusted with b.
Various other constraints can be added to the linear sys-

tem to be solved, for example, to maintain a constant or-
bit length or to stabilize the beam at given locations in
the ring. Adequate weight factors can be used to control

the importance of such constraints. It is also possible to
correct the machine coupling using a similar scheme. The
orbit coupling of horizontal corrector kicks into the ver-
tical plane is then minimized using skew quadrupoles as
correcting elements [10]. To simplify the expressions in
the following sections, vector "d and matrix T are defined
as

"d !

0
@ !1 2 a" "u

a "Du
"0

1
A, T !

0
@ !1 2 a"A

aB
bI

1
A , (13)

with

"d 1 T "u ! 0 . (14)

A. Singular value decomposition (SVD) and orbit
eigenvectors

Dispersion free steering is particularly interesting in
conjunction with the singular value decomposition (SVD)
algorithm [11,12], because it allows a simultaneous limi-
tation of the corrector kick strength. The SVD algorithm
is a powerful tool to handle singular systems and to solve
them in the least square sense. For M $ N the singular
value decomposition of matrix T has the form

T ! UWVt ! U

0
BB@

w1 0 · · · 0
0 w2

· · · · · · 0
0 · · · 0 wM

1
CCAVt, (15)

where W is a diagonal M 3 M matrix with non-negative
diagonal elements and Vt is the transpose of the M 3 M
orthogonal matrix V,

VVt ! VtV ! I , (16)

while U is an N 3 M column-orthogonal matrix

UtU ! I . (17)

The vector "q !i", corresponding to the ith column of
matrix V,

"q !i" !

0
BB@

V1 i
V2 i
· · ·
VMi

1
CCA , (18)

is an eigenvector with eigenvalue w2
i $ 0 of the M 3 M

symmetric matrix TtT [12,13],

TtT "q !i" ! w2
i

"q !i". (19)

It follows from Eq. (16) that the M vectors "q !i" form an
orthonormal base of the corrector space since

! "q !i" ? "q !j"" ! "q !i"t "q !j" ! dij . (20)
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devices: two x-ray pinhole cameras (D09, D25), plus 11
in-air x-ray detectors (C03, C05, . . ., C31) placed along the
ring. Details on these diagnostic tools can be found in
Ref. [25]. A typical result before coupling correction is
shown in Fig. 3.

The distribution of skew quadrupole strengths along the
machine is derived as follows:

Jw;1 ¼ "½Kw;1 þ !Kw;1% sinð2!wÞ; (29)

where the index w ¼ 1; 2; . . . ; 256 corresponds to the po-
sition of the 256 main quadrupoles, where the skew quad-
rupole integrated strengths are inserted. Following the
procedure described in Sec. II D, the projected emittances
may be evaluated together with all other optics parameters.

IV. SCHEME FOR COUPLING CORRECTION AND
VERTICAL EMITTANCE MINIMIZATION

The ESRF storage ring is equipped with 32 independent
corrector normal quadrupoles to compensate focusing er-
rors induced by !Kw;1. Coupling (and vertical dispersion)
correction is performed by means of 32 independent skew
quadrupoles, distributed rather uniformly around the ring.

Until the end of 2009 coupling correction was performed
by minimizing along the ring either the vertical eigenemit-
tance or the apparent one (as computed by AT) via the
Matlab function FMINSEARCH. The dependence of the ver-
tical emittances on the corrector strengths being quadratic,
this resulted in a nonlinear multidimensional minimization
over 32 parameters. The main drawbacks of this approach
are CPU time (about 10 min for 500 iterations) and the risk
of limited improvements whenever a local minimum (not
necessarily the lowest) is found.

Equations (5) and (14) suggest an intuitive considera-
tion: the lower the RDTs (i.e. the coupling), the lower
the vertical emittance, as the contribution from the large
horizontal equilibrium emittance Eu is minimized. A set-
ting for the 32 skew quadrupole correctors may be then

found to minimize as uniformly as possible both coupling
RDTs along the ring. The system to invert via SVD reads

~f1001
~f1010

 !
meas ¼ "M ~Jc; (30)

where ~Jc ¼ ðJð1Þ1 ; . . . ; JðcÞ1 ; . . . ; Jð32Þ1 Þ are the integrated
strengths of the 32 corrector skew quadrupoles to be

determined, ~fT ¼ ðfð1Þ; . . . ; fðwÞ; . . . ; fð224ÞÞ is a 224 (com-
plex) vector containing the measured or computed RDT at
all BPMs, and M is the (complex) RDT ð224 ( 2Þ ) 32
response matrix, whose generic element according to
Eq. (10) reads

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;x"!#ðcÞ

w;yÞ

4ð1" e2$iðQu"QvÞÞ
for w * 224; (31)

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;xþ !#ðcÞ

w;yÞ

4ð1" e2$iðQuþ QvÞÞ
for w> 224; (32)

where "ðcÞ is the beta function at the location of the skew

corrector c, and !#ðcÞ
w is the phase advance between the

same corrector and the BPM w. By inverting via SVD the
linear system of Eq. (30) the strengths for the corrector
magnets that best reduce the coupling RDTs are derived.
By itself coupling correction implies thatC2 ’ 1,S2

+ ’ 0,
and hence that %y ’ Ey ’ Ev. This, however, is not suffi-
cient, as the eigenemittance Ev is minimized only after a
further correction of vertical dispersion, i.e., after minimiz-
ingH y, see Eq. (27). Skewquadrupolesmay still be used to
this end. Indeed, Eq. (30) may be generalized as follows:

a1 ~f1001

a1 ~f1010

a2 ~Dy

0
BBB@

1
CCCA

meas

¼ "M ~Jc; (33)

whereM is now a ð224 ( 2 þ 224Þ ) 32matrix. The generic
element of the additional 224 ) 32 block reads

mw;c ¼
!DðwÞ

y

!JðcÞ1

; (34)

where!DðwÞ
y is the vertical dispersion distortion at the BPM

number w induced by the skew corrector strength !JðcÞ1 .
These terms need to be computed by means of optics codes,
as they depend on the error lattice model. The weights
a2 ¼ 1" a1 are introduced in order to determine the best
compromise between correction of dispersion and deterio-
ration of coupling. Their determination is empirical and in
the case of the ESRF storage ring the best correction is
found for a2 ¼ 0:7. Note that the system of Eq. (33) is
analogous to the one already proposed and successfully
implemented in Ref. [14], with the difference of having
the RDTs instead of the vertical orbit distortion to be
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FIG. 3. Example of comparison between the apparent emittan-
ces Ey (before coupling correction) measured at ten available in-
air x-ray detectors (blue) and the predictions of AT (red) after
creating the lattice error model from the ORM measurement of
January 16, 2010.

VERTICAL EMITTANCE REDUCTION AND PRESERVATION . . . Phys. Rev. ST Accel. Beams 14, 034002 (2011)
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Initial assessment 

Quadrupoles: �y = 2 µm

Sextupoles: �y = 10 µm

Tessa Charles, eeFACT2018, Hong Kong 5

Dy,rms (mm)y, rms (mm)



Correction methods applied to  
Vertical Quadrupole Misalignments (σy =100 μm) 

Initial Dy

After orbit correction - factor 2e4 improvement

DFS - factor 50 improvement

Sextupoles turned off:

Initial Dy
After orbit correction - factor 2e4 improvement
DFS - factor 50 improvement

Switch on  
sextupoles

Dispersion correction during the coupling correction

Factor ~10
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 Coupling matrix elements 
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Beta-beating Correction – Weighted SVD 
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 Arc quads:   Δx = 100 μm,  Δy = 100 μm,  Δθ = 100 μm
Sextupoles: Δx = 100 μm,  Δy = 100 μm,  Δθ = 100 μm 

Beta-beat introduced through:



Correction Strategy 
•  Sextupoles strengths set to 0 

–  x-y orbits correction 
–  Coupling correction 
–  Tune matching 
–  Beat-beat correction 
–  1 step Dispersion Free Steering wo sextupole (Dy correction) 

+ 
1 step coupling correction (kicker strength change the coupling configuration) 

–  Save x,x’,y,y’ at the beginning of the machine 

•  Set sextupoles strength to 10% of their design current 
–  orbit corrections 
–  coupling correction, tune matching 
–  beta beat correction 
–  coupling + Dy correction 
–  increase by 10% the sextupole strength 

 
•  Final correction 

–  Coupling corrections 
–  Weighted beat-beat correction 

This avoid the tunes run of to 
resonance and maximize the 
number of seeds 

Loop 20 times 

7-8h up to one day of 
simulation/seed 
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�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 0 0 0
sextupoles 100 100 0

436 out of 500 seeds converged

εy = 0.093 pm +/-  0.01
εx  = 1.520 nm +/- 0.009
εy/εx= 0.006% (limit 0.1%)

IP quads perfectly aligned (for now)
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- Misaligned arc quads & sextupoles   

Corrected Lattice 



�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 50 50 50
sextupoles 100 100 0

 
- Misaligned arc and IP quads & sextupoles   

700 out of 1000 seeds converged

εy = 0.099 pm +/-  0.013
εx  = 1.52 nm +/- 0.01
εy/εx = 0.0065% (limit 0.1%)
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Corrected Lattice 



Vertical dispersion highly susceptible 
misalignments 
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 quadrupoles:   Δx = 100 μm,  Δy = 100 μm,  Δθ = 100 μm
Sextupoles: Δx = 100 μm,  Δy = 100 μm,  Δθ = 100 μm 

Dispersion introduced through:

Dy,rms = 261.1 m Dy,rms = 1.02 mm



Beta beat after correction 
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�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 100 100 100
sextupoles 100 100

 
- Misaligned arc and IP quads & sextupoles   

369 out of 1000 seeds converged

εy = 0.11 pm +/-  0.03
εx= 1.52 nm +/- 0.01
εy/εx= 0.0073% (limit 0.1%)
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Corrected Lattice 



To increase the number of successful seeds: 

•  Add more tune matching to strategy. 

•  Start with relaxed optics, before reducing β*. 

•  Place limit on maximum trim and skew quad strength that can be 
applied any given iteration step. 



Dynamic	/	momentum	aperture	for	205	lattice	–	corrected	machines	
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�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 50 50 50
sextupoles 100 100 0



Dynamic	/	momentum	aperture	for	205	lattice	–	corrected	machines	
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Dynamic / Momentum aperture 
 with radiation damping and quantum excitation

Tracking 
done by
T. Tydecks

Apertures sufficient for beam 
storage and injection.

�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 50 50 50
sextupoles 100 100 0



Conclusions 

•  FCC-ee poses a unique challenge for emittance tuning
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•  With 100 μm, 100 μrad misalignments in 
arc quads & sextupoles and 50μm and 50 
μrad misalignments in IP quads, the mean 
vertical emittance achieved after correction 
schemes applied is εy = 0.11 pm rad

εy = 0.11 pm +/-  0.03
εx= 1.52 nm +/- 0.01
εy/εx= 0.0073%



Back up slides – top v213 lattice 

�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 0 0 0
sextupoles 100 100 100
dipoles 100 100 100

�x (µm) �y (µm) �✓ (µrad)

arc quadrupoles 100 100 100
IP quadrupoles 50 50 50
sextupoles 100 100 100
dipoles 100 100 100



Back up slides - DFS  
•  Build	numerically	a	matrix	for	vertical	orbit	(u)	&	dispersion	(Du)	response	

under	a	corrector	kick	(al)	
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(N . M) or under (N , M) constrained. In the for-
mer and most frequent case, Eq. (7) cannot be solved
exactly. Instead, an approximate solution must be found,
and commonly used least square algorithms minimize the
quadratic residual

S ! k "u 1 A "uk2 . (8)

Dispersion free steering is based on the extension of
Eq. (7) to include the dispersion at the BPMs. The ex-
tended linear system is

µ
!1 2 a""u

a "Du

∂
1

µ
!1 2 a"A

aB

∂
"u ! 0 , (9)

where vector "Du (dimension N) represents the dispersion
at the BPMs. B is the N 3 M dispersion response matrix,
its elements Bij giving the dispersion change at the ith
monitor due to a unit kick from the jth corrector. The
weight factor a is used to shift from a pure orbit (a !
0) to a pure dispersion correction (a ! 1 ). In general,
the optimum closed orbit and dispersion rms are not of
the same magnitude and a must be adjusted for a given
machine. a can, in principle, be evaluated from the BPM
accuracy and resolution. Applied to Eq. (9), a least square
algorithm will minimize

S ! !1 2 a"2 k "u 1 A "uk2 1 a2 k "Du 1 B "uk2 . (10)

Singular response matrices are a well-known problem of
orbit corrections. The singularities are related to redundant
correctors, i.e., areas of the machine where the sampling
of the orbit is insufficient. Such situations yield numeri-
cally unstable solutions where large kicks are associated
to minor changes in the orbit. A standard cure consists in
disabling a subset of correctors and removing the corre-
sponding lines from the linear systems of Eqs. (7) and (9).
Regularization can also be obtained by extending Eq. (9)
to constrain the size of the kicks,0

B@
!1 2 a" "u

a "Du
"0

1
CA 1

0
@ !1 2 a"A

aB
bI

1
A "u ! 0 . (11)

Here "0 is a null vector of dimensionM, I is a unit matrix of
dimension M 3 M, and b is a kick weight. The quadratic
residual now contains the rms strength of the corrector
kicks,

S ! !1 2 a"2 k "u 1 Auk2 1 a2 k "Du 1 B "uk2

1 b2 k "uk2 , (12)

and large kicks are suppressed since they receive a penalty
which can be adjusted with b.
Various other constraints can be added to the linear sys-

tem to be solved, for example, to maintain a constant or-
bit length or to stabilize the beam at given locations in
the ring. Adequate weight factors can be used to control

the importance of such constraints. It is also possible to
correct the machine coupling using a similar scheme. The
orbit coupling of horizontal corrector kicks into the ver-
tical plane is then minimized using skew quadrupoles as
correcting elements [10]. To simplify the expressions in
the following sections, vector "d and matrix T are defined
as

"d !

0
@ !1 2 a" "u

a "Du
"0

1
A, T !

0
@ !1 2 a"A

aB
bI

1
A , (13)

with

"d 1 T "u ! 0 . (14)

A. Singular value decomposition (SVD) and orbit
eigenvectors

Dispersion free steering is particularly interesting in
conjunction with the singular value decomposition (SVD)
algorithm [11,12], because it allows a simultaneous limi-
tation of the corrector kick strength. The SVD algorithm
is a powerful tool to handle singular systems and to solve
them in the least square sense. For M $ N the singular
value decomposition of matrix T has the form

T ! UWVt ! U

0
BB@

w1 0 · · · 0
0 w2

· · · · · · 0
0 · · · 0 wM

1
CCAVt, (15)

where W is a diagonal M 3 M matrix with non-negative
diagonal elements and Vt is the transpose of the M 3 M
orthogonal matrix V,

VVt ! VtV ! I , (16)

while U is an N 3 M column-orthogonal matrix

UtU ! I . (17)

The vector "q !i", corresponding to the ith column of
matrix V,

"q !i" !

0
BB@

V1 i
V2 i
· · ·
VMi

1
CCA , (18)

is an eigenvector with eigenvalue w2
i $ 0 of the M 3 M

symmetric matrix TtT [12,13],

TtT "q !i" ! w2
i

"q !i". (19)

It follows from Eq. (16) that the M vectors "q !i" form an
orthonormal base of the corrector space since

! "q !i" ? "q !j"" ! "q !i"t "q !j" ! dij . (20)
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Figure 2: Vertical dispersion in the SPS ring due to a kick of 0.1 mrad at corrector
MDV.10307. The solid line is the MADX prediction, the points correspond to the analytical
expression of Eq. 20 evaluated at the location of the BPMs.

strength, the horizontal dispersion at the sextupole and to the orbit offset in the sextupole.
The sextupole term is obtained by replacing the K in the equation for the quadrupoles by
−K2Dx, see for example Ref. [4] for a rigorous treatment of the dispersion response.

When all contributions are combined the dispersion response at monitor i due to the kick
from corrector j becomes

Bij = {
quad
∑

l

KlLlβl

4 sin(πQ)2
cos(|µi − µl|− πQ) cos(|µl − µj|− πQ)

−
sext
∑

m

K2,mDx,mLmβm

4 sin(πQ)2
cos(|µi − µm|− πQ) cos(|µm − µj|− πQ)

−
cos(|µi − µj |− πQ)

sin(πQ)
}
√

βlβj (20)

where the sums run over all quadrupoles (i) and sextupoles (m). The last term is the direct
effect from the corrector kick itself. Eq. 20 is valid for the horizontal plane. For the vertical
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•  Orbit	response	

•  Dispersion	
response	

“Emittance	optimization	with	dispersion	
free	steering	at	LEP”	
R.	Assmann	et	al.	Phys.	Rev.	ST	Accel.	
Beams	3,	121001	

•  SVD	analysis	to	solve	the	system	and	find	a	
solution	



injection oscillations. The coupling is reconstructed locally
by the ∼500 TbT BPMs. Finally, we will describe the
design of a feedback to control the coupling beyond 2015.
In Sec. II we start with describing a more precise equation
relating the f1001 to the C−. We continue in Sec. III with
demonstrating the benefit of selecting two BPMs close to π

2
when measuring the coupling. The measurement resolution
is also increased using a singular value decomposition
(SVD) cleaning, which is described in Sec. IV. The
automatic coupling correction approach based on injection
oscillations, which was used in normal operation in 2012, is
demonstrated in Sec. V. The coupling is reconstructed from
all BPMs and the paring algorithm ensures that the phase
advance is close to the optimal. The method to use the
injection oscillations, however, only provides measure-
ments for injection energy. The resolution of the BPMs
is not good enough to measure the coupling from accept-
able excitations during normal operation with high inten-
sity beams. The diode orbit and oscillation (DOROS) [21]
are being developed at CERN and will provide very precise
phase and amplitude measurements. The location of the
BPMs equipped with DOROS electronics are, however, not
optimized for coupling measurements, since their main
purposes are to provide very precise orbit and phase
measurements close to the interaction points (IPs). As a
consequence the phase advance is far from the optimal π2. In
Sec. VI a feedback based on the combined information
from all the BPMs equipped with DOROS electronics is
presented.

II. MORE PRECISE EQUATION FOR C−

The closest the horizontal and vertical tune can approach
each other is termed ΔQmin and is equal to the jC−j. The
RDT f1001 is a local property related to the Hamiltonian
term h1001. A relation of the f1001 to the jC−j close to the
difference resonance, was described as [22]

ΔQmin ¼ jC−j ≈ 4Δ
1

N

XN

i¼1

jf1001ij; ð1Þ

where ΔQmin is the closest the tunes can approach each
other, N is the number of BPMs and Δ is the fractional tune
split. A more precise relation was published in [23] but
never applied to data. The nomenclature used in this article
is different and we therefore derive the relation in the
Appendix for clarity. The relation is described as

ΔQmin ¼ jC−j ¼
!!!!
4Δ
2πR

I
dsf1001e−iðϕx−ϕyÞþisΔ=R

!!!!; ð2Þ

where R is the radius of the machine, ϕx is the horizontal
phase, ϕy is the vertical phase, and s is the longitudinal
distance. The integral extends over the entire ring but in
practice it will only be evaluated at the locations of the

BPMs. In Fig. 1 the jC−j is calculated from Eqs. (1) and (2).
TheΔQmin is retrieved by trying to match the tunes as close
as possible to each other in methodical accelerator design
(MAD) [24]. We observe that the two formulas give almost
identical and correct results close to the resonance but
Eq. (1) deviates more when the fractional tune split
increases. We also observe that the term iΔs=R has a
negligible effect on the calculated jC−j. This also holds true
for the European Synchrotron Radiation Facility (ESRF)
booster [25]. The main differences between the formulas
can then be interpreted as Eq. (1) is the average of the
jf1001j while Eq. (2) is the absolute value of the aver-
age f1001.

III. OPTIMAL PARING OF BPMs

We reconstruct the f1001 and the f1010 terms from TbT
data [26] using the Courant-Snyder variable [27]

hx;− ¼ x̂ − ip̂x; ð3Þ

where x̂ is the normalized horizontal position and p̂x is the
horizontal transverse momentum. The momentum is not a
directly measurable quantity with a BPM but needs to be
reconstructed using two BPMs. The momentum at the ith
BPM can be written as [22]

p̂xi ¼
x̂iþ1 − x̂i cosΔϕx

sinΔϕx
; ð4Þ

where Δϕx is the horizontal phase advance between the ith
and ðiþ 1Þth BPM under the assumption that the region
between the two BPMs is free of coupling sources and
nonlinearities contributing to the main and the coupling
line. Equation (4) indicates that a phase advance of π

2 is the

FIG. 1. A comparison of Eqs. (1) and (2) to calculate the ΔQmin
from f1001. Qy was kept constant at 59.31 while Qx was varied
between 64.22 and 64.40. Injection optics for the LHC was used
in the simulation.
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Coupling	RDT	f1001-f1010	are	related	to	the	coupling	parameter	via:		
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A. RMS apparent emittances

As far as the apparent emittances of Eq. (2) are con-
cerned, the following relations apply (a dependence on s
has to be assumed in all quantities, bar the two eigenemit-
tances Eu;v):

Ex ¼ C2Eu þ ½S2
$ þ S2

þ $ 2S$Sþ cosðq þ þ q $Þ'Ev; (4)

Ey ¼ C2Ev þ ½S2
$ þ S2

þ $ 2S$Sþ cosðq þ $ q $Þ'Eu; (5)

The following definitions (all s dependent) apply:

C ¼ cosh ð2P Þ; (6)

S $ ¼ sinh ð2P Þ
P

jf1001j; (7)

S þ ¼ sinh ð2P Þ
P

jf1010j; (8)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$jf1001j2 þ jf1010j2

q
; (9)

f1001
1010

¼
PW

w Jw;1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!w

x!
w
y

p
eið!"w;x( !"w;yÞ

4ð1$ e2#iðQu( QvÞÞ
; (10)

q $ ¼ arg ff1001g; q þ ¼ arg ff1010g: (11)

Jw, w ¼ 1; 2; 3 . . . , W are the skew quadrupole integrated
strengths present in the ring and originated by quadrupole
tilts, sextupole misalignments, insertion devices, and cor-
rector skew quadrupoles already powered. Qu;v are the
eigentunes, which are equal to the measured tunes up to
the first order in strengths, Qu;v ¼ Qx;y þOðJ2w;1Þ. !w

r

denotes the Twiss parameter corresponding to the location
of the skew quadrupole kick, whereas !"w;r is its phase
advance with respect to the position where the RDTs f1001
and f1010 are either measured or computed. Both!r and"r

refer to the ideal, uncoupled lattice. Even though all quan-
tities in Eqs. (6)–(10) are complex numbers, the following
relations hold:

1 ¼ C2 þ S2
$ $ S2

þ; C2;S2
$;S2

þ;SþS$ 2 <; (12)

hence guaranteeing that both apparent emittances of
Eqs. (4) and (5) are always real numbers.

B. RMS projected emittances

Different relations apply for the RMS projected emit-
tances of Eq. (3), namely,

$x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Eu þ ½S2

$ þ S2
þ'EvÞ2 $ ð2SþS$EvÞ2

q
; (13)

$y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2Ev þ ½S2

$ þ S2
þ'EuÞ2 $ ð2SþS$EuÞ2

q
: (14)

In the absence of coupling f1001 ¼ f1010 ¼ 0, C ¼ 1 and
S$ ¼ Sþ ¼ 0. Only in this case the three emittances

coincide, $r ¼ Er ¼ Er ¼ %2
rðsÞ=!rðsÞ. The negative

terms in Eqs. (13) and (14) shall not be of concern, as
they are canceled out after expanding the first parenthesis.
Before analyzing the dependence of the eigenemittances

on the RDT, it is worthwhile examining the main differ-
ences between the apparent and the projected emittances
along the ring in the presence of coupling. As proved in
Refs. [18,19], the amplitudes of coupling RDTs remain
constant in regions free of coupling sources, while their
phases q ) oscillate with the betatron phases ð"x ) "yÞ.
When a skew quadrupole kick is met, both the amplitude
and phase execute abrupt jumps. This behavior is trans-
mitted to the RMS emittances: As shown in Fig. 1, the
apparent emittances oscillate around the ring, because of
the terms S$Sþ cosðq þ ) q $Þ. This oscillation is of
course more important for the vertical apparent emittance,
as it is proportional to the larger horizontal eigenemittance
Eu. The plots refer to the ideal ESRF storage ring with no
errors but three localized skew quadrupole kicks. The
projected emittance stays constant in the region between
the two coupling sources, while the apparent emittance
keeps oscillating. When a skew quadrupole kick is met,
the projected emittance jumps, while the apparent emit-
tance changes in oscillation amplitude and baseline
(because both S$ and Sþ change abruptly). In the bottom
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FIG. 1. Example of RMS apparent and projected emittances
plotted along the ESRF storage ring. Betatron coupling is driven
by three skew quadrupoles whose location is indicated by the
vertical dashed lines. In the top and center plots, the horizontal
and vertical emittances are evaluated via Eqs. (4), (5), (13), and
(14). The bottom plot shows the results for the vertical plane as
computed by AT. The corresponding equilibrium emittances are
Eu ¼ 4:0 nm and Ev ¼ 18:4 pm.
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f1001-f1010	can	be	computed	via	analytical	formulas,		
or	via	a	matrix	formalism	with	the	coupling	matrix:	

Figure 1: Beta functions (upper figure) in the IR and in the
arcs and horizontal dispersion (lower figure).

FCC-hh layout

A. Bogomyagkov (BINP) FCC-ee crab waist IR 8 / 25

Figure 2: Racetrack layout with chromaticty correction in
the arcs [1].

tially tapered option - or sectorwise version- the machine
provides a tapering to the dipoles only, leaving therefore a
remaining horizontal orbit as shown in Fig. 4 [5].

Therefore, with targeted emittances of the order of nm
and pm, FCC-ee is a collider with foreseen performances of
light sources (ESRF, SLS).

AMPLIFICATION FACTOR BY ERROR
TYPE

In this section, amplification factors on the orbit and/or
the vertical dispersion are computed by errors type. For
emittance tuning purposes, any source of vertical dispersion
and coupling has to be identified and should be corrected as
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Figure 3: Racetrack layout with local chromaticty correction
at the IR [2].

13/10/16	 19	

Optics	functions	with	synchrotron	radiation	

FCC	week	2016	-	Rome	

S(m)	

X(m)	

Issues	with	sector-wise	tapering	(Bastian’s	lattice+Andreas	Tapering)	

	

DFS+local	vertical	dispersion	correction	at	the	Ips	brings	the	vertical	dispersion	

from	1.0e-2	m	down	to	1.0e-5	m	

	

->	For	a	fully	tapered	machine	(Katsunobu	racetrack),	this	won’t	be	an	issue.	

Dy	rms	(m)	

Nb	of	iterations	

X(m)	

Figure 4: In green, typical horizontal orbit remainding after
correction without synchrotron radiation, in blue [5]

much as possible. Let consider the most important errors to
consider.

A vertical o�set �y in the quadrupole provides a dipolar
kick since [6],

Bx = k (y + �y) = ky + k�y (2)

with k the normalised quadrupole strength. The constant
term k�y provides a vertical dipole component and therefore
vertical dispersion. Sextupole o�sets produce coupling and
vertical dipole kick since,

Bx = k xy + k x�y

By = k (x2 � y2) � 2k�y � (�y2)
(3)

Quadrupole roll angles produce a skew strength, generating
betatron coupling and transfering horizontal emittance to
vertical emittance. The resulting vertical dispersion change
due to a skew strength componant is

�Dy = �(�Jw )Dx

p
�y �y0

2sin(⇡Q)
cos(⇡Q � |�y0 � �y |) (4)

where Jw is the skew strength, Dx is the horizontal dis-
persion, �y and �y0 are respectively vertical beta function

A	response	matrix	can	be	written	to	measure	the	the	response	of	the	RDTs	to	a	
skew	quadrupole	field,	Jc.	The	system,	which	can	be	inverted	via	SVD:	

devices: two x-ray pinhole cameras (D09, D25), plus 11
in-air x-ray detectors (C03, C05, . . ., C31) placed along the
ring. Details on these diagnostic tools can be found in
Ref. [25]. A typical result before coupling correction is
shown in Fig. 3.

The distribution of skew quadrupole strengths along the
machine is derived as follows:

Jw;1 ¼ "½Kw;1 þ !Kw;1% sinð2!wÞ; (29)

where the index w ¼ 1; 2; . . . ; 256 corresponds to the po-
sition of the 256 main quadrupoles, where the skew quad-
rupole integrated strengths are inserted. Following the
procedure described in Sec. II D, the projected emittances
may be evaluated together with all other optics parameters.

IV. SCHEME FOR COUPLING CORRECTION AND
VERTICAL EMITTANCE MINIMIZATION

The ESRF storage ring is equipped with 32 independent
corrector normal quadrupoles to compensate focusing er-
rors induced by !Kw;1. Coupling (and vertical dispersion)
correction is performed by means of 32 independent skew
quadrupoles, distributed rather uniformly around the ring.

Until the end of 2009 coupling correction was performed
by minimizing along the ring either the vertical eigenemit-
tance or the apparent one (as computed by AT) via the
Matlab function FMINSEARCH. The dependence of the ver-
tical emittances on the corrector strengths being quadratic,
this resulted in a nonlinear multidimensional minimization
over 32 parameters. The main drawbacks of this approach
are CPU time (about 10 min for 500 iterations) and the risk
of limited improvements whenever a local minimum (not
necessarily the lowest) is found.

Equations (5) and (14) suggest an intuitive considera-
tion: the lower the RDTs (i.e. the coupling), the lower
the vertical emittance, as the contribution from the large
horizontal equilibrium emittance Eu is minimized. A set-
ting for the 32 skew quadrupole correctors may be then

found to minimize as uniformly as possible both coupling
RDTs along the ring. The system to invert via SVD reads

~f1001
~f1010

 !
meas ¼ "M ~Jc; (30)

where ~Jc ¼ ðJð1Þ1 ; . . . ; JðcÞ1 ; . . . ; Jð32Þ1 Þ are the integrated
strengths of the 32 corrector skew quadrupoles to be

determined, ~fT ¼ ðfð1Þ; . . . ; fðwÞ; . . . ; fð224ÞÞ is a 224 (com-
plex) vector containing the measured or computed RDT at
all BPMs, and M is the (complex) RDT ð224 ( 2Þ ) 32
response matrix, whose generic element according to
Eq. (10) reads

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;x"!#ðcÞ

w;yÞ

4ð1" e2$iðQu"QvÞÞ
for w * 224; (31)

mw;c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"ðcÞ

x "ðcÞ
y

q
eið!#

ðcÞ
w;xþ !#ðcÞ

w;yÞ

4ð1" e2$iðQuþ QvÞÞ
for w> 224; (32)

where "ðcÞ is the beta function at the location of the skew

corrector c, and !#ðcÞ
w is the phase advance between the

same corrector and the BPM w. By inverting via SVD the
linear system of Eq. (30) the strengths for the corrector
magnets that best reduce the coupling RDTs are derived.
By itself coupling correction implies thatC2 ’ 1,S2

+ ’ 0,
and hence that %y ’ Ey ’ Ev. This, however, is not suffi-
cient, as the eigenemittance Ev is minimized only after a
further correction of vertical dispersion, i.e., after minimiz-
ingH y, see Eq. (27). Skewquadrupolesmay still be used to
this end. Indeed, Eq. (30) may be generalized as follows:

a1 ~f1001

a1 ~f1010

a2 ~Dy

0
BBB@

1
CCCA

meas

¼ "M ~Jc; (33)

whereM is now a ð224 ( 2 þ 224Þ ) 32matrix. The generic
element of the additional 224 ) 32 block reads

mw;c ¼
!DðwÞ

y

!JðcÞ1

; (34)

where!DðwÞ
y is the vertical dispersion distortion at the BPM

number w induced by the skew corrector strength !JðcÞ1 .
These terms need to be computed by means of optics codes,
as they depend on the error lattice model. The weights
a2 ¼ 1" a1 are introduced in order to determine the best
compromise between correction of dispersion and deterio-
ration of coupling. Their determination is empirical and in
the case of the ESRF storage ring the best correction is
found for a2 ¼ 0:7. Note that the system of Eq. (33) is
analogous to the one already proposed and successfully
implemented in Ref. [14], with the difference of having
the RDTs instead of the vertical orbit distortion to be
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FIG. 3. Example of comparison between the apparent emittan-
ces Ey (before coupling correction) measured at ten available in-
air x-ray detectors (blue) and the predictions of AT (red) after
creating the lattice error model from the ORM measurement of
January 16, 2010.
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Back up slides - coupling  



For n trim quadrupoles which can exercise a small field strength k1, the
weighted SVD can be applied through adding weighting factors f to each mea-
surement of the beta-beat.

0

BBBBB@

f1
⇣

�1��y0

�y0

⌘

f2
⇣

�2��y0

�y0

⌘

...

fm
⇣

�m��y0

�y0

⌘

1

CCCCCA

meas

=

0

BB@

f1 (R11, R12, R13, ..., R1n)
f2 (R21, R22, R23, ..., R1n)

...
fm (Rm1, Rm2, Rm3, ..., Rmn)

1

CCA ⇤

0

BB@

k1
k2
...
kn

1

CCA

where �y0 is the ideal beta function at the given BPM, Ri,j are elements in the
response matrix.

Back up slides – beta-beating 


