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Metamaterials 
and “Optical Magnetism” 

 Artificial periodic structures with 
geometric features smaller than 
the wavelength. 

 Usually contain resonating 
entities. 

 Controlling the flow of waves. 

 Appreciable magnetic effects 
possible at high frequencies. 

 Effective parameters essential 
for design. 

D.R. Smith et al., 2000 

Nature, 1/25/07 

Pendry, Schurig & Smith, Science 2006 



Traditional Viewpoint:  
Dipoles and Resonances 

http://staging.enthought.com 
www.fen.bilkent.edu.tr/~aydin 

radio.tkk.fi 

Split rings  “LC” resonances  
 magnetic dipoles 



Homogenization  
 
Characterize a periodic structure 
by equivalent effective 
(“macroscopic”, coarse-scale) 
parameters. 
 
[Details to follow.] 



Well-established 
Asymptotic Theories 



Many books (physical & mathematical); ~24,000 papers. 

Classical effective medium theories and their extensions: 
Mossotti (1850), Lorenz (1869), Lorentz (1878), Clausius (1879), 
Maxwell Garnett (1904), Lewin (1947), Khizhnyak (1957, 59), 
Waterman & Pedersen (1986). 





When asymptotic theories 
are not sufficient:  

some pitfalls 



Some Pitfalls:  
zero cell size limit 

 Metamaterials: cell size smaller than the vacuum 

wavelength but not vanishingly small. (Typical ratio 

~0.1−0.3.) 

 This is a principal limitation, not just a fabrication 

constraint (Sjoberg et al. Multiscale Mod & Sim, 

2005; Bossavit et al, J. Math. Pures & Appl, 2005; 

IT, JOSA B, 2008). 

 Cell size a  0: nontrivial physical effects 

(e.g.“artificial magnetism”) disappear. 



Zero cell-size limit 
Non-asymptotic homogenization, 
local and nonlocal 

Classical effective medium theories and their extensions: 
Mossotti (1850), Lorenz (1869), Lorentz (1878), Clausius (1879), 
Maxwell Garnett (1904), Lewin (1947), Khizhnyak (1957, 59), 
Waterman & Pedersen (1986). 



 
Pitfalls in Homogenization:  
Bulk Behavior 
 Even for infinite isotropic homogeneous media, 

only the product εμ is uniquely defined; 
impedance is not! 

 Indeed, Maxwell’s equations are invariant w.r.t. 
rescaling H  H, D  D: 

 

 J = ∂tP  + cM : decomposition not unique 

  Bulk behavior alone does not define effective 
parameters. Must consider boundaries! 
Felbacq, J. Phys. A 2000; Lawrence et al. Adv. Opt. Photon. 2013;  

IT, JOSA B, 2011; VM & IT, Phys. Rev. B 88, 2013;  
VM & IT, Proc Royal Soc A 470, 2014. 



Bulk behavior alone does not 
define effective parameters? 
 
But wait… 
what about M in the bulk 
(“dipole moment per unit 
volume”)? 
 



What about M in the bulk  
(“dipole moment per unit volume”)? 

 This textbook concept works because of the far 

field approximation outside a finite body. 

 If a small inclusion, approximated as an ideal 

dipole, is replaced with a distributed moment, 

the error in the far field is O((ka)2). But 

magnetic effects are also of order O((ka)2) ! 



 Defining “dipole moment p.u.v.” M(r) in such 

a way that cM(r) = J(r) for a general current 

distribution is not at all easy.  

 For example, try                       : 

 

 

 Mollifying does not help: 

 

“Dipole moment per unit volume” 
continued 



The Role of Boundaries (physical intuition) 

 On the fine scale, b = h. 

 Volume averaging of b leads (in general) to a 
jump at the boundary. But H must be 
continuous. Otherwise – nonphysical artifacts 
(spurious boundary sources). 

Consider e.g. 
the tangential 
component of 
the magnetic 
field 

IT, JOSA B, 2011. 



Non-Asymptotic 
Homogenization 



Credit: www.orc.soton.ac.uk  
(part of the image) 

M 𝜖 (𝒓) 

einc(r), 
hinc(r) 

er(r), 
hr(r) 

et(r), 
ht(r) 

EM t(r), 
HM t(r) 

EM r(r), 
HM r (r) 

einc(r), 
hinc(r) 

 Periodic vs. homogeneous material: match TR as accurately as 

possible. 

 From b.c.: EH-amplitudes of plane waves must be surface averages 

of Bloch waves. 

 From Maxwell’s equations: DB-amplitudes follow from the EH-

amplitudes. 

 

 

http://www.orc.soton.ac.uk/


 Compare: TR from a metamaterial slab vs. a 
homogeneous slab. 

 Bloch modes vs. generalized plane waves. 

 EH amplitudes of plane waves determined from 
boundary conditions. 

 DB amplitudes then found from the Maxwell 
curl equations. 

 The material tensor is found as DB “divided” by 
EH (in the least squares sense). 

Non-asymptotic homogenization 



δ:  ‘out-of-the-basis’ error  (assumed small). 

m – lattice cell index  
 – Trefftz basis  
Homogenization relies only on basis {}, not coefficients c. 

Assume Bloch wave basis 

Approximation of 
Fine-Scale Fields 



Coarse-Level Bases 

 Plane-wave solutions Maxwell’s 
equations in a homogeneous but 
possibly anisotropic medium: 

 

 

 The amplitudes               are yet to be 
determined. 



Satisfy Maxwell’s equations with an effective material 
tensor approximately but accurately: 

Coarse-Scale Fields 

The δ-terms can be interpreted as spurious volume and 
surface currents representing approximation errors. 



Minimizing the Interface Error 
 Minimize, for each cell boundary, the discrepancy 

between the coarse fields and the respective fine-
scale fields: 

 

 For hexahedral cells,  

 

    

    ∂Cmx – four faces parallel to the x-axis. 

 Note that the averages above involve the periodic 
factor of the Bloch wave. 



Minimizing the Volume Error 
 

    

     

 

 

 q× is the matrix representation of the cross 
product with q 

 This problem has a closed-form solution for the 
material tensor because the functional is 
quadratic with respect to the entries of M.  



 

The Algebraic System 

l.s. 

= 

6  6 
tensor to 
be found  

E0, H0 for each 
basis wave found 
from interface b.c. 

D0, B0 for each basis 
wave found from the 
Maxwell curl equations 



The Case of Diagonal Tensors 

 

 

 

 

 Physical interpretation: ensemble averages of Bloch 
impedances of the basis waves.  

 The physical significance of Bloch impedance has 
been previously emphasized by other researchers 
(Simovski 2009, Lawrence et al. 2013). 



Non-Diagonal Tensor 

Ψm,DB and Ψm,EH: 6 × n matrices with 

columns α 

Error indicator: 



Now focus on the “uncertainty 
principle”: the stronger the magnetic 
response, the less accurate 
(“certain") the predictions of the 
effective medium theory. 

IT and Vadim Markel, Nonasymptotic homogenization of periodic 
electromagnetic structures:  Uncertainty principles, PRB 93, 024418, 2016. 
 
Vadim Markel and IT, Can photonic crystals be homogenized in higher 
bands? arxiv.org:1512.05148,  submitted. 



A Bloch wave 

The tangential component of h 

Fields in the air 

Fields in the metamaterial 
(s-mode) 

Fields in the 
equivalent material 

A plane wave 

What should the 
EHDB-amplitudes of 
the plane wave be for 
best approximation? 



Interface boundary conditions  E, H amplitudes: 

Maxwell’s equations inside the material  B, D 
amplitudes: 

For cells with mirror symmetry, 

What should the EHDB-amplitudes be? 



Magnetic effects in metamaterials are due entirely to 
higher-order spatial harmonics of the Bloch wave. 

 
It is qualitatively clear that the angular dependence of  
will tend to be stronger when the magnetic effects (nonzero 
) are themselves stronger, as both are controlled by e~. 
 
This conclusion can also be supported quantitatively. 
 
VM & IT, Nonasymptotic Homogenization of Periodic Electromagnetic 
Structures: an Uncertainty Principle, to appear in Phys Rev B, 2016. 



A Numerical Example 

 
 
Hex lattice of cylindrical air holes in a 
dielectric host (Pei & Huang, JOSA B, 
29, 2012). Radius of the hole: 0.42a. 

Dielectric permittivity of the host: 
12.25. s-polarization (TM-mode). 
 
The second photonic band it exhibits a 
high level of isotropy around the -
point and a negative effective index. 

Isofrequency contour almost 

circular at a = 0.365  (near 

2nd –point a  0.368). 



Numerical Features 

 Flexible Local Approximation Method 
(FLAME), high-order Trefftz-FD schemes: 

 IT, J Comp Phys 2006, IEEE Trans Mag 
2005, 2008. 

 IT, Springer, 2007. 

 FLAME on rhombic grids for Bloch modes. 

 General motif: Trefftz methods.  

 Material tensor for optimal fit to the TR 
data, using Matlab’s fminsearch. 



Absolute errors in R (left) and T (right) as functions of the 
sine of the angle of incidence. Tensor optimization was 
performed within the range [0, /4] for the angle of 
incidence. Hex lattice of cylindrical air holes in a dielectric 
host (Pei & Huang). 

a = 0.1 

IT and Vadim Markel, Nonasymptotic 
homogenization of periodic electromagnetic 
structures:  Uncertainty principles, 
arxiv.org:11510.05002,  PRB 2016. 



Same but for a = 0.365. Stronger magnetic 

effects – poorer homogenization accuracy. 

IT and Vadim Markel, 
Nonasymptotic homogenization of 
periodic electromagnetic 
structures:  Uncertainty principles, 
arxiv.org:11510.05002,  PRB 2016. 

a = 0.365 



From non-asymptotic 
to nonlocal theory 



 

Recall Local Approximation First 

l.s. 

= 

6  6 
tensor to 
be found  

E0, H0 for each 
basis wave found 
from interface b.c. 

D0, B0 for each basis 
wave found from the 
dispersion relations 



η is a vector of additional (nonlocal, integral) degrees of 
freedom (dof) for the coarse-level field. 

The EH-matrix is expanded 
“downward,” with 
additional E and H dof. 

A Nonlocal Model 

Compared to the local 
problem, the material 
tensor is expanded 
“rightward” 



Numerical Example: Layered Media 

 Deceptively simple, but in fact nontrivial for 
homogenization. 

 Precise definitions and TR results are seldom 
given. (Take volume averages and make sure 
the results are pleasing to the eye.) 

 Only dispersion relations, but not the 
boundary conditions, are usually considered. 

Vadim Markel and IT,   Phys Rev B 88, 125131, 2013. 
IT  and Vadim Markel,  Proc Royal Soc A, May 2014. 
S. Tang, B. Zhu, M. Jia, Q. He, S. Sun, Y. Mei, and L. Zhou 
Phys Rev B 91, 174201, 2015. 



Numerical Example: Layered Medium 

 Layered dielectric structure, s-mode. 

 Analytical solution used for error 
analysis. 

 a = 4.0 + 0.1i 

 b = 1 

Vadim Markel and IT, Phys Rev B 88, 125131 (2013). 



Up to a/λ∼0.15, the agreement between 

Trefftz homogenization and parameter retrieval 
is almost perfect but then they diverge. This is 
because Trefftz homogenization optimizes 
effective parameters in a wide range of 
propagation angles while S-parameter retrieval 
optimizes T/R only for near-normal incidence. 

Local Effective Parameters 



R/T defined as the ratios of the complex amplitudes of the 
reflected/transmitted and incident tangential fields (the electric field 
for s-polarization). Normal incidence. Error indicator χ relatively small 
for a/λ  0.2 but grows rapidly beyond that range. Hence 
homogenization is accurate for a/λ  0.2 but otherwise the medium 
is not homogenizable (at least in terms of local parameters). 

TR vs. a/ (local homogenization) 



One may wish to tailor the effective parameters to a 
restricted range of incidence angles. Trade-off 
between the range of applicability and accuracy of 
the effective medium description.  

TR vs. angle (local homogenization) 



Nonlocal Homogenization 
(work in progress) 

Errors in the reflection coefficient R vs. a/λ (left; first photonic 

band) and vs. sin θ (right). The nonlocal integral model (red line) is 

seen to be much more accurate than the static (asymptotic) tensor 

(black line) and than the local model (blue line).. 

a = 4.0 + 0.1i 

b = 1 



Nonlocal Homogenization 
(work in progress) 

Same as before but for Example C of VM & IT, PRB 2013: Drude 

model for silver as material a; material b is air. 0 = 5, p = 500,  

p = 2p /c  136nm, a = 0.2p  27 nm. 



Conclusion 

 Not only bulk relations but also boundary 
conditions are critical for homogenization. 

 Nontrivial magnetic response of periodic 
structures composed of intrinsically 
nonmagnetic constituents has limitations and is 
subject to an “uncertainty principle”.  

 Namely, the stronger the magnetic response, 
the less accurate (“certain") are predictions of 
the effective medium theory.  



Conclusion (cont’d) 

 In practice, there is still room for engineering 
design, but trade-offs between magnetic response 
and the accuracy of homogenization must be noted. 

 Basis for analysis: coarse-level fields must satisfy 
the dispersion relation and boundary conditions 
accurately. 

 Not only the dispersion relation but also surface 
impedance have to be illumination independent if 
homogenization were to be accurate. 

 These prerequisites cannot unfortunately hold 
simultaneously if the desired magnetic response is 
strong. 



Conclusion (cont’d) 
 Instructive numerical example: triangular 

lattice of cylindrical air holes in a dielectric 
host (Pei & Huang). Exhibits a particularly 
high level of isotropy around the -point in 
the second photonic band. Even in this 
highly isotropic case the uncertainty principle 
remains valid. 

 Nonlocal homogenization may further 
improve the accuracy by about an order of 
magnitude. 



The End 


