The Role of LIP in Advanced Preparation for Express Saccade Revealed by Computational Model

*Bing Li^{1,2}, Jing Guang^{1.2} and Mingsha Zhang¹

¹ State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing,

China

² Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,

and University of Chinese Academy of Sciences, Shanghai, China

*E-mail: bing8707@mail.bnu.edu.cn

The reaction time (latency) of our responsive movements to the external stimuli varies, even when the task conditions are identical. A typical example is, in a gap saccade task, the reaction time of saccades toward the same target shows bimodal distribution, i.e. express saccade with shorter reaction time and regular saccade with longer reaction time ^[1,2]. Previous studies indicated that the occurrence of express saccade might be caused by the advanced preparation of oculomotor program^[3]. The build-up activities of neurons in superior colliculus (SC)^[4] and lateral intraparietal cortex (LIP) ^[5] were considered as the neuronal representations of this advanced preparation for express saccade. However, the neural circuitry for express saccade generation is still unclear. In the present work, we built a mean field model ^[6], which was composed by six elements, bilateral hemispheres of LIP, caudal parts of SC and rostral parts of SC. The connection between each element was according to the previous anatomical ^[7] and electrophysiological^[8] results. We assumed that the motor preparation signal was transformed from LIP to the caudal part of SC, since the initiation of build-up activity and the separation of build-up activity between express and regular saccade were earlier in LIP than in SC^[4,5]. The results of simulation reproduced the experiment observations very well, including bimodal distribution of saccade reaction time, neuronal activities in LIP and in SC. These results suggested a basic network for express saccade generation, in which LIP was in the upstream of SC in motor preparation.

References

Fischer B., Boch R., "Saccadic eye movements after extremely short reaction times in the monkey" *Brain Res.*, Vol. 260, No. 1, (1983), pp 21-26.

Fischer B. Ramsperger E., "Human express saccades: extremely short reaction times of goal directed eye movements", *Exp Brain Res.*, Vol. 57, No. 1, (1984), pp 191-195.

Pare M., Munoz DP., "Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence", *J. Neurophysiol.*, Vol. 76, No. 6, (1996), pp 3666-3681.

Dorris MC, Pare M, Munoz DP, "Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements", *J. Neurosci.*, Vol. 17, No. 21, (1997), pp 8566-8579.

Chen M., Liu Y., Wei L., Zhang M., "Parietal cortical neuronal activity is selective for express saccades", *J. Neurosci.*, Vol. 33, No. 2, (2013), pp 814-823.

Wong KF, Wang XJ., "A recurrent network mechanism of time integration in perceptual decisions", J. Neurosci., Vol. 26, No. 4, (2006), pp 1314-1328.

May PJ., "The mammalian superior colliculus: laminar structure and connections", *Prog. Brain. Res.*, Vol. 151, (2006), pp 321-378.

Munoz D.P., Istvan P.J., "Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus", *J. Neurophysiol.*, Vol. 79, (1998), pp 1193-1209.