Asian Winter School 2015 in Quantum Chemistry

Matrix Product States & Density Matrix Renormalization Group

Institute for Catalysis (ICAT), Hokkaido University Naoki Nakatani

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Useful reference

"The density-matrix renormalization group in the age of matrix product states" Ulrich Schollwöck, *Annals of Physics* **326**, 96-192 (2011).

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Many-body wavefunction

A solution of Schödinger equation

 $\mathcal{H}\Psi = E\Psi$

where

$$\Psi = \Psi(x_1, x_2, \dots, x_N)$$

is a function of **all particles**

Only 1 particle system can be solved analytically (e.g. electron in H atom)

In second quantization (expanded by a set of orbitals)

$$\Psi = \sum_{n_1 n_2 \cdots n_k} \Phi(n_1, n_2, \dots, n_k)$$

are occupation states of each 1-electron orbital

Degrees Of Freedom (DOF) is 4^{k}

(where *k* is # orbitals)

How to reduce DOFs for the best approximation?

One succeeded way is of coupled-cluster theory

$$|\Psi\rangle = \exp(\hat{T}_1 + \hat{T}_2) |\Psi_0\rangle$$

Many-particle interaction can be well approximated as a product of 1 or 2 particle interactions as long as the HF wavefunction is a good reference

Actually, **99%** of electronic energy comes from HF configuration *for common molecules*

When is HF "**NOT**" a good reference wavefunction? i.e. "*multi-reference*" character arises

HF Excited configurations

Approximation from particle view is useless

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Schmidt decomposition

Consider a system with two orthogonal subspaces L and R

A wavefunction of the system is given by

$$\left|\Psi\right\rangle = \sum_{ij} \psi_{ij} \left|i\right\rangle_{\mathrm{L}} \left|j\right\rangle_{\mathrm{R}}$$

Schmidt decomposition cont'd Doing SVD on ψ_{ij} leads $|\Psi\rangle = \sum_{ij} \sum_{a} L_{ia} \Lambda_{aa} R^{\dagger}_{aj} |i\rangle_{A} |j\rangle_{B}$

Transforming each basis by left- or right-singular vectors

$$\begin{aligned} \left|a\right\rangle_{\mathrm{L}} &= \sum_{i} \left|i\right\rangle_{\mathrm{L}} L_{ia}, \quad \left|a\right\rangle_{\mathrm{R}} = \sum_{j} R_{aj}^{\dagger} \left|j\right\rangle_{\mathrm{R}} \\ \left|\Psi\right\rangle &= \sum_{a} \Lambda_{a} \left|a\right\rangle_{\mathrm{L}} \left|a\right\rangle_{\mathrm{R}} \end{aligned}$$
Schmidt decomposition

Schmidt decomposition cont'd

How much L and R are "entangled"?

$$\left|\Psi\right\rangle = \sum_{a} \Lambda_{a} \left|a\right\rangle_{\mathrm{L}} \left|a\right\rangle_{\mathrm{R}}$$

"Classical" state

Having only 1 non-zero singular value

"Quantum" state

Having "*M*" non-zero singular values (M > 1)

Schmidt decomposition cont'd

A simple example of "classical" and "quantum" state

Closed-shell singlet is divided into a product of 2 states

$$|\Psi\rangle = |\uparrow\downarrow\rangle_1 \otimes |\rangle_2$$

Classical state

Open-shell singlet

is never divided into a simple product

$$\Psi \rangle = \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_1 \otimes \left| \downarrow \right\rangle_2 + \left| \downarrow \right\rangle_1 \otimes \left| \uparrow \right\rangle_2 \right)$$

Quantum state (entangled)

Matrix Product States

Consider a system with a set of orthogonal subspaces $\{|\mathbf{A}_i\rangle\}$

A wavefunction of the system is given by

$$|\Psi\rangle = \sum_{n_1n_2n_3n_4} \psi^{n_1n_2n_3n_4} |n_1n_2n_3n_4\rangle$$

Matrix Product States

Consider a system with a set of orthogonal subspaces $\{|\mathbf{A}_i\rangle\}$

$$\begin{array}{c|c} A_1 & A_2 & A_3 & A_4 \\ \hline \{|n_1\rangle\} & \{|n_2\rangle\} & \{|n_3\rangle\} & \{|n_4\rangle\} \end{array}$$

Divide $\psi^{n_1n_2n_3n_4}$ into a product of block-dependent matrices

$$|\Psi\rangle = \sum_{n_1n_2n_3n_4} \sum_{a_1a_2a_3} A_{a_1}^{n_1} A_{a_1a_2}^{n_2} A_{a_2a_3}^{n_3} A_{a_3}^{n_4} |n_1n_2n_3n_4\rangle$$

Graphical Language

Diagrammatic representation of tensor manipulations

Wavefunction can be seen as a **rank-***k* **tensor** where *k* is a number of sites (orbitals)

Graphical Language

Diagrammatic representation of tensor manipulations

connecting bonds: index contraction

MPS consists of a product of rank-3 tensors

Compute overlap in terms of MPS

Contract all tensors...

Compute overlap in terms of MPS

 $\mathcal{Q}(\mathbf{A}\mathbf{A}\mathbf{A}^{3}\mathbf{k}\mathbf{I}\mathbf{I}\mathbf{t}\mathbf{e}\mathbf{A}\mathbf{A}\mathbf{A}^{2}\mathbf{k})$

If "*M*" can be a small number, this gives a polynomial cost algorithm

MPS construction

Doing Singular Value Decomposition (SVD) recursively

$$|\Psi\rangle = \sum_{n_1 n_2 n_3 n_4} \psi^{n_1 n_2 n_3 n_4} |n_1 n_2 n_3 n_4\rangle$$

$$1^{\text{st}} \text{SVD} = \sum_{n_1 n_2 n_3 n_4} \sum_{a_1} L_{a_1}^{n_1} \Lambda_{a_1} R_{a_1}^{n_2 n_3 n_4 \dagger} |n_1 n_2 n_3 n_4\rangle$$

$$\begin{cases} n_2 n_3 n_4 \} \\ \psi^{n_1 \{n_2 n_3 n_4\}} \\ = n_1 L_{a_1}^{n_1} \cdot \Lambda_{a_1} \cdot R_{a_1}^{n_2 n_3 n_4 \dagger} \end{cases}$$

 $n_2 n_3 n_4$

viewed as a matrix

*n*₁

21

MPS construction cont'd

Doing SVDs recursively from the Left

$$\begin{split} \Psi \rangle &= \sum_{n_1 n_2 n_3 n_4} \sum_{a_1} L_{a_1}^{n_1} \psi_{a_1}^{n_2 n_3 n_4} \left| n_1 n_2 n_3 n_4 \right\rangle \\ &= \sum_{n_1 n_2 n_3 n_4} \sum_{a_1 a_2} L_{a_1}^{n_1} L_{a_1 a_2}^{n_2} \psi_{a_2}^{n_3 n_4} \left| n_1 n_2 n_3 n_4 \right\rangle \\ &= \sum_{n_1 n_2 n_3 n_4} \sum_{a_1 a_2 a_3} L_{a_1}^{n_1} L_{a_1 a_2}^{n_2} L_{a_2 a_3}^{n_3} \psi_{a_3}^{n_4} \left| n_1 n_2 n_3 n_4 \right\rangle \end{split}$$

Gauge Freedom of MPS

SVDs can also be carried out from the Right

$$\begin{split} \left|\Psi\right\rangle &= \sum_{n_{1}n_{2}n_{3}n_{4}} \psi^{n_{1}n_{2}n_{3}n_{4}} \left|n_{1}n_{2}n_{3}n_{4}\right\rangle \\ &= \sum_{n_{1}n_{2}n_{3}n_{4}} \sum_{a_{3}} L_{a_{3}}^{n_{1}n_{2}n_{3}} \Lambda_{a_{3}} R_{a_{3}}^{n_{4}\dagger} \left|n_{1}n_{2}n_{3}n_{4}\right\rangle \\ &\vdots \\ &= \sum_{n_{1}n_{2}n_{3}n_{4}} \sum_{a_{1}a_{2}a_{3}} \psi^{n_{1}}_{a_{1}} R_{a_{1}a_{2}}^{n_{2}\dagger} R_{a_{2}a_{3}}^{n_{3}\dagger} R_{a_{3}}^{n_{4}\dagger} \left|n_{1}n_{2}n_{3}n_{4}\right\rangle \end{split}$$

The same wavefunction with the different representation

Gauge freedom of MPS cont'd

$$\left(\boldsymbol{AB}\right)_{ij} = \sum_{s} A_{is} B_{sj}$$

inserting identity

$$\boldsymbol{A}\boldsymbol{B} = \boldsymbol{A} \big(\boldsymbol{G}\boldsymbol{G}^{-1} \big) \boldsymbol{B}$$

regrouping

$$(\boldsymbol{A}\boldsymbol{G})(\boldsymbol{G}^{-1}\boldsymbol{B}) = \boldsymbol{A}'\boldsymbol{B}'$$

matrix product with different gauge

Gauge freedom of MPS cont'd

Canonical form

Of which site is a wavefunction?

Note canonical forms are interchangeable

Canonical form cont'd

Left-canonical form

$$|\Psi\rangle = \sum_{n_1, n_2, n_3} \sum_{n_1, n_2} L_{a_1 a_2}^{n_2} L_{a_2 a_3}^{n_3} \psi_{a_3}^{n_4} |n_1 n_2 n_3 n_4\rangle$$

 $n_1 n_2 n_3 n_4 a_1 a_2 a_3$

Mixed-canonical form

$$=\sum_{n_1n_2n_3n_4}\sum_{a_1a_2a_3}L_{a_1}^{n_1}L_{a_1a_2}^{n_2}\psi_{a_2a_3}^{n_3}R_{a_3}^{n_4\dagger}\left|n_1n_2n_3n_4\right\rangle$$

Right-canonical form

 $=\sum_{n_1n_2n_3n_4}\sum_{a_1a_2a_3}\psi_{a_1}^{n_1}R_{a_1a_2}^{n_2\dagger}R_{a_2a_3}^{n_3\dagger}R_{a_3}^{n_4\dagger}\left|n_1n_2n_3n_4\right\rangle$

Canonical form cont'd

Why "canonical" form?

$$|a_{1}\rangle = \sum_{n_{1}} L_{a_{1}}^{n_{1}} |n_{1}\rangle$$

$$|a_{2}\rangle = \sum_{n_{1}n_{2}} \sum_{a_{1}} L_{a_{1}}^{n_{1}} L_{a_{1}a_{2}}^{n_{2}} |n_{1}n_{2}\rangle = \sum_{a_{1}n_{2}} L_{a_{1}a_{2}}^{n_{2}} |a_{1}n_{2}\rangle$$

$$\vdots$$

$$|a_{i}\rangle = \sum_{a_{i-1}n_{i}} L_{a_{i-1}a_{i}}^{n_{i}} |a_{i-1}n_{i}\rangle \qquad \left\langle a_{i} | a_{i}' \rangle = \delta_{a_{i}a_{i}'} \right\rangle$$

$$Gives orthonormal bases$$

Gives orthonormal bases for *i*-th boundary

Consequently, $\langle \Psi | \Psi \rangle = \sum_{a_2 n_3 a_3} \psi_{a_2 a_3}^{n_3 \dagger} \psi_{a_2 a_3}^{n_3}$

Compute expectation value

Compute expectation value

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Variational principle

Lagrange multiplier

Minimization with constraints (normalization condition)

$$\mathcal{L} = \langle \Psi | \mathcal{H} | \Psi \rangle - \lambda \left(\langle \Psi | \Psi \rangle - 1 \right)$$

$$\uparrow$$
Constraint to $\langle \Psi | \Psi \rangle = 1$

Find $|\Psi
angle$ which satisfies the variational condition

$$\delta \mathcal{L} = \left\langle \delta \Psi \left| \mathcal{H} \right| \Psi \right\rangle - \lambda \left\langle \delta \Psi \left| \Psi \right\rangle = 0$$

Variational Principle cont'd

Lagrange multiplier

Variational principle cont'd

Sweep algorithm

Optimizing for each site iteratively until converged

Sweep from Left to Right (Forward sweep)

Note:
$$\boldsymbol{H}^{[i]} \equiv \left\{ H^{n_i n'_i}_{a_{i-1} a_i a'_{i-1} a'_i} \right\}, \quad \boldsymbol{\psi}^{[i]} \equiv \left\{ \boldsymbol{\psi}^{n_i}_{a_{i-1} a_i} \right\}$$

Sweep algorithm

Optimizing for each site iteratively until converged

Sweep from Right to Left (Backward sweep)

Note:
$$\boldsymbol{H}^{[i]} \equiv \left\{ H^{n_i n'_i}_{a_{i-1} a_i a'_{i-1} a'_i} \right\}, \quad \boldsymbol{\psi}^{[i]} \equiv \left\{ \boldsymbol{\psi}^{n_i}_{a_{i-1} a_i} \right\}$$

Sweep algorithm cont'd

How to efficiently compute effective Hamiltonian?

Sweep algorithm cont'd

Renormalizing operators to the next

Rank-3 tensor

Rank-3 tensor

enables to reuse the intermediate tensors

QC-DMRG

In quantum chemistry,

Hamiltonian consists of one- and two-electron interactions

$$\hat{\mathcal{H}}_{elec} = \sum_{ij} h_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2} \sum_{ijkl} v_{ijlk} \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_l$$

while MPO formalism involves "any-particle" operators

implies that QC-MPO is highly sparse!

QC-DMRG cont'd

Instead using MPO formalism, block structure of Hamiltonian is considered

$$\mathcal{H}^{\mathsf{R}} \qquad \hat{1} \qquad \stackrel{\bullet\bullet\bullet\bullet\bullet}{=} \left\{ \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{l} \right\}_{ijkl\in\mathsf{R}}$$

QC-DMRG cont'd

Then taking a partial sum, such as

QC-DMRG cont'd

Renormalizing operators to the next

Consequently, QC-DMRG scales $O(dM^3k^3 + d^2M^2k^4)$

CAS approach

CAS approach

Replacing CI-solver by QC-DMRG

Orbital ordering

1D feature of MPS wavefunction arises because

$AB \neq BA$

e.g.

$\boldsymbol{A}^{n_1}\boldsymbol{A}^{n_2}\boldsymbol{A}^{n_3}\boldsymbol{A}^{n_4} \neq \boldsymbol{A}^{n_1}\boldsymbol{A}^{n_3}\boldsymbol{A}^{n_2}\boldsymbol{A}^{n_4}$

MPS wavefunction is "unitary variant"

Find the orbital set and the ordering which give the lowest energy

Orbital ordering cont'd

Trivial case

First, orbitals are localized Then, sorted manually to form 1*D* geometry

Orbital ordering cont'd

Non-trivial case

H₂O / cc-pVDZ (10e in 240)

Stronger interaction to be closer position

Block DMRG code

Developed by G. Chan group https://github.com/gkc1000/Block

Now, Block is integrated into...

Free softwares

pyscf Just to run, doesn't need to know details about DMRG!!!

Commercial packages

- Molpro
- Molcas (coming soon)

Benchmarks

Exponential scaling

Coffee break

MPS/MPO are general language to compress information

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

General concepts

Time-dependent wavefunction

$$\Psi(t) = e^{-i\hat{\mathcal{H}}t/\hbar}\Psi(0)$$

is a formal solution of time-dependent Schrödinger eq.

$$i\hbar\frac{\partial}{\partial t}\Psi(t) = \hat{\mathcal{H}}\Psi(t)$$

MPO formalism of propagator ($t \rightarrow t + \Delta t$)

MPS formalism of wavefunction (t = 0)

Now, carry out time-evolution of the wavefunction

For each time step,

Propagate...

For each time step,

Contract... Doing SVD...

For each time step,

Decimate...

Time-evolution I., TEBD

(Time-Evolving Block Decimation)

Consider 1*D* lattice system with nearest neighbor interactions

$$\int \mathbf{M} \int \mathbf{M}$$

Heisenberg Hamiltonian

$$\mathcal{H} = \sum_{i} J\hat{S}(i)\hat{S}(i+1)$$

Time-evolution I., TEBD cont'd

Trotter form of propagator

$$e^{-i\mathcal{H}t} = e^{-ih_1t} \cdots e^{-ih_it} \cdots e^{-ih_Lt} + \mathcal{O}(t^2)$$

Time-evolution I., TEBD cont'd

pcopargate...

Time-evolution I., TEBD cont'd

fix the logange...

Time-evolution II., TDVP

(Time-Dependent Variational Principle)

Bare differential involves a projection to outside the given space

$$\left|\dot{\Psi}(t)\right\rangle = -\frac{i}{\hbar}\mathcal{H}\left|\Psi(t)\right\rangle$$

Differential space which is in the given space and orthogonal to zero-th space **Tangent space**

t

66

Outline

Many-body wavefunction

Matrix Product States & Matrix Product Operators

DMRG from variational principle for MPS

Time-evolution

DMRG linear response theory

Similarity to Hartree-Fock theory

Product structure of wavefunction

HF: Product of 1-particle orbitals

$$\Psi_{\rm HF}(x_1,\ldots,x_i,\ldots,x_N) = \hat{\mathcal{A}}\left(\chi_1(x_1)\cdots\chi_i(x_i)\cdots\chi_N(x_N)\right)$$

Particle-independent mean-field

DMRG: Product of **1-site** matrices

$$\Psi_{\text{DMRG}}(n_1, \dots, n_i, \dots, n_k) = \sum_{n_1 \dots n_k} A^{[1]} \cdots A^{[i]} \cdots A^{[k]} | n_1 \cdots n_i \cdots n_k \rangle$$

Site-independent mean-field

Similarity to Hartree-Fock theory cont'd

Variational principle

HF: Schrödinger eq. for each orbital $\hat{f}(x_i)\chi_i(x_i) - \varepsilon_i\chi_i(x_i) = 0$

Effective Hamiltonian at *i*-th orbital

DMRG: Schrödinger eq. for each matrix

$$\boldsymbol{H}^{[i]}\boldsymbol{A}^{[i]} = \boldsymbol{E}_0\boldsymbol{A}^{[i]}$$

Effective Hamiltonian at *i*-th site

Similarity to Hartree-Fock theory cont'd

Time-dependent variational principle

DMRG: EOM for **each matrix**

$$i\hbar \mathbf{S}^{[i]}(t)\frac{\partial}{\partial t}\mathbf{A}^{[i]}(t) = \mathbf{H}^{[i]}(t)\mathbf{A}^{[i]}(t)$$

Any post-DMRG methods can be derived?

Linear Response Theory

Investigate the first order response for a time-dependent perturbation, such as

$$\hat{V}(t) = V e^{-i\omega t} + V^* e^{i\omega t}$$

Investigate the first order response for a time-dependent perturbation, such as

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = (\hat{H}_0 + \lambda \hat{V}(t)) \Psi(\mathbf{x}, t)$$

time-independent term
(zero-th order) time-dependent term
(perturbation)

Linear Response Theory cont'd

Consider a perturbation expansion of the wavefunction

$$\Psi(\mathbf{x},t) = \left(\Psi^{(0)}(\mathbf{x}) + \lambda\Psi^{(1)}(\mathbf{x},t) + \lambda^2\Psi^{(2)}(\mathbf{x},t) + \cdots\right)e^{-i\omega_0 t}$$

phase factor

First order equation is therefore,

$$\left(\hat{H}_{0} \stackrel{E_{0}}{\leftarrow} \hbar \omega_{0} \stackrel{i\hbar}{\leftarrow} \frac{\partial}{\partial t}\right) \Psi^{(1)}(\boldsymbol{x}, t) = -\hat{Q}\hat{V}(t)\Psi^{(0)}(\boldsymbol{x})$$

Fourier transform,

$$\left(\hat{H}_0 - E_0 + \hbar\omega\right)\Psi^{(1)}(\boldsymbol{x},\omega) = -\hat{Q}\hat{V}(\omega)\Psi^{(0)}(\boldsymbol{x})$$

Linear Response Equation
Linear Response Theory cont'd What's the first order **HF** wavefunction? Consider perturbation expansion for "*i-th orbital*" $\chi_i(x_i,t) = \chi_i^{(0)}(x_i) + \lambda \chi_i^{(1)}(x_i,t) + \lambda^2 \chi_i^{(2)}(x_i,t) +$

The first order HF wavefunction is of

$$\begin{aligned} \Psi_{\rm HF}^{(1)}(\boldsymbol{x},t) &= \hat{\mathcal{A}}\Big(\chi_1^{(1)}(\boldsymbol{x}_1,t)\cdots\chi_i^{(0)}(\boldsymbol{x}_i)\cdots\chi_N^{(0)}(\boldsymbol{x}_N)\Big) + \cdots \\ &+ \hat{\mathcal{A}}\Big(\chi_1^{(0)}(\boldsymbol{x}_1)\cdots\chi_i^{(1)}(\boldsymbol{x}_i,t)\cdots\chi_N^{(0)}(\boldsymbol{x}_N)\Big) + \cdots \\ &+ \hat{\mathcal{A}}\Big(\chi_1^{(0)}(\boldsymbol{x}_1)\cdots\chi_i^{(0)}(\boldsymbol{x}_i)\cdots\chi_N^{(1)}(\boldsymbol{x}_N,t)\Big) \end{aligned}$$

Linear Response Theory cont'd

Response equation is therefore,

$$\left(\hat{f}_i - \varepsilon_i + \hbar\omega\right) \chi_i^{(1)}(x_i, \omega) = -\hat{Q}\hat{V}(\omega)\chi_i^{(0)}(x_i)$$

What's the first order change in orbital?

$$\hat{\mathcal{A}}\left(\chi_1^{(0)}(x_1)\cdots\chi_i^{(1)}(x_i,t)\cdots\chi_N^{(0)}(x_N)\right)$$

reads *i*-th orbital is changed to the other which is orthogonal to zero-th orbitals

$$\chi_i^{(1)}(x,t) = \sum c_i^a(t)\chi_a(x)$$

a

sum. over virtual orbitals

Linear Response Theory cont'd What's the first order **MPS** wavefunction? Consider perturbation expansion for "i-th matrix" $A^{[i]}(t) = A^{[i](0)} + \lambda A^{[i](1)}(t) + \lambda^2 A^{[i](2)}(t) +$ The first order MPS wavefunction is of $\Psi_{\rm MPS}^{(1)}(A,t) = A^{1}(t) \cdots A^{[i](0)} \cdots A^{[k](0)} + \cdots$ $+A^{[1](0)}\cdots A^{[i](1)}(t)\cdots A^{[k](0)}+\cdots$ $+A^{[1](0)}\cdots A^{[i](0)}\cdots A^{[k](1)}(t)$

Linear Response Theory cont'd

Response equation for MPS is of the form

$$\left(\boldsymbol{H}^{[i](0)} - \boldsymbol{E}_{0} + \hbar \boldsymbol{\omega} \right) \boldsymbol{A}^{[i](1)}(\boldsymbol{\omega}) = -\hat{Q} \left(\boldsymbol{V}^{[i]}(\boldsymbol{\omega}) + \Delta \boldsymbol{H}^{[i](1)} \right) \boldsymbol{A}^{[i](0)}$$

$$1. What's the first order change in matrix?$$

2. What's the first order change in Hamiltonian?

Gauge degrees of freedom in MPS wavefunction introduce some complications...

MPS tangent space

First order change of MPS wavefunction is expanded as

$$\left| \Psi_{\text{MPS}}^{(1)}(\mathcal{A}) \right\rangle = \sum_{i} \mathcal{A}^{[i](1)} \left| \partial_{i} \Psi_{\text{MPS}}^{(0)}(\mathcal{A}) \right\rangle$$

MPS tangent space cont'd

Naïve differential w.r.t. a site component

$$\left|\partial_{i}\Psi_{0}(A)\right\rangle = \frac{\partial}{\partial A^{[i]}}\left|\Psi_{0}(A)\right\rangle$$

is redundant to a differential of another site component

$$\left\langle \partial_{i} \Psi_{0}(A) \middle| \partial_{j} \Psi_{0}(A) \right\rangle \neq 0 \qquad (i \neq j)$$

MPS tangent space cont'd

MPS tangent space with left gauge fixed

$$\left|\partial_{i}\Psi_{0}(\mathcal{A})\right\rangle_{L} = \left(\boldsymbol{I} - \boldsymbol{L}^{[i]}\boldsymbol{L}^{[i]\dagger}\right) \frac{\partial}{\partial\boldsymbol{L}^{[i]}} \left|\Psi_{0}(\mathcal{A})\right\rangle$$

-

MPS tangent space with right gauge fixed

$$\left|\partial_{i}\Psi_{0}(\mathcal{A})\right\rangle_{R} = \left(\boldsymbol{I} - \boldsymbol{R}^{[i]\dagger}\boldsymbol{R}^{[i]}\right)\frac{\partial}{\partial\boldsymbol{R}^{[i]\dagger}}\left|\Psi_{0}(\mathcal{A})\right\rangle$$

Depends on choice of gauge (i.e. canonical form)

Graphical Language with Gauge

Arrows to distinguish canonical forms,

Gauge transfer

How to keep non-redundancy in the first order MPS?

Effective Hamiltonian

 $\boldsymbol{H}^{[i](0)}\boldsymbol{A}^{[i](1)}(\boldsymbol{\omega})$

First order contribution from *i*-th site

 $\Delta \boldsymbol{H}^{[i](1)} \boldsymbol{A}^{[i](0)}$

First order contribution from other sites

Random Phase Approximation

First order wavefunction is approximated as Harmonic oscillator around the ground state

$$\boldsymbol{A}^{[i](1)}(t) = \boldsymbol{X}^{[i]}e^{-i\omega t} + \boldsymbol{Y}^{[i]^*}e^{i\omega t}$$

A couple of response equations for **real** and **imaginary** parts of wavefunction

$$\left(\boldsymbol{H}^{[i](0)} - E_0 + \hbar\omega \right) \boldsymbol{X}^{[i](1)}(\omega) = -\hat{Q} \left(\Delta \boldsymbol{H}_X^{[i](1)} + \Delta \boldsymbol{W}_Y^{[i](1)} \right) \boldsymbol{A}^{[i](0)}$$
$$\left(\boldsymbol{H}^{[i](0)} - E_0 - \hbar\omega \right) \boldsymbol{Y}^{[i](1)}(\omega) = -\hat{Q} \left(\Delta \boldsymbol{H}_Y^{[i](1)} + \Delta \boldsymbol{W}_X^{[i](1)} \right) \boldsymbol{A}^{[i](0)}$$

Random Phase Approximation cont'd

DMRG-RPA equation is of the form

$$\begin{pmatrix} H & W \\ W^* & H^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \hbar \omega \begin{pmatrix} S & 0 \\ 0 & -S^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

This is an eigenvalue problem of a huge matrix

Tamm-Dancoff approximation

The DMRG ground state is a good reference,

$$\begin{pmatrix} H & W \\ W^* & H^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \hbar \omega \begin{pmatrix} S & 0 \\ 0 & -S^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

Matrix *W* must be almost **0**

 $HX = \hbar \omega SX$

gives Tamm-Dancoff approximation (i.e. CI-Single)

DMRG-LRT: Illustrative applications

state	E _{conv.} / E _h	$(E - E_{conv.}) / mE_{h}$		
	SA / M = 2000	SA / M = 500	TDA / M = 500	EOM-CCSD
X ¹ A ₁	-76.241697	0.11	0.01	3.68
$1^{1}B_{1}$	-75.939176	0.20	0.02	1.50
$1^{1}A_{2}$	-75.864445	0.20	0.02	2.07
2 ¹ A ₁	-75.842487	0.18	0.12	2.08
1^1B_2	-75.765964	0.21	0.02	2.55
$2^{1}B_{2}$	-75.696018	0.20	0.45	4.14
3 ¹ A ₁	-75.584080	0.16	0.10	5.13
4 ¹ A ₁	-75.462977	0.26	2.69	N/A
2 ¹ A ₂	-75.448180	0.23	0.04	4.53
3 ¹ A ₂	-75.403286	0.33	0.27	N/A
2 ¹ B ₁	-75.401515	0.28	0.25	24.20
3 ¹ B ₁	-75.381977	0.26	0.07	N/A
3 ¹ B ₂	-75.322655	0.26	0.07	5.75

 $H_2O / cc-pVDZ$ DMRG (10e in 24o)

First order space involves multi-particle excitations

MPS & DMRG

- Many-body wavefunction from low-entangled limit
- DMRG algorithm is derived from variational principle for MPS wavefunction
- Time-evolution can be done easily in terms of MPS/MPO multiplications
- The similarity b/w HF and DMRG leads "post-DMRG" methods to beyond the DMRG

Thank you for your kind attention