

Bending self-collimated one-way light in gyromagnetic photonic crystals by gradient magnetic field

Rui-Xin Wu

School of Electronic Sciences and Engineering

Nanjing University

Outline

- Background and Motivations
- Self collimated one-way light in magnetic photonic crystals
- Bending the self collimated one-way light by gradient magnetic field
- Possible applications
- Summary

Background and Motivations

one-way wave is supported by two kind of modes

- Edge modes
- Bulk modes
- Edge mode Chiral edge state, MPC, Ferrite

Z. Wang et al. Nature 461, 772(2009)

Bulk mode
PT symmetry, loss-gain, Si

Realization of one-way edge modes

Chiral edge states

F.D.M.Haldane and S.Raghu, Phys. Rev. Lett. 100, 013904(2008)

Y. Poo, et al., Phys. Rev. Lett. 106, 093903 (2011)

Z. Wang, et al. Nature 461, 772(2009)

SPP at the support of magnetic field

Z. Yu et al. Phys. Rev. Lett. 100, 023902 (2008)

Y. Poo et al. Appl. Phys. Lett 101, 081912 (2012)

Realization of Non-reciprocal bulk modes

A. Figotin and I. Vitebsky, Phys. Rev. E 63, 066609 (2001)

At nonreciprocal modes, wave goes in one direction

At frozen mode, wave goes in one directions because of in the other direction vg=0

Each primitive cell consists of two highindex BIG layers, with opposite magnetic directions along *z* directions, and a low-index SiO2 layer

Zongfu Yu, et al, Applied Physics Letters 90, 121133 (2007)

0.4

2D Magnetic Photonic Crystals

Cheng He, et al, Physical Review B 83, 075117 (2011)

Motivation

- ? How to use one-way bulk modes to control the wave beam propagation in PC?
- ? Is there any potential applications of one-way wave beam ?

• Our method:

Self-collimated one-way wave beam

H. Kosaka, et al, Appl. Phys. Lett. 74, 1212-1214 (1999)

? One-way wave beam? Tunable wave beam direction

Self collimated one-way light in magnetic photonic crystals

MPC consists of YIG rods .

Between the incident angle 19°-27°, the transmitted waves are non-reciprocal in opposite directions

Robustness of wave beam transmission

two line rods removed

The self-collimated one-way wave shows robustness on some level for some kind of defects

Bias magnetic field alters the area bounded by the EFCs.

The bias magnetic field changes the value of the energy band but not its shape

Bending the self collimated one-way light by gradient magnetic field

At constant incident angle and working frequency, the direction of refracted wave changes with magnitude of the bias magnetic field

Bending loss is small

More bending of the wave beam:

Depend on the bias magnetic field distribution

- <u>R1</u>: uniformly biased, H0=1000 Oe
- <u>R2</u>: biased by a gradient magnetic field Δ H=35 Oe/rod

<u>R3</u>: same as R2, opposite gradient direction.

Applications

In dynamic bias magnetic configuration MPC functions as:

- one input and multiple outputs "EM diode"
- 2. Switches
- 3. Tunable connector In optic circuits

 $+19^{\circ}$

Summary

- Self-collimated one-way wave is demonstrated in gyromagnetic photonic crystals with PT symmetry.
- One-way light beam can be steered in different directions by gradient magnetic fields
- The ability to steer one-way light beams could have a variety of applications in optical circuits.

Acknowledgement

My Group: Qing-Bo Li (李清波)

HKUST: Prof. C. T. Chan

Financial Support: NSFC

Thank You !