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= Established theories
= Pitfalls
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Metamaterials
and "Optical Magnetism” g

Artificial periodic structures with D.R. Smith et al,, 2000
geometric features smaller than
the wavelength.

Usually contain resonating
entities.

Controlling the flow of waves.
Appreciable magnetic effects Nature, 1/25/07
possible at high frequencies.

Effective parameters essential
for design.

Pendry, Schurig & Smith, Science 2006



Traditional Viewpoint:
Dipoles and Resonances

Vxe=iwc'b, Vxb=—iwc'd

http://staging.enthought.com

Split rings — “LC” resonances N i ) [
— magnetic dipoles Y




Homogenization

Characterize a periodic structure
by equivalent effective
(“macroscopic”, coarse-scale)
parameters.

[ Details to follow.]



Well-established
Asymptotic Theories



Classical effective medium theories and their extensions:
Mossotti (1850), Lorenz (1869), Lorentz (1878), Clausius (1879),
Maxwell Garnett (1904), Lewin (1947), Khizhnyak (1957, 59),
Waterman & Pedersen (1986).

Cambridge Monographs on Applied and Computational Mathematics

The Theory of
oo o Composites

N. Bakhvalov and G. Panasenko

Graeme W. Milton

i

Many books (physical & mathematical); ~24,000 papers.



SIAM J. MATH. ANAL. © 1992 Society for Industrial and Applied Mathematics
Vol. 23, No. 6, pp. 1482-1518, November 1992 006

HOMOGENIZATION AND TWO-SCALE CONVERGENCE*

GREGOIRE ALLAIREY

arr A rraves vvvssivavasey vuvsssweses o e pessvs © s eanae v Averssny vn e smeaanan e e mnns
for a given domain {) and source term f, satisfy
(0.1) Lu.=f in(,

complemented by appropriate boundary conditions. Assuming that the sequence u,
converges, in some sense, to a limit », we look for a so-called homogenized operator
L such that u is a solution of

(0.2) Lu=f inq.

Passmg from (0.1) to (0 2) is the homogemzatlon process. (There is a vast body of
3 on, and addmonal refercnces )

operators (cf. the I'-convergence of DeGiorgi [16], [17], the H-convergence of Tartar
4 4], or the G—convergence of Spagnolo [41] [49]) we restrict our attention_to
that particular case: s=the ofth A8 ate asymptotic
expansion method [7], [10], [27] [40} in order to ﬁnd the precise form of the

homogenized operator L. The key to that method is to postulate the following ansatz
foru -

0.3) us(X)=uo(x 2) +eu1( :)+g ug(x §)+ ..

where each term u;(x, y) is periodic in y. Then, inserting (0.3) inf(0.1) and identifying
powers of £ leads to a cascade of equations for each term u;. In general, averaging
with respect to y that for u, gives (0.2), and the precise form of L is computed with
the help of a so-called cell equation in the unit period (see [10], [40] for details). This
method is very simple and powerful, but unfortunately is formal since, a priori, the
ansatz (0.3) does not hold true. Thus, the two-scale asymptotic expansion method is
used only to guess the form of the homogenized operator L, and other arguments are

powerful method is the so-called energy method of Tartar [42]. Loosely speaking,
it amounts to multiplying equation (0.1) by special test functions (built with the
olutions of the cell equation), and passing to the limit as & 0. Aithough products
uences are involved, we can actually pa
to some ‘“‘compensated compactness’” phenomenon due to the particular choice of test
functions.




When asymptotic theories
are not sufficient:
some pitfalls



Some Pitfalls:
zero cell size limit

= Metamaterials: cell size smaller than the vacuum
wavelength but not vanishingly small. (Typical ratio
~0.1-0.3.)

= This is a principal limitation, not just a fabrication
constraint (Sjoberg et al. Multiscale Mod & Sim,
2005; Bossavit et al, J. Math. Pures & Appl, 2005;
IT, JOSA B, 2008).

= Cell size a — 0: nontrivial physical effects
(e.g.“artificial magnetism™) disappear.



Classical effective medium theories and their extensions:

Mossotti (1850), Lorenz (1869), Lorentz (1878), Clausius (1879),
Maxwell Garnett (1904), Lewin (1947), Khizhnyak (1957, 59),
Waterman & Pedersen (1986).

Cambridge Monographs on Applied and Computational Mathematics

N. Bakhvalov and G. Panasenko

The Theory of
Uomposites

Graeme W Milton

Non-asymptotic homogenization,
local and nonlocal



Pitfalls in Homogenization:
Bulk Behavior

= Even for infinite isotropic homogeneous media,
only the product €u is uniquely defined;
impedance is not!

= Indeed, Maxwell’s equations are invariant w.r.t.
rescaling H - yH, D — yD:

VXE = iwc 'B VxH = —i;uf@

= J =0[P +cVxM :decomposition not unique

s = Bulk behavior alone does not define effective

parameters. Must consider boundaries!

Felbacq, J. Phys. A 2000; Lawrence et al. Adv. Opt. Photon. 2013;
IT, JOSA B, 2011; VM & IT, Phys. Rev. B 88, 2013;
VM & IT, Proc Royal Soc A 470, 2014.




Bulk behavior alone does not
define effective parameters?

But walit...
what about M in the bulk

(“dipole moment per unit
volume™)?



What about M in the bulk
("dipole moment per unit volume™)?

= This textbook concept works because of the far
field approximation outside a finite body.

= If a small inclusion, approximated as an ideal

dipole, is replaced with a distributed moment,
the error in the far field is O((ka)?). But

magnetic effects are also of order O((ka)?) !

- _. a

=
=
—
b -




"Dipole moment per unit volume”
continued

= Defining “dipole moment p.u.v.” M(r) in such
a way that cVxM(r) = J(r) for a general current

distribution Is not at all easy.

1
= Forexample, try M = - r xJ:
c(Vx M)$:§%_Q3Jm x 0J, 20/

= Mollifying does not help:
cVX (Mxw)=c(Vx M)xw # Jxw




The Role of Boundaries (physical intuition)

bt = hx

Consider e.g. < h># H:
the tangential b=  _-{-"\"/ "\ " -
component of R B A [ﬁ\ ;
the magnetic Tl
field
air metamaterial
= On the fine scale, b = h. IT, JOSA B, 2011.

= Volume averaging of b leads (in general) to a
jump at the boundary. But H. must be
continuous. Otherwise — nonphysical artifacts
(spurious boundary sources).

@e H(curl,2): B,D ¢ H(di@




Non-Asymptotic
Homogenization



= Periodic vs. homogeneous material: match TR as accurately as

possible.

= From b.c.: EH-amplitudes of plane waves must be surface averages

of Bloch waves.

= From Maxwell’s equations: DB-amplitudes follow from the EH-

amplitudes.
er(r)l EWZ r(r)’
h,(r) H,, (r)

et( r)l -’-’

h(r) e (r)

einc( r)’ hinc(r)

hinc(r)

Credit: www.orc.soton.ac.uk
(part of the image)

Eﬂlflt(r)l
H,,(r)


http://www.orc.soton.ac.uk/

Non-asymptotic homogenization

Compare: TR from a metamaterial slab vs. a
homogeneous slab.

Bloch modes vs. generalized plane waves.

EH amplitudes of plane waves determined from
boundary conditions.

DB amplitudes then found from the Maxwell
curl equations.

The material tensor is found as DB “divided” by
EH (in the least squares sense).

PROCEEDINGS THE ROYAL/\‘
SOCIETY

A non-asymptotic homogenization theory for
periodic electromagnetic structures

Igor Tsukerman and Vadim A. Markel
Proc. R. Soc. A 2014 470, 20140245, published 28 May 2014



Approximation of
Fine-Scale Fields

Y (r) = Z Crna Wma (T) + 8(1),

&,

5: ‘out-of-the-basis’ error (assumed small).

m — lattice cell index

v — Trefftz basis

Homogenization relies only on basis {y}, not coefficients ¢

Assume Bloch wave basis

ex(r) =&y(r)exp(iq, -r) and hg(r)= h, (1) exp(iq, - 1),



Coarse-Level Bases

= Plane-wave solutions Maxwell’s
equations in a homogeneous but
possibly anisotropic medium:

) ) . ~
w(r)= ZC”“‘-’ W (t) and  We (£) = (Epe, Hi ) exp(iq,,, ‘1), reCpy
¥

= The amplitudes (E;.., H,..} are yet to be
determined.



Coarse-Scale Fields

Satisfy Maxwell’s equations with an effective material
tensor approximately but accurately:

8],,(r) =V x H(r) + ikgD(r), reC,,

8Ly (r)=V x E(r) —ikgB(r), reC,,
SKim(r) =npy x [H(r) — Hm(r)], reSp,,
8Qpm(r) =gy x [Ef(r) — Em(r)], 1 €Sy,

{D(x), B(r)} = M ﬁ‘.'{E[l'), H(r)}, f c C,
{E(r), H(1)}, z¢[0,L],

The d-terms can be interpreted as spurious volume and
surface currents representing approximation errors.



Minimizing the Interface Error

= Minimize, for each cell boundary, the discrepancy
between the coarse fields and the respective fine-
scale fields:

xﬁﬂn (I < (Eme — Emcr}”aﬂ.ﬁ + I x (Hpme — hmaf}”&jﬂ,.ﬁ};

Ema, Hone
= For hexahedral cells,

(0) ~ . (0) .

I Conx

dC,_, — four faces parallel to the x-axis.

= Note that the averages above involve the periodic
factor of the Bloch wave.



Minimizing the Volume Error

FHCe £

. 0 0) 0 0),,2
I‘I&n Z ”""‘*Hm{HEmiw EEJJE's} — JEfl]f"‘"/f ?‘H{E{ : H}Hi | ”’1
ot 7] o

= X is the matrix representation of the cross
product with q

= This problem has a closed-form solution for the

material tensor because the functional is
quadratic with respect to the entries of .



The Algebraic System

Basis Basis . . Basis
wave |  wave 2 wave N I . S .
- l ! l
8 '"TJ X Eo— :
C 1K Y :
6 xN
tensor to basis wave found
be found from interface b.c.
Basis Basis . o Basis
wave |  wave 2 wave NV
D,, B, for each basis L L L
Do —
wave found from the Bo o

Maxwell curl equations 6N



The Case of Diagonal Tensors

A Zﬂ' (q.hlm' X [h.hucf])x[ﬁ'mﬂx]*
o ko Za e HJ,&‘.‘:'“E

y Y o Qe X €ma Dxlhm,ex]”
. ko E.;,_r [[hm,eex] |2 |

= Physical interpretation: ensemble averages of Bloch
impedances of the basis waves.

= The physical significance of Bloch impedance has
been previously emphasized by other researchers
(Simovski 2009, Lawrence et a/. 2013).



Non-Diagonal Tensor

Min,opt = arg m£1 Fu(M) and Fyu(M)=I¥y,p8 — MYy, eHl

_|_
M m,opt = t:!i‘r‘fjl*ﬂ),E—',E* Uffm EH

Yo and ¥, gy 6 X N matrices with
columns « ks L Kie (Fy, By} anndl {Epn, H:
0 matHme, Emg} and {Epq, Hyo }

PROCEEDINGS THE ROYAL A | Error indicator:

x = max|[Fu(Mi,opt)]

I

A non-asymptotic homogenization theory for
periodic electromagnetic structures

Igor Tsukerman and Vadim A. Markel

Proc. R. Soc. A 2014 470, 20140245, published 28 May 2014



Now focus on the “uncertainty
principle”: the stronger the magnetic
response, the less accurate
(“certain”) the predictions of the
effective medium theory.

IT and Vadim Markel, Nonasymptotic homogenization of periodic
electromagnetic structures: Uncertainty principles, PRB 93, 024418, 2016.

Vadim Markel and IT, Can photonic crystals be homogenized in higher
bands? arxiv.org:1512.05148, submitted.



Fields in the metamaterial
(s-mode)

A Bloch wave

ep(r,q) = Epep(r)exp(iq-r)

The tangential component of h

hy(r)

hp(r)

1 Oe . |
= _—{ = Ephp.(r)exp(iq-r)

l:lf-;] on

n 1 Oeg

— E €B + E on

Fields in the air

E:Lir(rj

hair,r { r)

= Finc (E}:D{:ikinc ' I‘} + RE‘}{D“I{I ' I‘}}

= Finc cos fine (exp(ikine - r) — Rexp(ik: - r))

Fields in the
equivalent material

A plane wave
Et(r) = ETtoexp(ikt -r)

Hr(r) = Hyrpexp(ikt - 1)

kt = q

What should the
EHDB-amplitudes of
the plane wave be for
best approximation?



What should the EHDB-amplitudes be?

Interface boundary conditions = E, H amplitudes:
Eto = Eg (éB)s (= (1+ R)FEinc)
Hrro = Eg(hg)s

Maxwell’s equations inside the material = B, D
amplitudes:

For cells with mirror symmetry,

i(0pe-)s
qcosfiplep + (e~)s)

G = 1 =

€B = eg + e~, €y = const, /Ede:D
Jo



LI | L1
1 ':.,dﬂ €~ )8

E 1_ -[:-} — ] |
Grr Hrs gcosfip(eg + (e-)s)

Magnetic effects in metamaterials are due entirely to
higher-order spatial harmonics of the Bloch wave.

It is qualitatively clear that the angular dependence of {1t
will tend to be stronger when the magnetic effects (nonzero
Ctt) are themselves stronger, as both are controlled by e..

This conclusion can also be supported quantitatively.

VM & IT, Nonasymptotic Homogenization of Periodic Electromagnetic
Structures: an Uncertainty Principle, to appear in Phys Rev B, 2016.
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Fig. 2. (Color online) (a) E-field distribution of the TM-polarization - b8 N4 L2 0 0:2 04 0.8

Bloch wave with frequency 0.36(c/a) in a 2D triangular PhC. Some air
holes are denoted as black circles; (b) Field distribution of the rectan-
gular region in (a). Each unit can be covered by a circle.

0.3

Hex lattice of cylindrical air holes in a 02

dielectric host (Pei & Huang, JOSA B, w
29, 2012). Radius of the hole: 0.42a. od
Dielectric permittivity of the host: o

04 02 0 02 04
12.25. s-polarization (TM-mode). e
Isofrequency contour almost
circular at a = 0.365\ (near

The second photonic band it exhibits a 274 I"_point a ~ 0.3681).

high level of isotropy around the T"-
point and a negative effective index.




Numerical Features

= Flexible Local Approximation Method
(FLAME), high-order Trefftz-FD schemes:

« IT, J Comp Phys 2006, IEEE Trans Mag
2005, 2008.

« I'T, Springer, 2007.
= FLAME on rhombic grids for Bloch modes.
= General motif: Trefftz methods.

= Material tensor for optimal fit to the TR
data, using Matlab’s fminsearch.




107L —&—optimized tensor
——static tensor I
-1
105 | 1 | 1 10 ?
0 0.2 04 . 9 0.6 0.8 1 g
107
IT and Vadim Markel, Nonasymptotic 10
homogenization of periodic electromagnetic —=-optimized tensor
structures: Uncertainty principles, J —static tensor
arxiv.org:11510.05002, PRB 2016. 10, 02 04 06 08 1

sin Qinc .

Absolute errors in R (left) and T (right) as functions of the
sine of the angle of incidence. Tensor optimization was
performed within the range [0, =/4] for the angle of

incidence. Hex lattice of cylindrical air holes in a dielectric
host (Pei & Huang).



0 0.2 04 0.6 0.8 1

a = 0.365A

—-+—optimized tensor
——static tensor

. 1 L T T T T _
sin 6:,..
0.5 ]

or
0.2;
IT and Vadim Markel,
Nonasymptotic homogenization of 017
periodic electromagnetic 0.05.

-=—optimized tensor

structures: Uncertainty principles, —~static tensor
arxiv.org:11510.05002, PRB 2016.

0 02 04 06 08
sin ;¢

Same but for a = 0.365A. Stronger magnetic
effects — poorer homogenization accuracy.



From non-asymptotic
to nonlocal theory



Recall Local Approximation First

Basis Basis . . Basis
wave |  wave 2 wave N I . S .
- l ! l
8 '"TJ X Eo— :
C 1K Y :
6 xN
tensor to basis wave found
be found from interface b.c.
Basis Basis . o Basis
wave |  wave 2 wave NV
D,, B, for each basis L L L
Do —
wave found from the Bo o

dispersion relations 6N



A Nonlocal Model

Z H-‘]Cma{H 0) E{GQ} RDM‘IIL {E'}}LQ ;E:ng _ 'E‘:ﬂ Mm nonlocal {Emr:t 'J‘TLCt ??} H

n is a vector of additional (nonlocal, integral) degrees of
freedom (dof) for the coarse-level field.

Treffiz  Trefftz ... Treffiz
funcl  func2 func N
6 # of nonlocal dof ! | !
Epyr— 6
Mioe Maonloc >< Honyz >
Nonloc dof £ — #of
nonlocal
Nonloc dof 5 — dof
Compared to the local Treffz Treffz .. ..  Treffiz
. fune fune func
problem, the material Ls. e el
tensor is expanded = 6
“rightward”

The EH-matrix is expanded
“downward,” with
additional E and H dof.



Numerical Example: Layered Media

= Deceptively simple, but in fact nontrivial for
homogenization.

= Precise definitions and TR results are seldom
given. (Take volume averages and make sure
the results are pleasing to the eye.)

= Only dispersion relations, but not the
boundary conditions, are usually considered.

Vadim Markel and IT, Phys Rev B 88, 125131, 2013.
IT and Vadim Markel, Proc Royal Soc A, May 2014.

S. Tang, B. Zhu, M. Jia, Q. He, S. Sun, Y. Mei, and L. Zhou
Phys Rev B 91, 174201, 2015.



Numerical Example: Layered Medium

= Layered dielectric structure, ss-mode.
= Analytical solution used for error

analysis. + X
s g, =4.0+ 0.1
m &y — 1

Vadim Markel and IT, Phys Rev B 88, 125131 (2013).



Local Effective Parameters

- | I : L0 | I -
B ] =
2 I --- PR :._ I:} 5 u II|-: o
e W .
| FeEnEnEnrnsnEhE Fthi?.T{T:.....\.;1_._, ok A ]
Y -
O Refe)  n— - ]m{r.l} — \
Rc{,u”’i EEEEEE NS ]m{,ul“i EREERgN
= Rﬁ{pL} T = ]m{pj_} LT
-2 I I ~1.0 | | .
0 0.1 0.2 0.3 0 0.1 0.2 0.3
aliA all

Example 1. Effective parameters by Trefftz homogenization (thick lines) and by S-parameter retrieval (thin lines) as
functions of a/ A; the lattice period a changes while A is fixed. The dotted line represents the classical homogenization limit for

€ (in s-polarization, the volume average of €, and €;).

Up to a/A~0.15, the agreement between

Trefftz homogenization and parameter retrieval

is almost perfect but then they diverge. This is

because Trefftz homogenization optimizes PROCEEDINGS THEROYAL A |

effective parameters in a wide range of
propagation angles while S-parameter retrieval  J i dmE st sracturas " "

Igor Tsukerman and Vadim A. Markel

Optimizes T/R Only for near-normal inCidence. Proc. R. Soc. A 2014 470, 20140245, published 28 May 2014



TR vs. a/A (local homogenization)

(a)
10 | |

ali ali

Example 1. (a) Real parts of the reflection coefficdent R and (b) transmission coefficient T, and the homogenization
error indicator y (4.2) (a) for the layered structure consisting of L = 10 elementary cells and for the equivalent homogenized
slab as functions of a/A. EX, exact results; TR, Trefftz homogenization.

R/T defined as the ratios of the complex amplitudes of the
reflected/transmitted and incident tangential fields (the electric field
for s-polarization). Normal incidence. Error indicator y relatively small
for a/A <0.2 but grows rapidly beyond that range. Hence
homogenization is accurate for a/A < 0.2 but otherwise the medium
is not homogenizable (at least in terms of local parameters).



TR vs. angle (local homogenization)

() 0.06 (b)

vEg
____

0.04

E. TR

0.02

Example 1. Errors in the transmission and reflection coefficients (5.1) as functions of the sine of the incidence
angle, sin @ = k, /ky, fora/A = 0.2. The errors are displayed for Trefftz homogenization (TR) and for the classical asymptotic
homogenization limit (AS). The maximum angles of incidence in the restricted set of basis functions for Trefftz homogenization
(@) Onax = v /10 and (b) Bz = 77 /20) are indicated by the vertical lines.

One may wish to tailor the effective parameters to a

restricted range of incidence angles. Trade-off PROCEEDINGS THEROYAL A |
between the range of applicability and accuracy of
the effective medium description. e e eery o

Igor Tsukerman and Vadim A. Markel

FProc. R. Soc. A 2014 470, 20140245, published 28 May 2014



Nonlocal Homogenization
(work in progress) g, = 4.0+ 0.1i

10° . ‘ . gb — 1

Absolute elrror in R VS.‘ SN Gine. a/)‘\ =0.2. Exa‘mple A.
- Max. angle for Trefftz basis: 7/2; number of cells: 10

—~static
—~tensor 3x3
~tensor 3x4
~integral kernel

Absolute error in R vs. a/A. Example A.
Max. angle for Trefftz basis: 7/2; 4l -+static
number of cells: 10 . 3 --tensor 3x3

0 005 0.1 015 02 025 j ~tensor 3x4 ]
a/ A - | | ‘--lntegral‘ kernel
0 0.2 0.4 0.6 0.8 1
sin ;..

Errors in the reflection coefficient R vs. a/A (left; first photonic
band) and vs. sin 0 (right). The nonlocal integral model (red line) is
seen to be much more accurate than the static (asymptotic) tensor
(black line) and than the local model (blue line)..



Nonlocal Homogenization
(work in progress)

Absolute error in

Eﬂ_:Eﬂ_

1 1 1
0.05 0.1 0.15 0.2 0.25 5T

a/A

1 1 1
0.05 0.1 0.15 0.2 0.25

a/A

Same as before but for Example C of VM & IT, PRB 2013: Drude
model for silver as material a; material b is air. £, = 5, ®, = 500y,
A, = 2n®, /C ~ 136nm, a = 0.2, ~ 27 nm.



Conclusion

= Not only bulk relations but also boundary
conditions are critical for homogenization.

= Nontrivial magnetic response of periodic
structures composed of intrinsically
nonmagnetic constituents has limitations and is
subject to an “uncertainty principle”.

= Namely, the stronger the magnetic response,
the less accurate (“certain™) are predictions of
the effective medium theory.



Conclusion (cont'd)

= In practice, there is still room for engineering
design, but trade-offs between magnetic response
and the accuracy of homogenization must be noted.

= Basis for analysis: coarse-level fields must satisfy
the dispersion relation and boundary conditions
accurately.

= Not only the dispersion relation but also surface
impedance have to be illumination independent if
homogenization were to be accurate.

= These prerequisites cannot unfortunately hold
simultaneously if the desired magnetic response is
strong.



Conclusion (cont'd)

= Instructive numerical example: triangular
attice of cylindrical air holes in a dielectric
nost (Pei & Huang). Exhibits a particularly
nigh level of isotropy around the I'-point in
the second photonic band. Even in this

highly isotropic case the uncertainty principle
remains valid.

= Nonlocal homogenization may further

improve the accuracy by about an order of
magnitude.




The End



