Approximation of Functions by Composition

Zuowei Shen
Department of Mathematics, National University of Singapore, Singapore
Email: scidean@nus.edu.sg

The primary task in supervised learning is approximating/estimating a function f through samples drawn from a probability distribution on the input space. Learning is the process of approximating f by a function g with tunable parameters, which can be adjusted so that g becomes close to f in some averaged sense with respect to the input distribution. Usually, we pick a nice g to work with. For regression problems, the simplest g one can consider is an affine function, whose parameters can be fitted. For classification problems, one can consider g an affine function followed by a sigmoid transformation and a maximization across output coordinates. This is known as logistic regression. Although such simple g’s are easy to analyze and optimize in practice, when the underlying f is complex, they tend to have low approximation quality. The key idea in deep learning is to expand a simple approximator g by composing with it a series of nested feature extractors, i.e. one finds T_1, T_2, \ldots, T_N such that g composes with T_1, T_2, \ldots, T_N that approximates f. In this talk, we discuss mathematical theory behind such approximations and how the theory can be used to understand and design deep learning network; and how it differs from the classic approximation theory.